1 /*
2 * Copyright 2005-2007 Universiteit Leiden
3 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Copyright 2010 INRIA Saclay
5 * Copyright 2012 Universiteit Leiden
6 * Copyright 2014 Ecole Normale Superieure
7 *
8 * Use of this software is governed by the MIT license
9 *
10 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
11 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
12 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
13 * B-3001 Leuven, Belgium
14 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
15 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
16 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
17 */
18
19 #include <isl/val.h>
20 #include <isl/space.h>
21 #include <isl/set.h>
22 #include <isl/map.h>
23 #include <isl/union_set.h>
24 #include <isl/union_map.h>
25 #include <isl/flow.h>
26 #include <isl/schedule_node.h>
27 #include <isl_sort.h>
28 #include <isl/stream.h>
29
30 enum isl_restriction_type {
31 isl_restriction_type_empty,
32 isl_restriction_type_none,
33 isl_restriction_type_input,
34 isl_restriction_type_output
35 };
36
37 struct isl_restriction {
38 enum isl_restriction_type type;
39
40 isl_set *source;
41 isl_set *sink;
42 };
43
44 /* Create a restriction of the given type.
45 */
isl_restriction_alloc(__isl_take isl_map * source_map,enum isl_restriction_type type)46 static __isl_give isl_restriction *isl_restriction_alloc(
47 __isl_take isl_map *source_map, enum isl_restriction_type type)
48 {
49 isl_ctx *ctx;
50 isl_restriction *restr;
51
52 if (!source_map)
53 return NULL;
54
55 ctx = isl_map_get_ctx(source_map);
56 restr = isl_calloc_type(ctx, struct isl_restriction);
57 if (!restr)
58 goto error;
59
60 restr->type = type;
61
62 isl_map_free(source_map);
63 return restr;
64 error:
65 isl_map_free(source_map);
66 return NULL;
67 }
68
69 /* Create a restriction that doesn't restrict anything.
70 */
isl_restriction_none(__isl_take isl_map * source_map)71 __isl_give isl_restriction *isl_restriction_none(__isl_take isl_map *source_map)
72 {
73 return isl_restriction_alloc(source_map, isl_restriction_type_none);
74 }
75
76 /* Create a restriction that removes everything.
77 */
isl_restriction_empty(__isl_take isl_map * source_map)78 __isl_give isl_restriction *isl_restriction_empty(
79 __isl_take isl_map *source_map)
80 {
81 return isl_restriction_alloc(source_map, isl_restriction_type_empty);
82 }
83
84 /* Create a restriction on the input of the maximization problem
85 * based on the given source and sink restrictions.
86 */
isl_restriction_input(__isl_take isl_set * source_restr,__isl_take isl_set * sink_restr)87 __isl_give isl_restriction *isl_restriction_input(
88 __isl_take isl_set *source_restr, __isl_take isl_set *sink_restr)
89 {
90 isl_ctx *ctx;
91 isl_restriction *restr;
92
93 if (!source_restr || !sink_restr)
94 goto error;
95
96 ctx = isl_set_get_ctx(source_restr);
97 restr = isl_calloc_type(ctx, struct isl_restriction);
98 if (!restr)
99 goto error;
100
101 restr->type = isl_restriction_type_input;
102 restr->source = source_restr;
103 restr->sink = sink_restr;
104
105 return restr;
106 error:
107 isl_set_free(source_restr);
108 isl_set_free(sink_restr);
109 return NULL;
110 }
111
112 /* Create a restriction on the output of the maximization problem
113 * based on the given source restriction.
114 */
isl_restriction_output(__isl_take isl_set * source_restr)115 __isl_give isl_restriction *isl_restriction_output(
116 __isl_take isl_set *source_restr)
117 {
118 isl_ctx *ctx;
119 isl_restriction *restr;
120
121 if (!source_restr)
122 return NULL;
123
124 ctx = isl_set_get_ctx(source_restr);
125 restr = isl_calloc_type(ctx, struct isl_restriction);
126 if (!restr)
127 goto error;
128
129 restr->type = isl_restriction_type_output;
130 restr->source = source_restr;
131
132 return restr;
133 error:
134 isl_set_free(source_restr);
135 return NULL;
136 }
137
isl_restriction_free(__isl_take isl_restriction * restr)138 __isl_null isl_restriction *isl_restriction_free(
139 __isl_take isl_restriction *restr)
140 {
141 if (!restr)
142 return NULL;
143
144 isl_set_free(restr->source);
145 isl_set_free(restr->sink);
146 free(restr);
147 return NULL;
148 }
149
isl_restriction_get_ctx(__isl_keep isl_restriction * restr)150 isl_ctx *isl_restriction_get_ctx(__isl_keep isl_restriction *restr)
151 {
152 return restr ? isl_set_get_ctx(restr->source) : NULL;
153 }
154
155 /* A private structure to keep track of a mapping together with
156 * a user-specified identifier and a boolean indicating whether
157 * the map represents a must or may access/dependence.
158 */
159 struct isl_labeled_map {
160 struct isl_map *map;
161 void *data;
162 int must;
163 };
164
165 typedef isl_bool (*isl_access_coscheduled)(void *first, void *second);
166
167 /* A structure containing the input for dependence analysis:
168 * - a sink
169 * - n_must + n_may (<= max_source) sources
170 * - a function for determining the relative order of sources and sink
171 * - an optional function "coscheduled" for determining whether sources
172 * may be coscheduled. If "coscheduled" is NULL, then the sources
173 * are assumed not to be coscheduled.
174 * The must sources are placed before the may sources.
175 *
176 * domain_map is an auxiliary map that maps the sink access relation
177 * to the domain of this access relation.
178 * This field is only needed when restrict_fn is set and
179 * the field itself is set by isl_access_info_compute_flow.
180 *
181 * restrict_fn is a callback that (if not NULL) will be called
182 * right before any lexicographical maximization.
183 */
184 struct isl_access_info {
185 isl_map *domain_map;
186 struct isl_labeled_map sink;
187 isl_access_level_before level_before;
188 isl_access_coscheduled coscheduled;
189
190 isl_access_restrict restrict_fn;
191 void *restrict_user;
192
193 int max_source;
194 int n_must;
195 int n_may;
196 struct isl_labeled_map source[1];
197 };
198
199 /* A structure containing the output of dependence analysis:
200 * - n_source dependences
201 * - a wrapped subset of the sink for which definitely no source could be found
202 * - a wrapped subset of the sink for which possibly no source could be found
203 */
204 struct isl_flow {
205 isl_set *must_no_source;
206 isl_set *may_no_source;
207 int n_source;
208 struct isl_labeled_map *dep;
209 };
210
211 /* Construct an isl_access_info structure and fill it up with
212 * the given data. The number of sources is set to 0.
213 */
isl_access_info_alloc(__isl_take isl_map * sink,void * sink_user,isl_access_level_before fn,int max_source)214 __isl_give isl_access_info *isl_access_info_alloc(__isl_take isl_map *sink,
215 void *sink_user, isl_access_level_before fn, int max_source)
216 {
217 isl_ctx *ctx;
218 struct isl_access_info *acc;
219
220 if (!sink)
221 return NULL;
222
223 ctx = isl_map_get_ctx(sink);
224 isl_assert(ctx, max_source >= 0, goto error);
225
226 acc = isl_calloc(ctx, struct isl_access_info,
227 sizeof(struct isl_access_info) +
228 (max_source - 1) * sizeof(struct isl_labeled_map));
229 if (!acc)
230 goto error;
231
232 acc->sink.map = sink;
233 acc->sink.data = sink_user;
234 acc->level_before = fn;
235 acc->max_source = max_source;
236 acc->n_must = 0;
237 acc->n_may = 0;
238
239 return acc;
240 error:
241 isl_map_free(sink);
242 return NULL;
243 }
244
245 /* Free the given isl_access_info structure.
246 */
isl_access_info_free(__isl_take isl_access_info * acc)247 __isl_null isl_access_info *isl_access_info_free(
248 __isl_take isl_access_info *acc)
249 {
250 int i;
251
252 if (!acc)
253 return NULL;
254 isl_map_free(acc->domain_map);
255 isl_map_free(acc->sink.map);
256 for (i = 0; i < acc->n_must + acc->n_may; ++i)
257 isl_map_free(acc->source[i].map);
258 free(acc);
259 return NULL;
260 }
261
isl_access_info_get_ctx(__isl_keep isl_access_info * acc)262 isl_ctx *isl_access_info_get_ctx(__isl_keep isl_access_info *acc)
263 {
264 return acc ? isl_map_get_ctx(acc->sink.map) : NULL;
265 }
266
isl_access_info_set_restrict(__isl_take isl_access_info * acc,isl_access_restrict fn,void * user)267 __isl_give isl_access_info *isl_access_info_set_restrict(
268 __isl_take isl_access_info *acc, isl_access_restrict fn, void *user)
269 {
270 if (!acc)
271 return NULL;
272 acc->restrict_fn = fn;
273 acc->restrict_user = user;
274 return acc;
275 }
276
277 /* Add another source to an isl_access_info structure, making
278 * sure the "must" sources are placed before the "may" sources.
279 * This function may be called at most max_source times on a
280 * given isl_access_info structure, with max_source as specified
281 * in the call to isl_access_info_alloc that constructed the structure.
282 */
isl_access_info_add_source(__isl_take isl_access_info * acc,__isl_take isl_map * source,int must,void * source_user)283 __isl_give isl_access_info *isl_access_info_add_source(
284 __isl_take isl_access_info *acc, __isl_take isl_map *source,
285 int must, void *source_user)
286 {
287 isl_ctx *ctx;
288
289 if (!acc)
290 goto error;
291 ctx = isl_map_get_ctx(acc->sink.map);
292 isl_assert(ctx, acc->n_must + acc->n_may < acc->max_source, goto error);
293
294 if (must) {
295 if (acc->n_may)
296 acc->source[acc->n_must + acc->n_may] =
297 acc->source[acc->n_must];
298 acc->source[acc->n_must].map = source;
299 acc->source[acc->n_must].data = source_user;
300 acc->source[acc->n_must].must = 1;
301 acc->n_must++;
302 } else {
303 acc->source[acc->n_must + acc->n_may].map = source;
304 acc->source[acc->n_must + acc->n_may].data = source_user;
305 acc->source[acc->n_must + acc->n_may].must = 0;
306 acc->n_may++;
307 }
308
309 return acc;
310 error:
311 isl_map_free(source);
312 isl_access_info_free(acc);
313 return NULL;
314 }
315
316 /* A helper struct carrying the isl_access_info and an error condition.
317 */
318 struct access_sort_info {
319 isl_access_info *access_info;
320 int error;
321 };
322
323 /* Return -n, 0 or n (with n a positive value), depending on whether
324 * the source access identified by p1 should be sorted before, together
325 * or after that identified by p2.
326 *
327 * If p1 appears before p2, then it should be sorted first.
328 * For more generic initial schedules, it is possible that neither
329 * p1 nor p2 appears before the other, or at least not in any obvious way.
330 * We therefore also check if p2 appears before p1, in which case p2
331 * should be sorted first.
332 * If not, we try to order the two statements based on the description
333 * of the iteration domains. This results in an arbitrary, but fairly
334 * stable ordering.
335 *
336 * In case of an error, sort_info.error is set to true and all elements are
337 * reported to be equal.
338 */
access_sort_cmp(const void * p1,const void * p2,void * user)339 static int access_sort_cmp(const void *p1, const void *p2, void *user)
340 {
341 struct access_sort_info *sort_info = user;
342 isl_access_info *acc = sort_info->access_info;
343
344 if (sort_info->error)
345 return 0;
346
347 const struct isl_labeled_map *i1, *i2;
348 int level1, level2;
349 uint32_t h1, h2;
350 i1 = (const struct isl_labeled_map *) p1;
351 i2 = (const struct isl_labeled_map *) p2;
352
353 level1 = acc->level_before(i1->data, i2->data);
354 if (level1 < 0)
355 goto error;
356 if (level1 % 2)
357 return -1;
358
359 level2 = acc->level_before(i2->data, i1->data);
360 if (level2 < 0)
361 goto error;
362 if (level2 % 2)
363 return 1;
364
365 h1 = isl_map_get_hash(i1->map);
366 h2 = isl_map_get_hash(i2->map);
367 return h1 > h2 ? 1 : h1 < h2 ? -1 : 0;
368 error:
369 sort_info->error = 1;
370 return 0;
371 }
372
373 /* Sort the must source accesses in their textual order.
374 */
isl_access_info_sort_sources(__isl_take isl_access_info * acc)375 static __isl_give isl_access_info *isl_access_info_sort_sources(
376 __isl_take isl_access_info *acc)
377 {
378 struct access_sort_info sort_info;
379
380 sort_info.access_info = acc;
381 sort_info.error = 0;
382
383 if (!acc)
384 return NULL;
385 if (acc->n_must <= 1)
386 return acc;
387
388 if (isl_sort(acc->source, acc->n_must, sizeof(struct isl_labeled_map),
389 access_sort_cmp, &sort_info) < 0)
390 return isl_access_info_free(acc);
391 if (sort_info.error)
392 return isl_access_info_free(acc);
393
394 return acc;
395 }
396
397 /* Align the parameters of the two spaces if needed and then call
398 * isl_space_join.
399 */
space_align_and_join(__isl_take isl_space * left,__isl_take isl_space * right)400 static __isl_give isl_space *space_align_and_join(__isl_take isl_space *left,
401 __isl_take isl_space *right)
402 {
403 isl_bool equal_params;
404
405 equal_params = isl_space_has_equal_params(left, right);
406 if (equal_params < 0)
407 goto error;
408 if (equal_params)
409 return isl_space_join(left, right);
410
411 left = isl_space_align_params(left, isl_space_copy(right));
412 right = isl_space_align_params(right, isl_space_copy(left));
413 return isl_space_join(left, right);
414 error:
415 isl_space_free(left);
416 isl_space_free(right);
417 return NULL;
418 }
419
420 /* Initialize an empty isl_flow structure corresponding to a given
421 * isl_access_info structure.
