1 /*
2 * Copyright (C) 2020 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 // See /docs/design-docs/protozero.md for rationale and results.
18
19 #include <memory>
20 #include <vector>
21
22 #include <unistd.h>
23
24 #include <benchmark/benchmark.h>
25
26 #include "perfetto/base/compiler.h"
27 #include "perfetto/protozero/static_buffer.h"
28
29 // Autogenerated headers in out/*/gen/
30 #include "src/protozero/test/example_proto/library.pbzero.h"
31 #include "src/protozero/test/example_proto/test_messages.pb.h"
32 #include "src/protozero/test/example_proto/test_messages.pbzero.h"
33
34 // Generated by the protozero plugin.
35 namespace pbzero = protozero::test::protos::pbzero;
36
37 // Generated by the official protobuf compiler.
38 namespace pblite = protozero::test::protos;
39
40 namespace {
41
42 // This needs to be > the max size written by each iteration.
43 constexpr size_t kBufPerIteration = 512;
44
45 // Write cyclically on a 64 MB buffer set to simulate a realistic tracing
46 // scenario.
47 constexpr size_t kTotalWorkingSetSize = 64 * 1024 * 1024;
48 alignas(uint64_t) char g_out_buffer[kTotalWorkingSetSize];
49
50 char* g_cur = g_out_buffer;
51
52 uint64_t g_fake_input_simple[] = {0x12345678,
53 0x90ABCDEF,
54 0x11111111,
55 0xFFFFFFFF,
56 0x6666666666666666ULL,
57 0x6666666666666666ULL,
58 0x6666666666666666ULL,
59 0x0066666666666666ULL};
60
61 // Speed-of-light serializer. Aa very simple C++ class that just appends data
62 // into a linear buffer making all sorts of favourable assumptions. It does not
63 // use any binary-stable encoding, it does not perform bound checking,
64 // all writes are 64-bit aligned, it doesn't deal with any thread-safety.
65 // The speed-of-light serializer serves as a reference for how fast a serializer
66 // could be if argument marshalling and bound checking were zero cost.
67 struct SOLMsg {
68 template <typename T>
Append__anonfdc7fe2b0111::SOLMsg69 void Append(T x) {
70 // The reinterpret_cast is to give favorable alignment guarantees.
71 // The memcpy will be elided by the compiler, which will emit just a
72 // 64-bit aligned mov instruction.
73 memcpy(reinterpret_cast<void*>(ptr_), &x, sizeof(x));
74 ptr_ += sizeof(uint64_t);
75 }
76
set_field_int32__anonfdc7fe2b0111::SOLMsg77 void set_field_int32(int32_t x) { Append(x); }
set_field_uint32__anonfdc7fe2b0111::SOLMsg78 void set_field_uint32(uint32_t x) { Append(x); }
set_field_int64__anonfdc7fe2b0111::SOLMsg79 void set_field_int64(int64_t x) { Append(x); }
set_field_uint64__anonfdc7fe2b0111::SOLMsg80 void set_field_uint64(uint64_t x) { Append(x); }
set_field_string__anonfdc7fe2b0111::SOLMsg81 void set_field_string(const char* str) { ptr_ = strcpy(ptr_, str); }
82
add_field_nested__anonfdc7fe2b0111::SOLMsg83 SOLMsg* add_field_nested() { return new (this + 1) SOLMsg(); }
84
85 alignas(uint64_t) char storage_[sizeof(g_fake_input_simple) + 8];
86 char* ptr_ = &storage_[0];
87 };
88
89 template <typename T>
FillMessage_Simple(T * msg)90 PERFETTO_ALWAYS_INLINE void FillMessage_Simple(T* msg) {
91 benchmark::DoNotOptimize(g_fake_input_simple);
92 msg->set_field_int32(static_cast<int32_t>(g_fake_input_simple[0]));
93 msg->set_field_uint32(static_cast<uint32_t>(g_fake_input_simple[1]));
94 msg->set_field_int64(static_cast<int64_t>(g_fake_input_simple[2]));
95 msg->set_field_uint64(static_cast<uint64_t>(g_fake_input_simple[3]));
96 msg->set_field_string(reinterpret_cast<const char*>(&g_fake_input_simple[4]));
97 }
98
99 template <typename T>
FillMessage_Nested(T * msg,int depth=0)100 PERFETTO_ALWAYS_INLINE void FillMessage_Nested(T* msg, int depth = 0) {
101 benchmark::DoNotOptimize(g_fake_input_simple);
102 FillMessage_Simple(msg);
103 if (depth < 3) {
104 auto* child = msg->add_field_nested();
105 FillMessage_Nested(child, depth + 1);
106 }
107 }
108
Clobber(benchmark::State & state)109 PERFETTO_ALWAYS_INLINE void Clobber(benchmark::State& state) {
110 uint64_t* buf = reinterpret_cast<uint64_t*>(g_cur);
111
112 // Read-back the data written to have a realistic evaluation of the
113 // speed-of-light scenario. This is to deal with architecture of modern CPUs.