422 * For each must access, two dependences are created (initialized
423 * to the empty relation), one for the resulting must dependences
424 * and one for the resulting may dependences. May accesses can
425 * only lead to may dependences, so only one dependence is created
426 * for each of them.
427 * This function is private as isl_flow structures are only supposed
428 * to be created by isl_access_info_compute_flow.
429 */
isl_flow_alloc(__isl_keep isl_access_info * acc)430 static __isl_give isl_flow *isl_flow_alloc(__isl_keep isl_access_info *acc)
431 {
432 int i, n;
433 struct isl_ctx *ctx;
434 struct isl_flow *dep;
435
436 if (!acc)
437 return NULL;
438
439 ctx = isl_map_get_ctx(acc->sink.map);
440 dep = isl_calloc_type(ctx, struct isl_flow);
441 if (!dep)
442 return NULL;
443
444 n = 2 * acc->n_must + acc->n_may;
445 dep->dep = isl_calloc_array(ctx, struct isl_labeled_map, n);
446 if (n && !dep->dep)
447 goto error;
448
449 dep->n_source = n;
450 for (i = 0; i < acc->n_must; ++i) {
451 isl_space *space;
452 space = space_align_and_join(
453 isl_map_get_space(acc->source[i].map),
454 isl_space_reverse(isl_map_get_space(acc->sink.map)));
455 dep->dep[2 * i].map = isl_map_empty(space);
456 dep->dep[2 * i + 1].map = isl_map_copy(dep->dep[2 * i].map);
457 dep->dep[2 * i].data = acc->source[i].data;
458 dep->dep[2 * i + 1].data = acc->source[i].data;
459 dep->dep[2 * i].must = 1;
460 dep->dep[2 * i + 1].must = 0;
461 if (!dep->dep[2 * i].map || !dep->dep[2 * i + 1].map)
462 goto error;
463 }
464 for (i = acc->n_must; i < acc->n_must + acc->n_may; ++i) {
465 isl_space *space;
466 space = space_align_and_join(
467 isl_map_get_space(acc->source[i].map),
468 isl_space_reverse(isl_map_get_space(acc->sink.map)));
469 dep->dep[acc->n_must + i].map = isl_map_empty(space);
470 dep->dep[acc->n_must + i].data = acc->source[i].data;
471 dep->dep[acc->n_must + i].must = 0;
472 if (!dep->dep[acc->n_must + i].map)
473 goto error;
474 }
475
476 return dep;
477 error:
478 isl_flow_free(dep);
479 return NULL;
480 }
481
482 /* Iterate over all sources and for each resulting flow dependence
483 * that is not empty, call the user specfied function.
484 * The second argument in this function call identifies the source,
485 * while the third argument correspond to the final argument of
486 * the isl_flow_foreach call.
487 */
isl_flow_foreach(__isl_keep isl_flow * deps,isl_stat (* fn)(__isl_take isl_map * dep,int must,void * dep_user,void * user),void * user)488 isl_stat isl_flow_foreach(__isl_keep isl_flow *deps,
489 isl_stat (*fn)(__isl_take isl_map *dep, int must, void *dep_user,
490 void *user),
491 void *user)
492 {
493 int i;
494
495 if (!deps)
496 return isl_stat_error;
497
498 for (i = 0; i < deps->n_source; ++i) {
499 if (isl_map_plain_is_empty(deps->dep[i].map))
500 continue;
501 if (fn(isl_map_copy(deps->dep[i].map), deps->dep[i].must,
502 deps->dep[i].data, user) < 0)
503 return isl_stat_error;
504 }
505
506 return isl_stat_ok;
507 }
508
509 /* Return a copy of the subset of the sink for which no source could be found.
510 */
isl_flow_get_no_source(__isl_keep isl_flow * deps,int must)511 __isl_give isl_map *isl_flow_get_no_source(__isl_keep isl_flow *deps, int must)
512 {
513 if (!deps)
514 return NULL;
515
516 if (must)
517 return isl_set_unwrap(isl_set_copy(deps->must_no_source));
518 else
519 return isl_set_unwrap(isl_set_copy(deps->may_no_source));
520 }
521
isl_flow_free(__isl_take isl_flow * deps)522 __isl_null isl_flow *isl_flow_free(__isl_take isl_flow *deps)
523 {
524 int i;
525
526 if (!deps)
527 return NULL;
528 isl_set_free(deps->must_no_source);
529 isl_set_free(deps->may_no_source);
530 if (deps->dep) {
531 for (i = 0; i < deps->n_source; ++i)
532 isl_map_free(deps->dep[i].map);
533 free(deps->dep);
534 }
535 free(deps);
536
537 return NULL;
538 }
539
isl_flow_get_ctx(__isl_keep isl_flow * deps)540 isl_ctx *isl_flow_get_ctx(__isl_keep isl_flow *deps)
541 {
542 return deps ? isl_set_get_ctx(deps->must_no_source) : NULL;
543 }
544
545 /* Return a map that enforces that the domain iteration occurs after
546 * the range iteration at the given level.
547 * If level is odd, then the domain iteration should occur after
548 * the target iteration in their shared level/2 outermost loops.
549 * In this case we simply need to enforce that these outermost
550 * loop iterations are the same.
551 * If level is even, then the loop iterator of the domain should
552 * be greater than the loop iterator of the range at the last
553 * of the level/2 shared loops, i.e., loop level/2 - 1.
554 */
after_at_level(__isl_take isl_space * space,int level)555 static __isl_give isl_map *after_at_level(__isl_take isl_space *space,
556 int level)
557 {
558 struct isl_basic_map *bmap;
559
560 if (level % 2)
561 bmap = isl_basic_map_equal(space, level/2);
562 else
563 bmap = isl_basic_map_more_at(space, level/2 - 1);
564
565 return isl_map_from_basic_map(bmap);
566 }
567
568 /* Compute the partial lexicographic maximum of "dep" on domain "sink",
569 * but first check if the user has set acc->restrict_fn and if so
570 * update either the input or the output of the maximization problem
571 * with respect to the resulting restriction.
572 *
573 * Since the user expects a mapping from sink iterations to source iterations,
574 * whereas the domain of "dep" is a wrapped map, mapping sink iterations
575 * to accessed array elements, we first need to project out the accessed
576 * sink array elements by applying acc->domain_map.
577 * Similarly, the sink restriction specified by the user needs to be
578 * converted back to the wrapped map.
579 */
restricted_partial_lexmax(__isl_keep isl_access_info * acc,__isl_take isl_map * dep,int source,__isl_take isl_set * sink,__isl_give isl_set ** empty)580 static __isl_give isl_map *restricted_partial_lexmax(
581 __isl_keep isl_access_info *acc, __isl_take isl_map *dep,
582 int source, __isl_take isl_set *sink, __isl_give isl_set **empty)
583 {
584 isl_map *source_map;
585 isl_restriction *restr;
586 isl_set *sink_domain;
587 isl_set *sink_restr;
588 isl_map *res;
589
590 if (!acc->restrict_fn)
591 return isl_map_partial_lexmax(dep, sink, empty);
592
593 source_map = isl_map_copy(dep);
594 source_map = isl_map_apply_domain(source_map,
595 isl_map_copy(acc->domain_map));
596 sink_domain = isl_set_copy(sink);
597 sink_domain = isl_set_apply(sink_domain, isl_map_copy(acc->domain_map));
598 restr = acc->restrict_fn(source_map, sink_domain,
599 acc->source[source].data, acc->restrict_user);
600 isl_set_free(sink_domain);
601 isl_map_free(source_map);
602
603 if (!restr)
604 goto error;
605 if (restr->type == isl_restriction_type_input) {
606 dep = isl_map_intersect_range(dep, isl_set_copy(restr->source));
607 sink_restr = isl_set_copy(restr->sink);
608 sink_restr = isl_set_apply(sink_restr,
609 isl_map_reverse(isl_map_copy(acc->domain_map)));
610 sink = isl_set_intersect(sink, sink_restr);
611 } else if (restr->type == isl_restriction_type_empty) {
612 isl_space *space = isl_map_get_space(dep);
613 isl_map_free(dep);
614 dep = isl_map_empty(space);
615 }
616
617 res = isl_map_partial_lexmax(dep, sink, empty);
618
619 if (restr->type == isl_restriction_type_output)
620 res = isl_map_intersect_range(res, isl_set_copy(restr->source));
621
622 isl_restriction_free(restr);
623 return res;
624 error:
625 isl_map_free(dep);
626 isl_set_free(sink);
627 *empty = NULL;
628 return NULL;
629 }
630
631 /* Compute the last iteration of must source j that precedes the sink
632 * at the given level for sink iterations in set_C.
633 * The subset of set_C for which no such iteration can be found is returned
634 * in *empty.
635 */
last_source(struct isl_access_info * acc,struct isl_set * set_C,int j,int level,struct isl_set ** empty)636 static struct isl_map *last_source(struct isl_access_info *acc,
637 struct isl_set *set_C,
638 int j, int level, struct isl_set **empty)
639 {
640 struct isl_map *read_map;
641 struct isl_map *write_map;
642 struct isl_map *dep_map;
643 struct isl_map *after;
644 struct isl_map *result;
645
646 read_map = isl_map_copy(acc->sink.map);
647 write_map = isl_map_copy(acc->source[j].map);
648 write_map = isl_map_reverse(write_map);
649 dep_map = isl_map_apply_range(read_map, write_map);
650 after = after_at_level(isl_map_get_space(dep_map), level);
651 dep_map = isl_map_intersect(dep_map, after);
652 result = restricted_partial_lexmax(acc, dep_map, j, set_C, empty);
653 result = isl_map_reverse(result);
654
655 return result;
656 }
657
658 /* For a given mapping between iterations of must source j and iterations
659 * of the sink, compute the last iteration of must source k preceding
660 * the sink at level before_level for any of the sink iterations,
661 * but following the corresponding iteration of must source j at level
662 * after_level.
663 */
last_later_source(struct isl_access_info * acc,struct isl_map * old_map,int j,int before_level,int k,int after_level,struct isl_set ** empty)664 static struct isl_map *last_later_source(struct isl_access_info *acc,
665 struct isl_map *old_map,
666 int j, int before_level,
667 int k, int after_level,
668 struct isl_set **empty)
669 {
670 isl_space *space;
671 struct isl_set *set_C;
672 struct isl_map *read_map;
673 struct isl_map *write_map;
674 struct isl_map *dep_map;
675 struct isl_map *after_write;
676 struct isl_map *before_read;
677 struct isl_map *result;
678
679 set_C = isl_map_range(isl_map_copy(old_map));
680 read_map = isl_map_copy(acc->sink.map);
681 write_map = isl_map_copy(acc->source[k].map);
682
683 write_map = isl_map_reverse(write_map);
684 dep_map = isl_map_apply_range(read_map, write_map);
685 space = space_align_and_join(isl_map_get_space(acc->source[k].map),
686 isl_space_reverse(isl_map_get_space(acc->source[j].map)));
687 after_write = after_at_level(space, after_level);
688 after_write = isl_map_apply_range(after_write, old_map);
689 after_write = isl_map_reverse(after_write);
690 dep_map = isl_map_intersect(dep_map, after_write);
691 before_read = after_at_level(isl_map_get_space(dep_map), before_level);
692 dep_map = isl_map_intersect(dep_map, before_read);
693 result = restricted_partial_lexmax(acc, dep_map, k, set_C, empty);
694 result = isl_map_reverse(result);
695
696 return result;
697 }
698
699 /* Given a shared_level between two accesses, return 1 if the
700 * the first can precede the second at the requested target_level.
701 * If the target level is odd, i.e., refers to a statement level
702 * dimension, then first needs to precede second at the requested
703 * level, i.e., shared_level must be equal to target_level.
704 * If the target level is odd, then the two loops should share
705 * at least the requested number of outer loops.
706 */
can_precede_at_level(int shared_level,int target_level)707 static int can_precede_at_level(int shared_level, int target_level)
708 {
709 if (shared_level < target_level)
710 return 0;
711 if ((target_level % 2) && shared_level > target_level)
712 return 0;
713 return 1;
714 }
715
716 /* Given a possible flow dependence temp_rel[j] between source j and the sink
717 * at level sink_level, remove those elements for which
718 * there is an iteration of another source k < j that is closer to the sink.
719 * The flow dependences temp_rel[k] are updated with the improved sources.
720 * Any improved source needs to precede the sink at the same level
721 * and needs to follow source j at the same or a deeper level.
722 * The lower this level, the later the execution date of source k.
723 * We therefore consider lower levels first.
724 *
725 * If temp_rel[j] is empty, then there can be no improvement and
726 * we return immediately.
727 *
728 * This function returns isl_stat_ok in case it was executed successfully and
729 * isl_stat_error in case of errors during the execution of this function.
730 */
intermediate_sources(__isl_keep isl_access_info * acc,struct isl_map ** temp_rel,int j,int sink_level)731 static isl_stat intermediate_sources(__isl_keep isl_access_info *acc,
732 struct isl_map **temp_rel, int j, int sink_level)
733 {
734 int k, level;
735 isl_size n_in = isl_map_dim(acc->source[j].map, isl_dim_in);
736 int depth = 2 * n_in + 1;
737
738 if (n_in < 0)
739 return isl_stat_error;
740 if (isl_map_plain_is_empty(temp_rel[j]))
741 return isl_stat_ok;
742
743 for (k = j - 1; k >= 0; --k) {
744 int plevel, plevel2;
745 plevel = acc->level_before(acc->source[k].data, acc->sink.data);
746 if (plevel < 0)
747 return isl_stat_error;
748 if (!can_precede_at_level(plevel, sink_level))
749 continue;
750
751 plevel2 = acc->level_before(acc->source[j].data,
752 acc->source[k].data);
753 if (plevel2 < 0)
754 return isl_stat_error;
755
756 for (level = sink_level; level <= depth; ++level) {
757 struct isl_map *T;
758 struct isl_set *trest;
759 struct isl_map *copy;
760
761 if (!can_precede_at_level(plevel2, level))
762 continue;
763
764 copy = isl_map_copy(temp_rel[j]);
765 T = last_later_source(acc, copy, j, sink_level, k,
766 level, &trest);
767 if (isl_map_plain_is_empty(T)) {
768 isl_set_free(trest);
769 isl_map_free(T);
770 continue;
771 }
772 temp_rel[j] = isl_map_intersect_range(temp_rel[j], trest);
773 temp_rel[k] = isl_map_union_disjoint(temp_rel[k], T);
774 }
775 }
776
777 return isl_stat_ok;
778 }
779
780 /* Compute all iterations of may source j that precedes the sink at the given
781 * level for sink iterations in set_C.
782 */
all_sources(__isl_keep isl_access_info * acc,__isl_take isl_set * set_C,int j,int level)783 static __isl_give isl_map *all_sources(__isl_keep isl_access_info *acc,
784 __isl_take isl_set *set_C, int j, int level)
785 {
786 isl_map *read_map;
787 isl_map *write_map;
788 isl_map *dep_map;
789 isl_map *after;
790
791 read_map = isl_map_copy(acc->sink.map);
792 read_map = isl_map_intersect_domain(read_map, set_C);
793 write_map = isl_map_copy(acc->source[acc->n_must + j].map);
794 write_map = isl_map_reverse(write_map);
795 dep_map = isl_map_apply_range(read_map, write_map);
796 after = after_at_level(isl_map_get_space(dep_map), level);
797 dep_map = isl_map_intersect(dep_map, after);
798
799 return isl_map_reverse(dep_map);
800 }
801
802 /* For a given mapping between iterations of must source k and iterations
803 * of the sink, compute all iterations of may source j preceding
804 * the sink at level before_level for any of the sink iterations,
805 * but following the corresponding iteration of must source k at level
806 * after_level.
807 */
all_later_sources(__isl_keep isl_access_info * acc,__isl_take isl_map * old_map,int j,int before_level,int k,int after_level)808 static __isl_give isl_map *all_later_sources(__isl_keep isl_access_info *acc,
809 __isl_take isl_map *old_map,
810 int j, int before_level, int k, int after_level)
811 {
812 isl_space *space;
813 isl_set *set_C;
814 isl_map *read_map;
815 isl_map *write_map;
816 isl_map *dep_map;
817 isl_map *after_write;
818 isl_map *before_read;
819
820 set_C = isl_map_range(isl_map_copy(old_map));
821 read_map = isl_map_copy(acc->sink.map);
822 read_map = isl_map_intersect_domain(read_map, set_C);
823 write_map = isl_map_copy(acc->source[acc->n_must + j].map);
824
825 write_map = isl_map_reverse(write_map);
826 dep_map = isl_map_apply_range(read_map, write_map);
827 space = isl_space_join(isl_map_get_space(
828 acc->source[acc->n_must + j].map),
829 isl_space_reverse(isl_map_get_space(acc->source[k].map)));
830 after_write = after_at_level(space, after_level);
831 after_write = isl_map_apply_range(after_write, old_map);
832 after_write = isl_map_reverse(after_write);
833 dep_map = isl_map_intersect(dep_map, after_write);
834 before_read = after_at_level(isl_map_get_space(dep_map), before_level);
835 dep_map = isl_map_intersect(dep_map, before_read);
836 return isl_map_reverse(dep_map);
837 }
838
839 /* Given the must and may dependence relations for the must accesses
840 * for level sink_level, check if there are any accesses of may access j
841 * that occur in between and return their union.
842 * If some of these accesses are intermediate with respect to
843 * (previously thought to be) must dependences, then these
844 * must dependences are turned into may dependences.
845 */
all_intermediate_sources(__isl_keep isl_access_info * acc,__isl_take isl_map * map,struct isl_map ** must_rel,struct isl_map ** may_rel,int j,int sink_level)846 static __isl_give isl_map *all_intermediate_sources(
847 __isl_keep isl_access_info *acc, __isl_take isl_map *map,
848 struct isl_map **must_rel, struct isl_map **may_rel,
849 int j, int sink_level)
850 {
851 int k, level;
852 isl_size n_in = isl_map_dim(acc->source[acc->n_must + j].map,
853 isl_dim_in);
854 int depth = 2 * n_in + 1;
855
856 if (n_in < 0)
857 return isl_map_free(map);
858 for (k = 0; k < acc->n_must; ++k) {
859 int plevel;
860
861 if (isl_map_plain_is_empty(may_rel[k]) &&
862 isl_map_plain_is_empty(must_rel[k]))
863 continue;
864
865 plevel = acc->level_before(acc->source[k].data,
866 acc->source[acc->n_must + j].data);
867 if (plevel < 0)
868 return isl_map_free(map);
869
870 for (level = sink_level; level <= depth; ++level) {
871 isl_map *T;
872 isl_map *copy;
873 isl_set *ran;
874
875 if (!can_precede_at_level(plevel, level))
876 continue;
877
878 copy = isl_map_copy(may_rel[k]);
879 T = all_later_sources(acc, copy, j, sink_level, k, level);
880 map = isl_map_union(map, T);
881
882 copy = isl_map_copy(must_rel[k]);
883 T = all_later_sources(acc, copy, j, sink_level, k, level);
884 ran = isl_map_range(isl_map_copy(T));
885 map = isl_map_union(map, T);
886 may_rel[k] = isl_map_union_disjoint(may_rel[k],
887 isl_map_intersect_range(isl_map_copy(must_rel[k]),
888 isl_set_copy(ran)));
889 T = isl_map_from_domain_and_range(
890 isl_set_universe(
891 isl_space_domain(isl_map_get_space(must_rel[k]))),
892 ran);
893 must_rel[k] = isl_map_subtract(must_rel[k], T);
894 }
895 }
896
897 return map;
898 }
899
900 /* Given a dependence relation "old_map" between a must-source and the sink,
901 * return a subset of the dependences, augmented with instances
902 * of the source at position "pos" in "acc" that are coscheduled
903 * with the must-source and that access the same element.
904 * That is, if the input lives in a space T -> K, then the output
905 * lives in the space [T -> S] -> K, with S the space of source "pos", and
906 * the domain factor of the domain product is a subset of the input.
907 * The sources are considered to be coscheduled if they have the same values
908 * for the initial "depth" coordinates.
909 *
910 * First construct a dependence relation S -> K and a mapping
911 * between coscheduled sources T -> S.
912 * The second is combined with the original dependence relation T -> K
913 * to form a relation in T -> [S -> K], which is subsequently
914 * uncurried to [T -> S] -> K.
915 * This result is then intersected with the dependence relation S -> K
916 * to form the output.
917 *
918 * In case a negative depth is given, NULL is returned to indicate an error.
919 */
coscheduled_source(__isl_keep isl_access_info * acc,__isl_keep isl_map * old_map,int pos,int depth)920 static __isl_give isl_map *coscheduled_source(__isl_keep isl_access_info *acc,
921 __isl_keep isl_map *old_map, int pos, int depth)
922 {
923 isl_space *space;
924 isl_set *set_C;
925 isl_map *read_map;
926 isl_map *write_map;
927 isl_map *dep_map;
928 isl_map *equal;
929 isl_map *map;
930
931 if (depth < 0)
932 return NULL;
933
934 set_C = isl_map_range(isl_map_copy(old_map));
935 read_map = isl_map_copy(acc->sink.map);
936 read_map = isl_map_intersect_domain(read_map, set_C);
937 write_map = isl_map_copy(acc->source[pos].map);
938 dep_map = isl_map_domain_product(write_map, read_map);
939 dep_map = isl_set_unwrap(isl_map_domain(dep_map));
940 space = isl_space_join(isl_map_get_space(old_map),
941 isl_space_reverse(isl_map_get_space(dep_map)));
942 equal = isl_map_from_basic_map(isl_basic_map_equal(space, depth));
943 map = isl_map_range_product(equal, isl_map_copy(old_map));
944 map = isl_map_uncurry(map);
945 map = isl_map_intersect_domain_factor_range(map, dep_map);
946
947 return map;
948 }
949
950 /* After the dependences derived from a must-source have been computed
951 * at a certain level, check if any of the sources of the must-dependences
952 * may be coscheduled with other sources.
953 * If they are any such sources, then there is no way of determining
954 * which of the sources actually comes last and the must-dependences
955 * need to be turned into may-dependences, while dependences from
956 * the other sources need to be added to the may-dependences as well.
957 * "acc" describes the sources and a callback for checking whether
958 * two sources may be coscheduled. If acc->coscheduled is NULL then
959 * the sources are assumed not to be coscheduled.
960 * "must_rel" and "may_rel" describe the must and may-dependence relations
961 * computed at the current level for the must-sources. Some of the dependences
962 * may be moved from "must_rel" to "may_rel".
963 * "flow" contains all dependences computed so far (apart from those
964 * in "must_rel" and "may_rel") and may be updated with additional
965 * dependences derived from may-sources.
966 *
967 * In particular, consider all the must-sources with a non-empty
968 * dependence relation in "must_rel". They are considered in reverse
969 * order because that is the order in which they are considered in the caller.
970 * If any of the must-sources are coscheduled, then the last one
971 * is the one that will have a corresponding dependence relation.
972 * For each must-source i, consider both all the previous must-sources
973 * and all the may-sources. If any of those may be coscheduled with
974 * must-source i, then compute the coscheduled instances that access
975 * the same memory elements. The result is a relation [T -> S] -> K.
976 * The projection onto T -> K is a subset of the must-dependence relation
977 * that needs to be turned into may-dependences.
978 * The projection onto S -> K needs to be added to the may-dependences
979 * of source S.
980 * Since a given must-source instance may be coscheduled with several
981 * other source instances, the dependences that need to be turned
982 * into may-dependences are first collected and only actually removed
983 * from the must-dependences after all other sources have been considered.
984 */
handle_coscheduled(__isl_keep isl_access_info * acc,__isl_keep isl_map ** must_rel,__isl_keep isl_map ** may_rel,__isl_take isl_flow * flow)985 static __isl_give isl_flow *handle_coscheduled(__isl_keep isl_access_info *acc,
986 __isl_keep isl_map **must_rel, __isl_keep isl_map **may_rel,
987 __isl_take isl_flow *flow)
988 {
989 int i, j;
990
991 if (!acc->coscheduled)
992 return flow;
993 for (i = acc->n_must - 1; i >= 0; --i) {
994 isl_map *move;
995
996 if (isl_map_plain_is_empty(must_rel[i]))
997 continue;
998 move = isl_map_empty(isl_map_get_space(must_rel[i]));
999 for (j = i - 1; j >= 0; --j) {
1000 int depth;
1001 isl_bool coscheduled;
1002 isl_map *map, *factor;
1003
1004 coscheduled = acc->coscheduled(acc->source[i].data,
1005 acc->source[j].data);
1006 if (coscheduled < 0) {
1007 isl_map_free(move);
1008 return isl_flow_free(flow);
1009 }
1010 if (!coscheduled)
1011 continue;
1012 depth = acc->level_before(acc->source[i].data,
1013 acc->source[j].data) / 2;
1014 map = coscheduled_source(acc, must_rel[i], j, depth);
1015 factor = isl_map_domain_factor_range(isl_map_copy(map));
1016 may_rel[j] = isl_map_union(may_rel[j], factor);
1017 map = isl_map_domain_factor_domain(map);
1018 move = isl_map_union(move, map);
1019 }
1020 for (j = 0; j < acc->n_may; ++j) {
1021 int depth, pos;
1022 isl_bool coscheduled;
1023 isl_map *map, *factor;
1024
1025 pos = acc->n_must + j;
1026 coscheduled = acc->coscheduled(acc->source[i].data,
1027 acc->source[pos].data);
1028 if (coscheduled < 0) {
1029 isl_map_free(move);
1030 return isl_flow_free(flow);
1031 }
1032 if (!coscheduled)
1033 continue;
1034 depth = acc->level_before(acc->source[i].data,
1035 acc->source[pos].data) / 2;
1036 map = coscheduled_source(acc, must_rel[i], pos, depth);
1037 factor = isl_map_domain_factor_range(isl_map_copy(map));
1038 pos = 2 * acc->n_must + j;
1039 flow->dep[pos].map = isl_map_union(flow->dep[pos].map,
1040 factor);
1041 map = isl_map_domain_factor_domain(map);
1042 move = isl_map_union(move, map);
1043 }
1044 must_rel[i] = isl_map_subtract(must_rel[i], isl_map_copy(move));
1045 may_rel[i] = isl_map_union(may_rel[i], move);
1046 }
1047
1048 return flow;
1049 }
1050
1051 /* Compute dependences for the case where all accesses are "may"
1052 * accesses, which boils down to computing memory based dependences.
1053 * The generic algorithm would also work in this case, but it would
1054 * be overkill to use it.