114 // If we write a bunch of memory bytes, never read-back from them, and then
115 // just over-write them, the CPU can just throw away the whole stream of
116 // instructions that produced them, if that's still in flight and tracked in
117 // the out-of-order units.
118 // The buf[i-1] ^= buf forces the CPU to consume the result of the writes.
119 buf[0] = reinterpret_cast<uint64_t>(&state);
120 for (size_t i = 1; i < kBufPerIteration / sizeof(uint64_t); i++)
121 buf[i] ^= buf[i - 1];
122 if (buf[(kBufPerIteration / sizeof(uint64_t)) - 1] == 42)
123 PERFETTO_CHECK(false);
124 benchmark::DoNotOptimize(buf);
125
126 constexpr size_t kWrap = kTotalWorkingSetSize / kBufPerIteration;
127 g_cur = &g_out_buffer[(state.iterations() % kWrap) * kBufPerIteration];
128 benchmark::ClobberMemory();
129 }
130
131 } // namespace
132
BM_Protozero_Simple_Libprotobuf(benchmark::State & state)133 static void BM_Protozero_Simple_Libprotobuf(benchmark::State& state) {
134 while (state.KeepRunning()) {
135 {
136 // The nested block is to account for RAII finalizers.
137 pblite::EveryField msg;
138 FillMessage_Simple(&msg);
139 msg.SerializeToArray(g_cur, kBufPerIteration);
140 }
141 Clobber(state);
142 }
143 }
144
BM_Protozero_Simple_Protozero(benchmark::State & state)145 static void BM_Protozero_Simple_Protozero(benchmark::State& state) {
146 while (state.KeepRunning()) {
147 {
148 protozero::StaticBuffered<pbzero::EveryField> msg(g_cur,
149 kBufPerIteration);
150 FillMessage_Simple(msg.get());
151 }
152 Clobber(state);
153 }
154 }
155
BM_Protozero_Simple_SpeedOfLight(benchmark::State & state)156 static void BM_Protozero_Simple_SpeedOfLight(benchmark::State& state) {
157 while (state.KeepRunning()) {
158 SOLMsg* msg = new (g_cur) SOLMsg();
159 FillMessage_Simple(msg);
160 Clobber(state);
161 }
162 }
163
BM_Protozero_Nested_Libprotobuf(benchmark::State & state)164 static void BM_Protozero_Nested_Libprotobuf(benchmark::State& state) {
165 while (state.KeepRunning()) {
166 {
167 pblite::EveryField msg;
168 FillMessage_Nested(&msg);
169 msg.SerializeToArray(g_cur, kBufPerIteration);
170 }
171 Clobber(state);
172 }
173 }
174
BM_Protozero_Nested_Protozero(benchmark::State & state)175 static void BM_Protozero_Nested_Protozero(benchmark::State& state) {
176 while (state.KeepRunning()) {
177 {
178 protozero::StaticBuffered<pbzero::EveryField> msg(g_cur,
179 kBufPerIteration);
180 FillMessage_Nested(msg.get());
181 }
182 Clobber(state);
183 }
184 }
185
BM_Protozero_Nested_SpeedOfLight(benchmark::State & state)186 static void BM_Protozero_Nested_SpeedOfLight(benchmark::State& state) {
187 while (state.KeepRunning()) {
188 SOLMsg* msg = new (g_cur) SOLMsg();
189 FillMessage_Nested(msg);
190 Clobber(state);
191 }
192 }
193
194 BENCHMARK(BM_Protozero_Simple_Libprotobuf);
195 BENCHMARK(BM_Protozero_Simple_Protozero);
196 BENCHMARK(BM_Protozero_Simple_SpeedOfLight);
197
198 BENCHMARK(BM_Protozero_Nested_Libprotobuf);
199 BENCHMARK(BM_Protozero_Nested_Protozero);
200 BENCHMARK(BM_Protozero_Nested_SpeedOfLight);
201