1055 */
compute_mem_based_dependences(__isl_keep isl_access_info * acc)1056 static __isl_give isl_flow *compute_mem_based_dependences(
1057 __isl_keep isl_access_info *acc)
1058 {
1059 int i;
1060 isl_set *mustdo;
1061 isl_set *maydo;
1062 isl_flow *res;
1063
1064 res = isl_flow_alloc(acc);
1065 if (!res)
1066 return NULL;
1067
1068 mustdo = isl_map_domain(isl_map_copy(acc->sink.map));
1069 maydo = isl_set_copy(mustdo);
1070
1071 for (i = 0; i < acc->n_may; ++i) {
1072 int plevel;
1073 int is_before;
1074 isl_space *space;
1075 isl_map *before;
1076 isl_map *dep;
1077
1078 plevel = acc->level_before(acc->source[i].data, acc->sink.data);
1079 if (plevel < 0)
1080 goto error;
1081
1082 is_before = plevel & 1;
1083 plevel >>= 1;
1084
1085 space = isl_map_get_space(res->dep[i].map);
1086 if (is_before)
1087 before = isl_map_lex_le_first(space, plevel);
1088 else
1089 before = isl_map_lex_lt_first(space, plevel);
1090 dep = isl_map_apply_range(isl_map_copy(acc->source[i].map),
1091 isl_map_reverse(isl_map_copy(acc->sink.map)));
1092 dep = isl_map_intersect(dep, before);
1093 mustdo = isl_set_subtract(mustdo,
1094 isl_map_range(isl_map_copy(dep)));
1095 res->dep[i].map = isl_map_union(res->dep[i].map, dep);
1096 }
1097
1098 res->may_no_source = isl_set_subtract(maydo, isl_set_copy(mustdo));
1099 res->must_no_source = mustdo;
1100
1101 return res;
1102 error:
1103 isl_set_free(mustdo);
1104 isl_set_free(maydo);
1105 isl_flow_free(res);
1106 return NULL;
1107 }
1108
1109 /* Compute dependences for the case where there is at least one
1110 * "must" access.
1111 *
1112 * The core algorithm considers all levels in which a source may precede
1113 * the sink, where a level may either be a statement level or a loop level.
1114 * The outermost statement level is 1, the first loop level is 2, etc...
1115 * The algorithm basically does the following:
1116 * for all levels l of the read access from innermost to outermost
1117 * for all sources w that may precede the sink access at that level
1118 * compute the last iteration of the source that precedes the sink access
1119 * at that level
1120 * add result to possible last accesses at level l of source w
1121 * for all sources w2 that we haven't considered yet at this level that may
1122 * also precede the sink access
1123 * for all levels l2 of w from l to innermost
1124 * for all possible last accesses dep of w at l
1125 * compute last iteration of w2 between the source and sink
1126 * of dep
1127 * add result to possible last accesses at level l of write w2
1128 * and replace possible last accesses dep by the remainder
1129 *
1130 *
1131 * The above algorithm is applied to the must access. During the course
1132 * of the algorithm, we keep track of sink iterations that still
1133 * need to be considered. These iterations are split into those that
1134 * haven't been matched to any source access (mustdo) and those that have only
1135 * been matched to may accesses (maydo).
1136 * At the end of each level, must-sources and may-sources that are coscheduled
1137 * with the sources of the must-dependences at that level are considered.
1138 * If any coscheduled instances are found, then corresponding may-dependences
1139 * are added and the original must-dependences are turned into may-dependences.
1140 * Afterwards, the may accesses that occur after must-dependence sources
1141 * are considered.
1142 * In particular, we consider may accesses that precede the remaining
1143 * sink iterations, moving elements from mustdo to maydo when appropriate,
1144 * and may accesses that occur between a must source and a sink of any
1145 * dependences found at the current level, turning must dependences into
1146 * may dependences when appropriate.
1147 *
1148 */
compute_val_based_dependences(__isl_keep isl_access_info * acc)1149 static __isl_give isl_flow *compute_val_based_dependences(
1150 __isl_keep isl_access_info *acc)
1151 {
1152 isl_ctx *ctx;
1153 isl_flow *res;
1154 isl_set *mustdo = NULL;
1155 isl_set *maydo = NULL;
1156 int level, j;
1157 isl_size n_in;
1158 int depth;
1159 isl_map **must_rel = NULL;
1160 isl_map **may_rel = NULL;
1161
1162 if (!acc)
1163 return NULL;
1164
1165 res = isl_flow_alloc(acc);
1166 if (!res)
1167 goto error;
1168 ctx = isl_map_get_ctx(acc->sink.map);
1169
1170 n_in = isl_map_dim(acc->sink.map, isl_dim_in);
1171 if (n_in < 0)
1172 goto error;
1173 depth = 2 * n_in + 1;
1174 mustdo = isl_map_domain(isl_map_copy(acc->sink.map));
1175 maydo = isl_set_empty(isl_set_get_space(mustdo));
1176 if (!mustdo || !maydo)
1177 goto error;
1178 if (isl_set_plain_is_empty(mustdo))
1179 goto done;
1180
1181 must_rel = isl_calloc_array(ctx, struct isl_map *, acc->n_must);
1182 may_rel = isl_calloc_array(ctx, struct isl_map *, acc->n_must);
1183 if (!must_rel || !may_rel)
1184 goto error;
1185
1186 for (level = depth; level >= 1; --level) {
1187 for (j = acc->n_must-1; j >=0; --j) {
1188 isl_space *space;
1189 space = isl_map_get_space(res->dep[2 * j].map);
1190 must_rel[j] = isl_map_empty(space);
1191 may_rel[j] = isl_map_copy(must_rel[j]);
1192 }
1193
1194 for (j = acc->n_must - 1; j >= 0; --j) {
1195 struct isl_map *T;
1196 struct isl_set *rest;
1197 int plevel;
1198
1199 plevel = acc->level_before(acc->source[j].data,
1200 acc->sink.data);
1201 if (plevel < 0)
1202 goto error;
1203 if (!can_precede_at_level(plevel, level))
1204 continue;
1205
1206 T = last_source(acc, mustdo, j, level, &rest);
1207 must_rel[j] = isl_map_union_disjoint(must_rel[j], T);
1208 mustdo = rest;
1209
1210 if (intermediate_sources(acc, must_rel, j, level) < 0)
1211 goto error;
1212
1213 T = last_source(acc, maydo, j, level, &rest);
1214 may_rel[j] = isl_map_union_disjoint(may_rel[j], T);
1215 maydo = rest;
1216
1217 if (intermediate_sources(acc, may_rel, j, level) < 0)
1218 goto error;
1219
1220 if (isl_set_plain_is_empty(mustdo) &&
1221 isl_set_plain_is_empty(maydo))
1222 break;
1223 }
1224 for (j = j - 1; j >= 0; --j) {
1225 int plevel;
1226
1227 plevel = acc->level_before(acc->source[j].data,
1228 acc->sink.data);
1229 if (plevel < 0)
1230 goto error;
1231 if (!can_precede_at_level(plevel, level))
1232 continue;
1233
1234 if (intermediate_sources(acc, must_rel, j, level) < 0)
1235 goto error;
1236 if (intermediate_sources(acc, may_rel, j, level) < 0)
1237 goto error;
1238 }
1239
1240 res = handle_coscheduled(acc, must_rel, may_rel, res);
1241 if (!res)
1242 goto error;
1243
1244 for (j = 0; j < acc->n_may; ++j) {
1245 int plevel;
1246 isl_map *T;
1247 isl_set *ran;
1248
1249 plevel = acc->level_before(acc->source[acc->n_must + j].data,
1250 acc->sink.data);
1251 if (plevel < 0)
1252 goto error;
1253 if (!can_precede_at_level(plevel, level))
1254 continue;
1255
1256 T = all_sources(acc, isl_set_copy(maydo), j, level);
1257 res->dep[2 * acc->n_must + j].map =
1258 isl_map_union(res->dep[2 * acc->n_must + j].map, T);
1259 T = all_sources(acc, isl_set_copy(mustdo), j, level);
1260 ran = isl_map_range(isl_map_copy(T));
1261 res->dep[2 * acc->n_must + j].map =
1262 isl_map_union(res->dep[2 * acc->n_must + j].map, T);
1263 mustdo = isl_set_subtract(mustdo, isl_set_copy(ran));
1264 maydo = isl_set_union_disjoint(maydo, ran);
1265
1266 T = res->dep[2 * acc->n_must + j].map;
1267 T = all_intermediate_sources(acc, T, must_rel, may_rel,
1268 j, level);
1269 res->dep[2 * acc->n_must + j].map = T;
1270 }
1271
1272 for (j = acc->n_must - 1; j >= 0; --j) {
1273 res->dep[2 * j].map =
1274 isl_map_union_disjoint(res->dep[2 * j].map,
1275 must_rel[j]);
1276 res->dep[2 * j + 1].map =
1277 isl_map_union_disjoint(res->dep[2 * j + 1].map,
1278 may_rel[j]);
1279 }
1280
1281 if (isl_set_plain_is_empty(mustdo) &&
1282 isl_set_plain_is_empty(maydo))
1283 break;
1284 }
1285
1286 free(must_rel);
1287 free(may_rel);
1288 done:
1289 res->must_no_source = mustdo;
1290 res->may_no_source = maydo;
1291 return res;
1292 error:
1293 if (must_rel)
1294 for (j = 0; j < acc->n_must; ++j)
1295 isl_map_free(must_rel[j]);
1296 if (may_rel)
1297 for (j = 0; j < acc->n_must; ++j)
1298 isl_map_free(may_rel[j]);
1299 isl_flow_free(res);
1300 isl_set_free(mustdo);
1301 isl_set_free(maydo);
1302 free(must_rel);
1303 free(may_rel);
1304 return NULL;
1305 }
1306
1307 /* Given a "sink" access, a list of n "source" accesses,
1308 * compute for each iteration of the sink access
1309 * and for each element accessed by that iteration,
1310 * the source access in the list that last accessed the
1311 * element accessed by the sink access before this sink access.
1312 * Each access is given as a map from the loop iterators
1313 * to the array indices.
1314 * The result is a list of n relations between source and sink
1315 * iterations and a subset of the domain of the sink access,
1316 * corresponding to those iterations that access an element
1317 * not previously accessed.
1318 *
1319 * To deal with multi-valued sink access relations, the sink iteration
1320 * domain is first extended with dimensions that correspond to the data
1321 * space. However, these extra dimensions are not projected out again.
1322 * It is up to the caller to decide whether these dimensions should be kept.
1323 */
access_info_compute_flow_core(__isl_take isl_access_info * acc)1324 static __isl_give isl_flow *access_info_compute_flow_core(
1325 __isl_take isl_access_info *acc)
1326 {
1327 struct isl_flow *res = NULL;
1328
1329 if (!acc)
1330 return NULL;
1331
1332 acc->sink.map = isl_map_range_map(acc->sink.map);
1333 if (!acc->sink.map)
1334 goto error;
1335
1336 if (acc->n_must == 0)
1337 res = compute_mem_based_dependences(acc);
1338 else {
1339 acc = isl_access_info_sort_sources(acc);
1340 res = compute_val_based_dependences(acc);
1341 }
1342 acc = isl_access_info_free(acc);
1343 if (!res)
1344 return NULL;
1345 if (!res->must_no_source || !res->may_no_source)
1346 goto error;
1347 return res;
1348 error:
1349 isl_access_info_free(acc);
1350 isl_flow_free(res);
1351 return NULL;
1352 }
1353
1354 /* Given a "sink" access, a list of n "source" accesses,
1355 * compute for each iteration of the sink access
1356 * and for each element accessed by that iteration,
1357 * the source access in the list that last accessed the
1358 * element accessed by the sink access before this sink access.
1359 * Each access is given as a map from the loop iterators
1360 * to the array indices.
1361 * The result is a list of n relations between source and sink
1362 * iterations and a subset of the domain of the sink access,
1363 * corresponding to those iterations that access an element
1364 * not previously accessed.
1365 *
1366 * To deal with multi-valued sink access relations,
1367 * access_info_compute_flow_core extends the sink iteration domain
1368 * with dimensions that correspond to the data space. These extra dimensions
1369 * are projected out from the result of access_info_compute_flow_core.
1370 */
isl_access_info_compute_flow(__isl_take isl_access_info * acc)1371 __isl_give isl_flow *isl_access_info_compute_flow(__isl_take isl_access_info *acc)
1372 {
1373 int j;
1374 struct isl_flow *res;
1375
1376 if (!acc)
1377 return NULL;
1378
1379 acc->domain_map = isl_map_domain_map(isl_map_copy(acc->sink.map));
1380 res = access_info_compute_flow_core(acc);
1381 if (!res)
1382 return NULL;
1383
1384 for (j = 0; j < res->n_source; ++j) {
1385 res->dep[j].map = isl_map_range_factor_domain(res->dep[j].map);
1386 if (!res->dep[j].map)
1387 goto error;
1388 }
1389
1390 return res;
1391 error:
1392 isl_flow_free(res);
1393 return NULL;
1394 }
1395
1396
1397 /* Keep track of some information about a schedule for a given
1398 * access. In particular, keep track of which dimensions
1399 * have a constant value and of the actual constant values.
1400 */
1401 struct isl_sched_info {
1402 int *is_cst;
1403 isl_vec *cst;
1404 };
1405
sched_info_free(__isl_take struct isl_sched_info * info)1406 static void sched_info_free(__isl_take struct isl_sched_info *info)
1407 {
1408 if (!info)
1409 return;
1410 isl_vec_free(info->cst);
1411 free(info->is_cst);
1412 free(info);
1413 }
1414
1415 /* Extract information on the constant dimensions of the schedule
1416 * for a given access. The "map" is of the form
1417 *
1418 * [S -> D] -> A
1419 *
1420 * with S the schedule domain, D the iteration domain and A the data domain.
1421 */
sched_info_alloc(__isl_keep isl_map * map)1422 static __isl_give struct isl_sched_info *sched_info_alloc(
1423 __isl_keep isl_map *map)
1424 {
1425 isl_ctx *ctx;
1426 isl_space *space;
1427 struct isl_sched_info *info;
1428 int i;
1429 isl_size n;
1430
1431 if (!map)
1432 return NULL;
1433
1434 space = isl_space_unwrap(isl_space_domain(isl_map_get_space(map)));
1435 if (!space)
1436 return NULL;
1437 n = isl_space_dim(space, isl_dim_in);
1438 isl_space_free(space);
1439 if (n < 0)
1440 return NULL;
1441
1442 ctx = isl_map_get_ctx(map);
1443 info = isl_alloc_type(ctx, struct isl_sched_info);
1444 if (!info)
1445 return NULL;
1446 info->is_cst = isl_alloc_array(ctx, int, n);
1447 info->cst = isl_vec_alloc(ctx, n);
1448 if (n && (!info->is_cst || !info->cst))
1449 goto error;
1450
1451 for (i = 0; i < n; ++i) {
1452 isl_val *v;
1453
1454 v = isl_map_plain_get_val_if_fixed(map, isl_dim_in, i);
1455 if (!v)
1456 goto error;
1457 info->is_cst[i] = !isl_val_is_nan(v);
1458 if (info->is_cst[i])
1459 info->cst = isl_vec_set_element_val(info->cst, i, v);
1460 else
1461 isl_val_free(v);
1462 }
1463
1464 return info;
1465 error:
1466 sched_info_free(info);
1467 return NULL;
1468 }
1469
1470 /* The different types of access relations that isl_union_access_info
1471 * keeps track of.
1472
1473 * "isl_access_sink" represents the sink accesses.
1474 * "isl_access_must_source" represents the definite source accesses.
1475 * "isl_access_may_source" represents the possible source accesses.
1476 * "isl_access_kill" represents the kills.
1477 *
1478 * isl_access_sink is sometimes treated differently and
1479 * should therefore appear first.
1480 */
1481 enum isl_access_type {
1482 isl_access_sink,
1483 isl_access_must_source,
1484 isl_access_may_source,
1485 isl_access_kill,
1486 isl_access_end
1487 };
1488
1489 /* This structure represents the input for a dependence analysis computation.
1490 *
1491 * "access" contains the access relations.
1492 *
1493 * "schedule" or "schedule_map" represents the execution order.
1494 * Exactly one of these fields should be NULL. The other field
1495 * determines the execution order.
1496 *
1497 * The domains of these four maps refer to the same iteration spaces(s).
1498 * The ranges of the first three maps also refer to the same data space(s).
1499 *
1500 * After a call to isl_union_access_info_introduce_schedule,
1501 * the "schedule_map" field no longer contains useful information.
1502 */
1503 struct isl_union_access_info {
1504 isl_union_map *access[isl_access_end];
1505
1506 isl_schedule *schedule;
1507 isl_union_map *schedule_map;
1508 };
1509
1510 /* Free "access" and return NULL.
1511 */
isl_union_access_info_free(__isl_take isl_union_access_info * access)1512 __isl_null isl_union_access_info *isl_union_access_info_free(
1513 __isl_take isl_union_access_info *access)
1514 {
1515 enum isl_access_type i;
1516
1517 if (!access)
1518 return NULL;
1519
1520 for (i = isl_access_sink; i < isl_access_end; ++i)
1521 isl_union_map_free(access->access[i]);
1522 isl_schedule_free(access->schedule);
1523 isl_union_map_free(access->schedule_map);
1524 free(access);
1525
1526 return NULL;
1527 }
1528
1529 /* Return the isl_ctx to which "access" belongs.
1530 */
isl_union_access_info_get_ctx(__isl_keep isl_union_access_info * access)1531 isl_ctx *isl_union_access_info_get_ctx(__isl_keep isl_union_access_info *access)
1532 {
1533 if (!access)
1534 return NULL;
1535 return isl_union_map_get_ctx(access->access[isl_access_sink]);
1536 }
1537
1538 /* Construct an empty (invalid) isl_union_access_info object.
1539 * The caller is responsible for setting the sink access relation and
1540 * initializing all the other fields, e.g., by calling
1541 * isl_union_access_info_init.
1542 */
isl_union_access_info_alloc(isl_ctx * ctx)1543 static __isl_give isl_union_access_info *isl_union_access_info_alloc(
1544 isl_ctx *ctx)
1545 {
1546 return isl_calloc_type(ctx, isl_union_access_info);
1547 }
1548
1549 /* Initialize all the fields of "info", except the sink access relation,
1550 * which is assumed to have been set by the caller.
1551 *
1552 * By default, we use the schedule field of the isl_union_access_info,
1553 * but this may be overridden by a call
1554 * to isl_union_access_info_set_schedule_map.
1555 */
isl_union_access_info_init(__isl_take isl_union_access_info * info)1556 static __isl_give isl_union_access_info *isl_union_access_info_init(
1557 __isl_take isl_union_access_info *info)
1558 {
1559 isl_space *space;
1560 isl_union_map *empty;
1561 enum isl_access_type i;
1562
1563 if (!info)
1564 return NULL;
1565 if (!info->access[isl_access_sink])
1566 return isl_union_access_info_free(info);
1567
1568 space = isl_union_map_get_space(info->access[isl_access_sink]);
1569 empty = isl_union_map_empty(isl_space_copy(space));
1570 for (i = isl_access_sink + 1; i < isl_access_end; ++i)
1571 if (!info->access[i])
1572 info->access[i] = isl_union_map_copy(empty);
1573 isl_union_map_free(empty);
1574 if (!info->schedule && !info->schedule_map)
1575 info->schedule = isl_schedule_empty(isl_space_copy(space));
1576 isl_space_free(space);
1577
1578 for (i = isl_access_sink + 1; i < isl_access_end; ++i)
1579 if (!info->access[i])
1580 return isl_union_access_info_free(info);
1581 if (!info->schedule && !info->schedule_map)
1582 return isl_union_access_info_free(info);
1583
1584 return info;
1585 }
1586
1587 /* Create a new isl_union_access_info with the given sink accesses and
1588 * and no other accesses or schedule information.
1589 */
isl_union_access_info_from_sink(__isl_take isl_union_map * sink)1590 __isl_give isl_union_access_info *isl_union_access_info_from_sink(
1591 __isl_take isl_union_map *sink)
1592 {
1593 isl_ctx *ctx;
1594 isl_union_access_info *access;
1595
1596 if (!sink)
1597 return NULL;
1598 ctx = isl_union_map_get_ctx(sink);
1599 access = isl_union_access_info_alloc(ctx);
1600 if (!access)
1601 goto error;
1602 access->access[isl_access_sink] = sink;
1603 return isl_union_access_info_init(access);
1604 error:
1605 isl_union_map_free(sink);
1606 return NULL;
1607 }
1608
1609 /* Replace the access relation of type "type" of "info" by "access".
1610 */
isl_union_access_info_set(__isl_take isl_union_access_info * info,enum isl_access_type type,__isl_take isl_union_map * access)1611 static __isl_give isl_union_access_info *isl_union_access_info_set(
1612 __isl_take isl_union_access_info *info,
1613 enum isl_access_type type, __isl_take isl_union_map *access)
1614 {
1615 if (!info || !access)
1616 goto error;
1617
1618 isl_union_map_free(info->access[type]);
1619 info->access[type] = access;
1620
1621 return info;
1622 error:
1623 isl_union_access_info_free(info);
1624 isl_union_map_free(access);
1625 return NULL;
1626 }
1627
1628 /* Replace the definite source accesses of "access" by "must_source".
1629 */
isl_union_access_info_set_must_source(__isl_take isl_union_access_info * access,__isl_take isl_union_map * must_source)1630 __isl_give isl_union_access_info *isl_union_access_info_set_must_source(
1631 __isl_take isl_union_access_info *access,
1632 __isl_take isl_union_map *must_source)
1633 {
1634 return isl_union_access_info_set(access, isl_access_must_source,
1635 must_source);
1636 }
1637
1638 /* Replace the possible source accesses of "access" by "may_source".
1639 */
isl_union_access_info_set_may_source(__isl_take isl_union_access_info * access,__isl_take isl_union_map * may_source)1640 __isl_give isl_union_access_info *isl_union_access_info_set_may_source(
1641 __isl_take isl_union_access_info *access,
1642 __isl_take isl_union_map *may_source)
1643 {
1644 return isl_union_access_info_set(access, isl_access_may_source,
1645 may_source);
1646 }
1647
1648 /* Replace the kills of "info" by "kill".
1649 */
isl_union_access_info_set_kill(__isl_take isl_union_access_info * info,__isl_take isl_union_map * kill)1650 __isl_give isl_union_access_info *isl_union_access_info_set_kill(
1651 __isl_take isl_union_access_info *info, __isl_take isl_union_map *kill)
1652 {
1653 return isl_union_access_info_set(info, isl_access_kill, kill);
1654 }
1655
1656 /* Return the access relation of type "type" of "info".
1657 */
isl_union_access_info_get(__isl_keep isl_union_access_info * info,enum isl_access_type type)1658 static __isl_give isl_union_map *isl_union_access_info_get(
1659 __isl_keep isl_union_access_info *info, enum isl_access_type type)
1660 {
1661 if (!info)
1662 return NULL;
1663 return isl_union_map_copy(info->access[type]);
1664 }
1665
1666 /* Return the definite source accesses of "info".
1667 */
isl_union_access_info_get_must_source(__isl_keep isl_union_access_info * info)1668 __isl_give isl_union_map *isl_union_access_info_get_must_source(
1669 __isl_keep isl_union_access_info *info)
1670 {
1671 return isl_union_access_info_get(info, isl_access_must_source);
1672 }
1673
1674 /* Return the possible source accesses of "info".
1675 */
isl_union_access_info_get_may_source(__isl_keep isl_union_access_info * info)1676 __isl_give isl_union_map *isl_union_access_info_get_may_source(
1677 __isl_keep isl_union_access_info *info)
1678 {
1679 return isl_union_access_info_get(info, isl_access_may_source);
1680 }
1681
1682 /* Return the kills of "info".
1683 */
isl_union_access_info_get_kill(__isl_keep isl_union_access_info * info)1684 __isl_give isl_union_map *isl_union_access_info_get_kill(
1685 __isl_keep isl_union_access_info *info)
1686 {
1687 return isl_union_access_info_get(info, isl_access_kill);
1688 }
1689
1690 /* Does "info" specify any kills?
1691 */
isl_union_access_has_kill(__isl_keep isl_union_access_info * info)1692 static isl_bool isl_union_access_has_kill(
1693 __isl_keep isl_union_access_info *info)
1694 {
1695 isl_bool empty;
1696
1697 if (!info)
1698 return isl_bool_error;
1699 empty = isl_union_map_is_empty(info->access[isl_access_kill]);
1700 return isl_bool_not(empty);
1701 }
1702
1703 /* Replace the schedule of "access" by "schedule".
1704 * Also free the schedule_map in case it was set last.
1705 */
isl_union_access_info_set_schedule(__isl_take isl_union_access_info * access,__isl_take isl_schedule * schedule)1706 __isl_give isl_union_access_info *isl_union_access_info_set_schedule(
1707 __isl_take isl_union_access_info *access,
1708 __isl_take isl_schedule *schedule)
1709 {
1710 if (!access || !schedule)
1711 goto error;
1712
1713 access->schedule_map = isl_union_map_free(access->schedule_map);
1714 isl_schedule_free(access->schedule);
1715 access->schedule = schedule;
1716
1717 return access;
1718 error:
1719 isl_union_access_info_free(access);
1720 isl_schedule_free(schedule);
1721 return NULL;
1722 }
1723
1724 /* Replace the schedule map of "access" by "schedule_map".
1725 * Also free the schedule in case it was set last.
1726 */
isl_union_access_info_set_schedule_map(__isl_take isl_union_access_info * access,__isl_take isl_union_map * schedule_map)1727 __isl_give isl_union_access_info *isl_union_access_info_set_schedule_map(
1728 __isl_take isl_union_access_info *access,
1729 __isl_take isl_union_map *schedule_map)
1730 {
1731 if (!access || !schedule_map)
1732 goto error;
1733
1734 isl_union_map_free(access->schedule_map);
1735 access->schedule = isl_schedule_free(access->schedule);
1736 access->schedule_map = schedule_map;
1737
1738 return access;
1739 error:
1740 isl_union_access_info_free(access);
1741 isl_union_map_free(schedule_map);
1742 return NULL;
1743 }
1744
isl_union_access_info_copy(__isl_keep isl_union_access_info * access)1745 __isl_give isl_union_access_info *isl_union_access_info_copy(
1746 __isl_keep isl_union_access_info *access)
1747 {
1748 isl_union_access_info *copy;
1749 enum isl_access_type i;
1750
1751 if (!access)
1752 return NULL;
1753 copy = isl_union_access_info_from_sink(
1754 isl_union_map_copy(access->access[isl_access_sink]));
1755 for (i = isl_access_sink + 1; i < isl_access_end; ++i)
1756 copy = isl_union_access_info_set(copy, i,
1757 isl_union_map_copy(access->access[i]));
1758 if (access->schedule)
1759 copy = isl_union_access_info_set_schedule(copy,
1760 isl_schedule_copy(access->schedule));
1761 else
1762 copy = isl_union_access_info_set_schedule_map(copy,
1763 isl_union_map_copy(access->schedule_map));
1764
1765 return copy;
1766 }
1767
1768 #undef BASE
1769 #define BASE union_map
1770 #include "print_yaml_field_templ.c"
1771
1772 /* An enumeration of the various keys that may appear in a YAML mapping
1773 * of an isl_union_access_info object.
1774 * The keys for the access relation types are assumed to have the same values
1775 * as the access relation types in isl_access_type.
1776 */
1777 enum isl_ai_key {
1778 isl_ai_key_error = -1,
1779 isl_ai_key_sink = isl_access_sink,
1780 isl_ai_key_must_source = isl_access_must_source,
1781 isl_ai_key_may_source = isl_access_may_source,
1782 isl_ai_key_kill = isl_access_kill,
1783 isl_ai_key_schedule_map,
1784 isl_ai_key_schedule,
1785 isl_ai_key_end
1786 };
1787
1788 /* Textual representations of the YAML keys for an isl_union_access_info
1789 * object.
1790 */
1791 static char *key_str[] = {
1792 [isl_ai_key_sink] = "sink",
1793 [isl_ai_key_must_source] = "must_source",
1794 [isl_ai_key_may_source] = "may_source",
1795 [isl_ai_key_kill] = "kill",
1796 [isl_ai_key_schedule_map] = "schedule_map",
1797 [isl_ai_key_schedule] = "schedule",
1798 };
1799
1800 /* Print a key-value pair corresponding to the access relation of type "type"
1801 * of a YAML mapping of "info" to "p".
1802 *
1803 * The sink access relation is always printed, but any other access relation
1804 * is only printed if it is non-empty.
1805 */
print_access_field(__isl_take isl_printer * p,__isl_keep isl_union_access_info * info,enum isl_access_type type)1806 static __isl_give isl_printer *print_access_field(__isl_take isl_printer *p,
1807 __isl_keep isl_union_access_info *info, enum isl_access_type type)
1808 {
1809 if (type != isl_access_sink) {
1810 isl_bool empty;
1811
1812 empty = isl_union_map_is_empty(info->access[type]);
1813 if (empty < 0)
1814 return isl_printer_free(p);
1815 if (empty)
1816 return p;
1817 }
1818 return print_yaml_field_union_map(p, key_str[type], info->access[type]);
1819 }
1820
1821 /* Print the information contained in "access" to "p".
1822 * The information is printed as a YAML document.
1823 */
isl_printer_print_union_access_info(__isl_take isl_printer * p,__isl_keep isl_union_access_info * access)1824 __isl_give isl_printer *isl_printer_print_union_access_info(
1825 __isl_take isl_printer *p, __isl_keep isl_union_access_info *access)
1826 {
1827 enum isl_access_type i;
1828
1829 if (!access)
1830 return isl_printer_free(p);
1831
1832 p = isl_printer_yaml_start_mapping(p);
1833 for (i = isl_access_sink; i < isl_access_end; ++i)
1834 p = print_access_field(p, access, i);
1835 if (access->schedule) {
1836 p = isl_printer_print_str(p, key_str[isl_ai_key_schedule]);
1837 p = isl_printer_yaml_next(p);
1838 p = isl_printer_print_schedule(p, access->schedule);
1839 p = isl_printer_yaml_next(p);
1840 } else {
1841 p = print_yaml_field_union_map(p,
1842 key_str[isl_ai_key_schedule_map], access->schedule_map);
1843 }
1844 p = isl_printer_yaml_end_mapping(p);
1845
1846 return p;
1847 }
1848
1849 /* Return a string representation of the information in "access".
1850 * The information is printed in flow format.
1851 */
isl_union_access_info_to_str(__isl_keep isl_union_access_info * access)1852 __isl_give char *isl_union_access_info_to_str(
1853 __isl_keep isl_union_access_info *access)
1854 {
1855 isl_printer *p;
1856 char *s;
1857
1858 if (!access)
1859 return NULL;
1860
1861 p = isl_printer_to_str(isl_union_access_info_get_ctx(access));
1862 p = isl_printer_set_yaml_style(p, ISL_YAML_STYLE_FLOW);
1863 p = isl_printer_print_union_access_info(p, access);
1864 s = isl_printer_get_str(p);
1865 isl_printer_free(p);
1866
1867 return s;
1868 }
1869
1870 #undef KEY
1871 #define KEY enum isl_ai_key
1872 #undef KEY_ERROR
1873 #define KEY_ERROR isl_ai_key_error
1874 #undef KEY_END
1875 #define KEY_END isl_ai_key_end
1876 #include "extract_key.c"
1877
1878 #undef BASE
1879 #define BASE union_map
1880 #include "read_in_string_templ.c"
1881
1882 /* Read an isl_union_access_info object from "s".
1883 *
1884 * Start off with an empty (invalid) isl_union_access_info object and
1885 * then fill up the fields based on the input.
1886 * The input needs to contain at least a description of the sink
1887 * access relation as well as some form of schedule.
1888 * The other access relations are set to empty relations
1889 * by isl_union_access_info_init if they are not specified in the input.
1890 */
isl_stream_read_union_access_info(isl_stream * s)1891 __isl_give isl_union_access_info *isl_stream_read_union_access_info(
1892 isl_stream *s)
1893 {
1894 isl_ctx *ctx;
1895 isl_union_access_info *info;
1896 int more;
1897 int sink_set = 0;
1898 int schedule_set = 0;
1899
1900 if (isl_stream_yaml_read_start_mapping(s))
1901 return NULL;
1902
1903 ctx = isl_stream_get_ctx(s);
1904 info = isl_union_access_info_alloc(ctx);
1905 while ((more = isl_stream_yaml_next(s)) > 0) {
1906 enum isl_ai_key key;
1907 isl_union_map *access, *schedule_map;
1908 isl_schedule *schedule;
1909
1910 key = get_key(s);
1911 if (isl_stream_yaml_next(s) < 0)
1912 return isl_union_access_info_free(info);
1913 switch (key) {
1914 case isl_ai_key_end:
1915 case isl_ai_key_error:
1916 return isl_union_access_info_free(info);
1917 case isl_ai_key_sink:
1918 sink_set = 1;
1919 case isl_ai_key_must_source:
1920 case isl_ai_key_may_source:
1921 case isl_ai_key_kill:
1922 access = read_union_map(s);
1923 info = isl_union_access_info_set(info, key, access);
1924 if (!info)
1925 return NULL;
1926 break;
1927 case isl_ai_key_schedule_map:
1928 schedule_set = 1;
1929 schedule_map = read_union_map(s);
1930 info = isl_union_access_info_set_schedule_map(info,
1931 schedule_map);
1932 if (!info)
1933 return NULL;
1934 break;
1935 case isl_ai_key_schedule:
1936 schedule_set = 1;
1937 schedule = isl_stream_read_schedule(s);
1938 info = isl_union_access_info_set_schedule(info,
1939 schedule);
1940 if (!info)
1941 return NULL;
1942 break;
1943 }
1944 }
1945 if (more < 0)
1946 return isl_union_access_info_free(info);
1947
1948 if (isl_stream_yaml_read_end_mapping(s) < 0) {
1949 isl_stream_error(s, NULL, "unexpected extra elements");
1950 return isl_union_access_info_free(info);
1951 }
1952
1953 if (!sink_set) {
1954 isl_stream_error(s, NULL, "no sink specified");
1955 return isl_union_access_info_free(info);
1956 }
1957
1958 if (!schedule_set) {
1959 isl_stream_error(s, NULL, "no schedule specified");
1960 return isl_union_access_info_free(info);
1961 }
1962
1963 return isl_union_access_info_init(info);
1964 }
1965
1966 /* Read an isl_union_access_info object from the file "input".
1967 */
isl_union_access_info_read_from_file(isl_ctx * ctx,FILE * input)1968 __isl_give isl_union_access_info *isl_union_access_info_read_from_file(
1969 isl_ctx *ctx, FILE *input)
1970 {
1971 isl_stream *s;
1972 isl_union_access_info *access;
1973
1974 s = isl_stream_new_file(ctx, input);
1975 if (!s)
1976 return NULL;
1977 access = isl_stream_read_union_access_info(s);
1978 isl_stream_free(s);
1979
1980 return access;
1981 }
1982
1983 /* Update the fields of "access" such that they all have the same parameters,
1984 * keeping in mind that the schedule_map field may be NULL and ignoring
1985 * the schedule field.
1986 */
isl_union_access_info_align_params(__isl_take isl_union_access_info * access)1987 static __isl_give isl_union_access_info *isl_union_access_info_align_params(
1988 __isl_take isl_union_access_info *access)
1989 {
1990 isl_space *space;
1991 enum isl_access_type i;
1992
1993 if (!access)
1994 return NULL;
1995
1996 space = isl_union_map_get_space(access->access[isl_access_sink]);
1997 for (i = isl_access_sink + 1; i < isl_access_end; ++i)
1998 space = isl_space_align_params(space,
1999 isl_union_map_get_space(access->access[i]));
2000 if (access->schedule_map)
2001 space = isl_space_align_params(space,
2002 isl_union_map_get_space(access->schedule_map));
2003 for (i = isl_access_sink; i < isl_access_end; ++i)
2004 access->access[i] =
2005 isl_union_map_align_params(access->access[i],
2006 isl_space_copy(space));
2007 if (!access->schedule_map) {
2008 isl_space_free(space);
2009 } else {
2010 access->schedule_map =
2011 isl_union_map_align_params(access->schedule_map, space);
2012 if (!access->schedule_map)
2013 return isl_union_access_info_free(access);
2014 }
2015
2016 for (i = isl_access_sink; i < isl_access_end; ++i)
2017 if (!access->access[i])
2018 return isl_union_access_info_free(access);
2019
2020 return access;
2021 }
2022
2023 /* Prepend the schedule dimensions to the iteration domains.
2024 *
2025 * That is, if the schedule is of the form
2026 *
2027 * D -> S
2028 *
2029 * while the access relations are of the form
2030 *
2031 * D -> A
2032 *
2033 * then the updated access relations are of the form
2034 *
2035 * [S -> D] -> A
2036 *
2037 * The schedule map is also replaced by the map
2038 *
2039 * [S -> D] -> D
2040 *
2041 * that is used during the internal computation.
2042 * Neither the original schedule map nor this updated schedule map
2043 * are used after the call to this function.
2044 */
2045 static __isl_give isl_union_access_info *
isl_union_access_info_introduce_schedule(__isl_take isl_union_access_info * access)2046 isl_union_access_info_introduce_schedule(
2047 __isl_take isl_union_access_info *access)
2048 {
2049 isl_union_map *sm;
2050 enum isl_access_type i;
2051
2052 if (!access)
2053 return NULL;
2054
2055 sm = isl_union_map_reverse(access->schedule_map);
2056 sm = isl_union_map_range_map(sm);
2057 for (i = isl_access_sink; i < isl_access_end; ++i)
2058 access->access[i] =
2059 isl_union_map_apply_range(isl_union_map_copy(sm),
2060 access->access[i]);
2061 access->schedule_map = sm;
2062
2063 for (i = isl_access_sink; i < isl_access_end; ++i)
2064 if (!access->access[i])
2065 return isl_union_access_info_free(access);
2066 if (!access->schedule_map)
2067 return isl_union_access_info_free(access);
2068
2069 return access;
2070 }
2071
2072 /* This structure represents the result of a dependence analysis computation.
2073 *
2074 * "must_dep" represents the full definite dependences
2075 * "may_dep" represents the full non-definite dependences.
2076 * Both are of the form
2077 *
2078 * [Source] -> [[Sink -> Data]]
2079 *
2080 * (after the schedule dimensions have been projected out).
2081 * "must_no_source" represents the subset of the sink accesses for which
2082 * definitely no source was found.
2083 * "may_no_source" represents the subset of the sink accesses for which
2084 * possibly, but not definitely, no source was found.
2085 */
2086 struct isl_union_flow {
2087 isl_union_map *must_dep;
2088 isl_union_map *may_dep;
2089 isl_union_map *must_no_source;
2090 isl_union_map *may_no_source;
2091 };
2092
2093 /* Return the isl_ctx to which "flow" belongs.
2094 */
isl_union_flow_get_ctx(__isl_keep isl_union_flow * flow)2095 isl_ctx *isl_union_flow_get_ctx(__isl_keep isl_union_flow *flow)
2096 {
2097 return flow ? isl_union_map_get_ctx(flow->must_dep) : NULL;
2098 }
2099
2100 /* Free "flow" and return NULL.
2101 */
isl_union_flow_free(__isl_take isl_union_flow * flow)2102 __isl_null isl_union_flow *isl_union_flow_free(__isl_take isl_union_flow *flow)
2103 {
2104 if (!flow)
2105 return NULL;
2106 isl_union_map_free(flow->must_dep);
2107 isl_union_map_free(flow->may_dep);
2108 isl_union_map_free(flow->must_no_source);
2109 isl_union_map_free(flow->may_no_source);
2110 free(flow);
2111 return NULL;
2112 }
2113
isl_union_flow_dump(__isl_keep isl_union_flow * flow)2114 void isl_union_flow_dump(__isl_keep isl_union_flow *flow)
2115 {
2116 if (!flow)
2117 return;
2118
2119 fprintf(stderr, "must dependences: ");
2120 isl_union_map_dump(flow->must_dep);
2121 fprintf(stderr, "may dependences: ");
2122 isl_union_map_dump(flow->may_dep);
2123 fprintf(stderr, "must no source: ");
2124 isl_union_map_dump(flow->must_no_source);
2125 fprintf(stderr, "may no source: ");
2126 isl_union_map_dump(flow->may_no_source);
2127 }
2128
2129 /* Return the full definite dependences in "flow", with accessed elements.
2130 */
isl_union_flow_get_full_must_dependence(__isl_keep isl_union_flow * flow)2131 __isl_give isl_union_map *isl_union_flow_get_full_must_dependence(
2132 __isl_keep isl_union_flow *flow)
2133 {
2134 if (!flow)
2135 return NULL;
2136 return isl_union_map_copy(flow->must_dep);
2137 }
2138
2139 /* Return the full possible dependences in "flow", including the definite
2140 * dependences, with accessed elements.
2141 */
isl_union_flow_get_full_may_dependence(__isl_keep isl_union_flow * flow)2142 __isl_give isl_union_map *isl_union_flow_get_full_may_dependence(
2143 __isl_keep isl_union_flow *flow)
2144 {
2145 if (!flow)
2146 return NULL;
2147 return isl_union_map_union(isl_union_map_copy(flow->must_dep),
2148 isl_union_map_copy(flow->may_dep));
2149 }
2150
2151 /* Return the definite dependences in "flow", without the accessed elements.
2152 */
isl_union_flow_get_must_dependence(__isl_keep isl_union_flow * flow)2153 __isl_give isl_union_map *isl_union_flow_get_must_dependence(
2154 __isl_keep isl_union_flow *flow)
2155 {
2156 isl_union_map *dep;
2157
2158 if (!flow)
2159 return NULL;
2160 dep = isl_union_map_copy(flow->must_dep);
2161 return isl_union_map_range_factor_domain(dep);
2162 }
2163
2164 /* Return the possible dependences in "flow", including the definite
2165 * dependences, without the accessed elements.
2166 */
isl_union_flow_get_may_dependence(__isl_keep isl_union_flow * flow)2167 __isl_give isl_union_map *isl_union_flow_get_may_dependence(
2168 __isl_keep isl_union_flow *flow)
2169 {
2170 isl_union_map *dep;
2171
2172 if (!flow)
2173 return NULL;
2174 dep = isl_union_map_union(isl_union_map_copy(flow->must_dep),
2175 isl_union_map_copy(flow->may_dep));
2176 return isl_union_map_range_factor_domain(dep);
2177 }
2178
2179 /* Return the non-definite dependences in "flow".
2180 */
isl_union_flow_get_non_must_dependence(__isl_keep isl_union_flow * flow)2181 static __isl_give isl_union_map *isl_union_flow_get_non_must_dependence(
2182 __isl_keep isl_union_flow *flow)
2183 {
2184 if (!flow)
2185 return NULL;
2186 return isl_union_map_copy(flow->may_dep);
2187 }
2188
2189 /* Return the subset of the sink accesses for which definitely
2190 * no source was found.
2191 */
isl_union_flow_get_must_no_source(__isl_keep isl_union_flow * flow)2192 __isl_give isl_union_map *isl_union_flow_get_must_no_source(
2193 __isl_keep isl_union_flow *flow)
2194 {
2195 if (!flow)
2196 return NULL;
2197 return isl_union_map_copy(flow->must_no_source);
2198 }
2199
2200 /* Return the subset of the sink accesses for which possibly
2201 * no source was found, including those for which definitely
2202 * no source was found.
2203 */
isl_union_flow_get_may_no_source(__isl_keep isl_union_flow * flow)2204 __isl_give isl_union_map *isl_union_flow_get_may_no_source(
2205 __isl_keep isl_union_flow *flow)
2206 {
2207 if (!flow)
2208 return NULL;
2209 return isl_union_map_union(isl_union_map_copy(flow->must_no_source),
2210 isl_union_map_copy(flow->may_no_source));
2211 }
2212
2213 /* Return the subset of the sink accesses for which possibly, but not
2214 * definitely, no source was found.
2215 */
isl_union_flow_get_non_must_no_source(__isl_keep isl_union_flow * flow)2216 static __isl_give isl_union_map *isl_union_flow_get_non_must_no_source(
2217 __isl_keep isl_union_flow *flow)
2218 {
2219 if (!flow)
2220 return NULL;
2221 return isl_union_map_copy(flow->may_no_source);
2222 }
2223
2224 /* Create a new isl_union_flow object, initialized with empty
2225 * dependence relations and sink subsets.
2226 */
isl_union_flow_alloc(__isl_take isl_space * space)2227 static __isl_give isl_union_flow *isl_union_flow_alloc(
2228 __isl_take isl_space *space)
2229 {
2230 isl_ctx *ctx;
2231 isl_union_map *empty;
2232 isl_union_flow *flow;
2233
2234 if (!space)
2235 return NULL;
2236 ctx = isl_space_get_ctx(space);
2237 flow = isl_alloc_type(ctx, isl_union_flow);
2238 if (!flow)
2239 goto error;
2240
2241 empty = isl_union_map_empty(space);
2242 flow->must_dep = isl_union_map_copy(empty);
2243 flow->may_dep = isl_union_map_copy(empty);
2244 flow->must_no_source = isl_union_map_copy(empty);
2245 flow->may_no_source = empty;
2246
2247 if (!flow->must_dep || !flow->may_dep ||
2248 !flow->must_no_source || !flow->may_no_source)
2249 return isl_union_flow_free(flow);
2250
2251 return flow;
2252 error:
2253 isl_space_free(space);
2254 return NULL;
2255 }
2256
2257 /* Copy this isl_union_flow object.
2258 */
isl_union_flow_copy(__isl_keep isl_union_flow * flow)2259 __isl_give isl_union_flow *isl_union_flow_copy(__isl_keep isl_union_flow *flow)
2260 {
2261 isl_union_flow *copy;
2262
2263 if (!flow)
2264 return NULL;
2265
2266 copy = isl_union_flow_alloc(isl_union_map_get_space(flow->must_dep));
2267
2268 if (!copy)
2269 return NULL;
2270
2271 copy->must_dep = isl_union_map_union(copy->must_dep,
2272 isl_union_map_copy(flow->must_dep));
2273 copy->may_dep = isl_union_map_union(copy->may_dep,
2274 isl_union_map_copy(flow->may_dep));
2275 copy->must_no_source = isl_union_map_union(copy->must_no_source,
2276 isl_union_map_copy(flow->must_no_source));
2277 copy->may_no_source = isl_union_map_union(copy->may_no_source,
2278 isl_union_map_copy(flow->may_no_source));
2279
2280 if (!copy->must_dep || !copy->may_dep ||
2281 !copy->must_no_source || !copy->may_no_source)
2282 return isl_union_flow_free(copy);
2283
2284 return copy;
2285 }
2286
2287 /* Drop the schedule dimensions from the iteration domains in "flow".
2288 * In particular, the schedule dimensions have been prepended
2289 * to the iteration domains prior to the dependence analysis by
2290 * replacing the iteration domain D, by the wrapped map [S -> D].
2291 * Replace these wrapped maps by the original D.
2292 *
2293 * In particular, the dependences computed by access_info_compute_flow_core
2294 * are of the form
2295 *
2296 * [S -> D] -> [[S' -> D'] -> A]
2297 *
2298 * The schedule dimensions are projected out by first currying the range,
2299 * resulting in
2300 *
2301 * [S -> D] -> [S' -> [D' -> A]]
2302 *
2303 * and then computing the factor range
2304 *
2305 * D -> [D' -> A]
2306 */
isl_union_flow_drop_schedule(__isl_take isl_union_flow * flow)2307 static __isl_give isl_union_flow *isl_union_flow_drop_schedule(
2308 __isl_take isl_union_flow *flow)
2309 {
2310 if (!flow)
2311 return NULL;
2312
2313 flow->must_dep = isl_union_map_range_curry(flow->must_dep);
2314 flow->must_dep = isl_union_map_factor_range(flow->must_dep);
2315 flow->may_dep = isl_union_map_range_curry(flow->may_dep);
2316 flow->may_dep = isl_union_map_factor_range(flow->may_dep);
2317 flow->must_no_source =
2318 isl_union_map_domain_factor_range(flow->must_no_source);
2319 flow->may_no_source =
2320 isl_union_map_domain_factor_range(flow->may_no_source);
2321
2322 if (!flow->must_dep || !flow->may_dep ||
2323 !flow->must_no_source || !flow->may_no_source)
2324 return isl_union_flow_free(flow);
2325
2326 return flow;
2327 }
2328
2329 struct isl_compute_flow_data {
2330 isl_union_map *must_source;
2331 isl_union_map *may_source;
2332 isl_union_flow *flow;
2333
2334 int count;
2335 int must;
2336 isl_space *dim;
2337 struct isl_sched_info *sink_info;
2338 struct isl_sched_info **source_info;
2339 isl_access_info *accesses;
2340 };
2341
count_matching_array(__isl_take isl_map * map,void * user)2342 static isl_stat count_matching_array(__isl_take isl_map *map, void *user)
2343 {
2344 int eq;
2345 isl_space *space;
2346 struct isl_compute_flow_data *data;
2347
2348 data = (struct isl_compute_flow_data *)user;
2349
2350 space = isl_space_range(isl_map_get_space(map));
2351
2352 eq = isl_space_is_equal(space, data->dim);
2353
2354 isl_space_free(space);
2355 isl_map_free(map);
2356
2357 if (eq < 0)
2358 return isl_stat_error;
2359 if (eq)
2360 data->count++;
2361
2362 return isl_stat_ok;
2363 }
2364
collect_matching_array(__isl_take isl_map * map,void * user)2365 static isl_stat collect_matching_array(__isl_take isl_map *map, void *user)
2366 {
2367 int eq;
2368 isl_space *space;
2369 struct isl_sched_info *info;
2370 struct isl_compute_flow_data *data;
2371
2372 data = (struct isl_compute_flow_data *)user;
2373
2374 space = isl_space_range(isl_map_get_space(map));
2375
2376 eq = isl_space_is_equal(space, data->dim);
2377
2378 isl_space_free(space);
2379
2380 if (eq < 0)
2381 goto error;
2382 if (!eq) {
2383 isl_map_free(map);
2384 return isl_stat_ok;
2385 }
2386
2387 info = sched_info_alloc(map);
2388 data->source_info[data->count] = info;
2389
2390 data->accesses = isl_access_info_add_source(data->accesses,
2391 map, data->must, info);
2392
2393 data->count++;
2394
2395 return isl_stat_ok;
2396 error:
2397 isl_map_free(map);
2398 return isl_stat_error;
2399 }
2400
2401 /* Determine the shared nesting level and the "textual order" of
2402 * the given accesses.
2403 *
2404 * We first determine the minimal schedule dimension for both accesses.
2405 *
2406 * If among those dimensions, we can find one where both have a fixed
2407 * value and if moreover those values are different, then the previous
2408 * dimension is the last shared nesting level and the textual order
2409 * is determined based on the order of the fixed values.
2410 * If no such fixed values can be found, then we set the shared
2411 * nesting level to the minimal schedule dimension, with no textual ordering.
2412 */
before(void * first,void * second)2413 static int before(void *first, void *second)
2414 {
2415 struct isl_sched_info *info1 = first;
2416 struct isl_sched_info *info2 = second;
2417 isl_size n1, n2;
2418 int i;
2419
2420 n1 = isl_vec_size(info1->cst);
2421 n2 = isl_vec_size(info2->cst);
2422 if (n1 < 0 || n2 < 0)
2423 return -1;
2424
2425 if (n2 < n1)
2426 n1 = n2;
2427
2428 for (i = 0; i < n1; ++i) {
2429 int r;
2430 int cmp;
2431
2432 if (!info1->is_cst[i])
2433 continue;
2434 if (!info2->is_cst[i])
2435 continue;
2436 cmp = isl_vec_cmp_element(info1->cst, info2->cst, i);
2437 if (cmp == 0)
2438 continue;
2439
2440 r = 2 * i + (cmp < 0);
2441
2442 return r;
2443 }
2444
2445 return 2 * n1;
2446 }
2447
2448 /* Check if the given two accesses may be coscheduled.
2449 * If so, return isl_bool_true. Otherwise return isl_bool_false.
2450 *
2451 * Two accesses may only be coscheduled if the fixed schedule
2452 * coordinates have the same values.
2453 */
coscheduled(void * first,void * second)2454 static isl_bool coscheduled(void *first, void *second)
2455 {
2456 struct isl_sched_info *info1 = first;
2457 struct isl_sched_info *info2 = second;
2458 isl_size n1, n2;
2459 int i;
2460
2461 n1 = isl_vec_size(info1->cst);
2462 n2 = isl_vec_size(info2->cst);
2463 if (n1 < 0 || n2 < 0)
2464 return isl_bool_error;
2465
2466 if (n2 < n1)
2467 n1 = n2;
2468
2469 for (i = 0; i < n1; ++i) {
2470 int cmp;
2471
2472 if (!info1->is_cst[i])
2473 continue;
2474 if (!info2->is_cst[i])
2475 continue;
2476 cmp = isl_vec_cmp_element(info1->cst, info2->cst, i);
2477 if (cmp != 0)
2478 return isl_bool_false;
2479 }
2480
2481 return isl_bool_true;
2482 }
2483
2484 /* Given a sink access, look for all the source accesses that access
2485 * the same array and perform dataflow analysis on them using
2486 * isl_access_info_compute_flow_core.
2487 */
compute_flow(__isl_take isl_map * map,void * user)2488 static isl_stat compute_flow(__isl_take isl_map *map, void *user)
2489 {
2490 int i;
2491 isl_ctx *ctx;
2492 struct isl_compute_flow_data *data;
2493 isl_flow *flow;
2494 isl_union_flow *df;
2495
2496 data = (struct isl_compute_flow_data *)user;
2497 df = data->flow;
2498
2499 ctx = isl_map_get_ctx(map);
2500
2501 data->accesses = NULL;
2502 data->sink_info = NULL;
2503 data->source_info = NULL;
2504 data->count = 0;
2505 data->dim = isl_space_range(isl_map_get_space(map));
2506
2507 if (isl_union_map_foreach_map(data->must_source,
2508 &count_matching_array, data) < 0)
2509 goto error;
2510 if (isl_union_map_foreach_map(data->may_source,
2511 &count_matching_array, data) < 0)
2512 goto error;
2513
2514 data->sink_info = sched_info_alloc(map);
2515 data->source_info = isl_calloc_array(ctx, struct isl_sched_info *,
2516 data->count);
2517
2518 data->accesses = isl_access_info_alloc(isl_map_copy(map),
2519 data->sink_info, &before, data->count);
2520 if (!data->sink_info || (data->count && !data->source_info) ||
2521 !data->accesses)
2522 goto error;
2523 data->accesses->coscheduled = &coscheduled;
2524 data->count = 0;
2525 data->must = 1;
2526 if (isl_union_map_foreach_map(data->must_source,
2527 &collect_matching_array, data) < 0)
2528 goto error;
2529 data->must = 0;
2530 if (isl_union_map_foreach_map(data->may_source,
2531 &collect_matching_array, data) < 0)
2532 goto error;
2533
2534 flow = access_info_compute_flow_core(data->accesses);
2535 data->accesses = NULL;
2536
2537 if (!flow)
2538 goto error;
2539
2540 df->must_no_source = isl_union_map_union(df->must_no_source,
2541 isl_union_map_from_map(isl_flow_get_no_source(flow, 1)));
2542 df->may_no_source = isl_union_map_union(df->may_no_source,
2543 isl_union_map_from_map(isl_flow_get_no_source(flow, 0)));
2544
2545 for (i = 0; i < flow->n_source; ++i) {
2546 isl_union_map *dep;
2547 dep = isl_union_map_from_map(isl_map_copy(flow->dep[i].map));
2548 if (flow->dep[i].must)
2549 df->must_dep = isl_union_map_union(df->must_dep, dep);
2550 else
2551 df->may_dep = isl_union_map_union(df->may_dep, dep);
2552 }
2553
2554 isl_flow_free(flow);
2555
2556 sched_info_free(data->sink_info);
2557 if (data->source_info) {
2558 for (i = 0; i < data->count; ++i)
2559 sched_info_free(data->source_info[i]);
2560 free(data->source_info);
2561 }
2562 isl_space_free(data->dim);
2563 isl_map_free(map);
2564
2565 return isl_stat_ok;
2566 error:
2567 isl_access_info_free(data->accesses);
2568 sched_info_free(data->sink_info);
2569 if (data->source_info) {
2570 for (i = 0; i < data->count; ++i)
2571 sched_info_free(data->source_info[i]);
2572 free(data->source_info);
2573 }
2574 isl_space_free(data->dim);
2575 isl_map_free(map);
2576
2577 return isl_stat_error;
2578 }
2579
2580 /* Add the kills of "info" to the must-sources.
2581 */
2582 static __isl_give isl_union_access_info *
isl_union_access_info_add_kill_to_must_source(__isl_take isl_union_access_info * info)2583 isl_union_access_info_add_kill_to_must_source(
2584 __isl_take isl_union_access_info *info)
2585 {
2586 isl_union_map *must, *kill;
2587
2588 must = isl_union_access_info_get_must_source(info);
2589 kill = isl_union_access_info_get_kill(info);
2590 must = isl_union_map_union(must, kill);
2591 return isl_union_access_info_set_must_source(info, must);
2592 }
2593
2594 /* Drop dependences from "flow" that purely originate from kills.
2595 * That is, only keep those dependences that originate from
2596 * the original must-sources "must" and/or the original may-sources "may".
2597 * In particular, "must" contains the must-sources from before
2598 * the kills were added and "may" contains the may-source from before
2599 * the kills were removed.
2600 *
2601 * The dependences are of the form
2602 *
2603 * Source -> [Sink -> Data]
2604 *
2605 * Only those dependences are kept where the Source -> Data part
2606 * is a subset of the original may-sources or must-sources.
2607 * Of those, only the must-dependences that intersect with the must-sources
2608 * remain must-dependences.
2609 * If there is some overlap between the may-sources and the must-sources,
2610 * then the may-dependences and must-dependences may also overlap.
2611 * This should be fine since the may-dependences are only kept
2612 * disjoint from the must-dependences for the isl_union_map_compute_flow
2613 * interface. This interface does not support kills, so it will
2614 * not end up calling this function.
2615 */
isl_union_flow_drop_kill_source(__isl_take isl_union_flow * flow,__isl_take isl_union_map * must,__isl_take isl_union_map * may)2616 static __isl_give isl_union_flow *isl_union_flow_drop_kill_source(
2617 __isl_take isl_union_flow *flow, __isl_take isl_union_map *must,
2618 __isl_take isl_union_map *may)
2619 {
2620 isl_union_map *move;
2621
2622 if (!flow)
2623 goto error;
2624 move = isl_union_map_copy(flow->must_dep);
2625 move = isl_union_map_intersect_range_factor_range(move,
2626 isl_union_map_copy(may));
2627 may = isl_union_map_union(may, isl_union_map_copy(must));
2628 flow->may_dep = isl_union_map_intersect_range_factor_range(
2629 flow->may_dep, may);
2630 flow->must_dep = isl_union_map_intersect_range_factor_range(
2631 flow->must_dep, must);
2632 flow->may_dep = isl_union_map_union(flow->may_dep, move);
2633 if (!flow->must_dep || !flow->may_dep)
2634 return isl_union_flow_free(flow);
2635
2636 return flow;
2637 error:
2638 isl_union_map_free(must);
2639 isl_union_map_free(may);
2640 return NULL;
2641 }
2642
2643 /* Remove the must accesses from the may accesses.
2644 *
2645 * A must access always trumps a may access, so there is no need
2646 * for a must access to also be considered as a may access. Doing so
2647 * would only cost extra computations only to find out that
2648 * the duplicated may access does not make any difference.
2649 */
isl_union_access_info_normalize(__isl_take isl_union_access_info * access)2650 static __isl_give isl_union_access_info *isl_union_access_info_normalize(
2651 __isl_take isl_union_access_info *access)
2652 {
2653 if (!access)
2654 return NULL;
2655 access->access[isl_access_may_source] =
2656 isl_union_map_subtract(access->access[isl_access_may_source],
2657 isl_union_map_copy(access->access[isl_access_must_source]));
2658 if (!access->access[isl_access_may_source])
2659 return isl_union_access_info_free(access);
2660
2661 return access;
2662 }
2663
2664 /* Given a description of the "sink" accesses, the "source" accesses and
2665 * a schedule, compute for each instance of a sink access
2666 * and for each element accessed by that instance,
2667 * the possible or definite source accesses that last accessed the
2668 * element accessed by the sink access before this sink access
2669 * in the sense that there is no intermediate definite source access.
2670 *
2671 * The must_no_source and may_no_source elements of the result
2672 * are subsets of access->sink. The elements must_dep and may_dep
2673 * map domain elements of access->{may,must)_source to
2674 * domain elements of access->sink.
2675 *
2676 * This function is used when only the schedule map representation
2677 * is available.
2678 *
2679 * We first prepend the schedule dimensions to the domain
2680 * of the accesses so that we can easily compare their relative order.
2681 * Then we consider each sink access individually in compute_flow.
2682 */
compute_flow_union_map(__isl_take isl_union_access_info * access)2683 static __isl_give isl_union_flow *compute_flow_union_map(
2684 __isl_take isl_union_access_info *access)
2685 {
2686 struct isl_compute_flow_data data;
2687 isl_union_map *sink;
2688
2689 access = isl_union_access_info_align_params(access);
2690 access = isl_union_access_info_introduce_schedule(access);
2691 if (!access)
2692 return NULL;
2693
2694 data.must_source = access->access[isl_access_must_source];
2695 data.may_source = access->access[isl_access_may_source];
2696
2697 sink = access->access[isl_access_sink];
2698 data.flow = isl_union_flow_alloc(isl_union_map_get_space(sink));
2699
2700 if (isl_union_map_foreach_map(sink, &compute_flow, &data) < 0)
2701 goto error;
2702
2703 data.flow = isl_union_flow_drop_schedule(data.flow);
2704
2705 isl_union_access_info_free(access);
2706 return data.flow;
2707 error:
2708 isl_union_access_info_free(access);
2709 isl_union_flow_free(data.flow);
2710 return NULL;
2711 }
2712
2713 /* A schedule access relation.
2714 *
2715 * The access relation "access" is of the form [S -> D] -> A,
2716 * where S corresponds to the prefix schedule at "node".
2717 * "must" is only relevant for source accesses and indicates
2718 * whether the access is a must source or a may source.
2719 */
2720 struct isl_scheduled_access {
2721 isl_map *access;
2722 int must;
2723 isl_schedule_node *node;
2724 };
2725
2726 /* Data structure for keeping track of individual scheduled sink and source
2727 * accesses when computing dependence analysis based on a schedule tree.
2728 *
2729 * "n_sink" is the number of used entries in "sink"
2730 * "n_source" is the number of used entries in "source"
2731 *
2732 * "set_sink", "must" and "node" are only used inside collect_sink_source,
2733 * to keep track of the current node and
2734 * of what extract_sink_source needs to do.
2735 */
2736 struct isl_compute_flow_schedule_data {
2737 isl_union_access_info *access;
2738
2739 int n_sink;
2740 int n_source;
2741
2742 struct isl_scheduled_access *sink;
2743 struct isl_scheduled_access *source;
2744
2745 int set_sink;
2746 int must;
2747 isl_schedule_node *node;
2748 };
2749
2750 /* Align the parameters of all sinks with all sources.
2751 *
2752 * If there are no sinks or no sources, then no alignment is needed.
2753 */
isl_compute_flow_schedule_data_align_params(struct isl_compute_flow_schedule_data * data)2754 static void isl_compute_flow_schedule_data_align_params(
2755 struct isl_compute_flow_schedule_data *data)
2756 {
2757 int i;
2758 isl_space *space;
2759
2760 if (data->n_sink == 0 || data->n_source == 0)
2761 return;
2762
2763 space = isl_map_get_space(data->sink[0].access);
2764
2765 for (i = 1; i < data->n_sink; ++i)
2766 space = isl_space_align_params(space,
2767 isl_map_get_space(data->sink[i].access));
2768 for (i = 0; i < data->n_source; ++i)
2769 space = isl_space_align_params(space,
2770 isl_map_get_space(data->source[i].access));
2771
2772 for (i = 0; i < data->n_sink; ++i)
2773 data->sink[i].access =
2774 isl_map_align_params(data->sink[i].access,
2775 isl_space_copy(space));
2776 for (i = 0; i < data->n_source; ++i)
2777 data->source[i].access =
2778 isl_map_align_params(data->source[i].access,
2779 isl_space_copy(space));
2780
2781 isl_space_free(space);
2782 }
2783
2784 /* Free all the memory referenced from "data".
2785 * Do not free "data" itself as it may be allocated on the stack.
2786 */
isl_compute_flow_schedule_data_clear(struct isl_compute_flow_schedule_data * data)2787 static void isl_compute_flow_schedule_data_clear(
2788 struct isl_compute_flow_schedule_data *data)
2789 {
2790 int i;
2791
2792 if (!data->sink)
2793 return;
2794
2795 for (i = 0; i < data->n_sink; ++i) {
2796 isl_map_free(data->sink[i].access);
2797 isl_schedule_node_free(data->sink[i].node);
2798 }
2799
2800 for (i = 0; i < data->n_source; ++i) {
2801 isl_map_free(data->source[i].access);
2802 isl_schedule_node_free(data->source[i].node);
2803 }
2804
2805 free(data->sink);
2806 }
2807
2808 /* isl_schedule_foreach_schedule_node_top_down callback for counting
2809 * (an upper bound on) the number of sinks and sources.
2810 *
2811 * Sinks and sources are only extracted at leaves of the tree,
2812 * so we skip the node if it is not a leaf.
2813 * Otherwise we increment data->n_sink and data->n_source with
2814 * the number of spaces in the sink and source access domains
2815 * that reach this node.
2816 */
count_sink_source(__isl_keep isl_schedule_node * node,void * user)2817 static isl_bool count_sink_source(__isl_keep isl_schedule_node *node,
2818 void *user)
2819 {
2820 struct isl_compute_flow_schedule_data *data = user;
2821 isl_union_set *domain;
2822 isl_union_map *umap;
2823 isl_bool r = isl_bool_false;
2824 isl_size n;
2825
2826 if (isl_schedule_node_get_type(node) != isl_schedule_node_leaf)
2827 return isl_bool_true;
2828
2829 domain = isl_schedule_node_get_universe_domain(node);
2830
2831 umap = isl_union_map_copy(data->access->access[isl_access_sink]);
2832 umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(domain));
2833 data->n_sink += n = isl_union_map_n_map(umap);
2834 isl_union_map_free(umap);
2835 if (n < 0)
2836 r = isl_bool_error;
2837
2838 umap = isl_union_map_copy(data->access->access[isl_access_must_source]);
2839 umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(domain));
2840 data->n_source += n = isl_union_map_n_map(umap);
2841 isl_union_map_free(umap);
2842 if (n < 0)
2843 r = isl_bool_error;
2844
2845 umap = isl_union_map_copy(data->access->access[isl_access_may_source]);
2846 umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(domain));
2847 data->n_source += n = isl_union_map_n_map(umap);
2848 isl_union_map_free(umap);
2849 if (n < 0)
2850 r = isl_bool_error;
2851
2852 isl_union_set_free(domain);
2853
2854 return r;
2855 }
2856
2857 /* Add a single scheduled sink or source (depending on data->set_sink)
2858 * with scheduled access relation "map", must property data->must and
2859 * schedule node data->node to the list of sinks or sources.
2860 */
extract_sink_source(__isl_take isl_map * map,void * user)2861 static isl_stat extract_sink_source(__isl_take isl_map *map, void *user)
2862 {
2863 struct isl_compute_flow_schedule_data *data = user;
2864 struct isl_scheduled_access *access;
2865
2866 if (data->set_sink)
2867 access = data->sink + data->n_sink++;
2868 else
2869 access = data->source + data->n_source++;
2870
2871 access->access = map;
2872 access->must = data->must;
2873 access->node = isl_schedule_node_copy(data->node);
2874
2875 return isl_stat_ok;
2876 }
2877
2878 /* isl_schedule_foreach_schedule_node_top_down callback for collecting
2879 * individual scheduled source and sink accesses (taking into account
2880 * the domain of the schedule).
2881 *
2882 * We only collect accesses at the leaves of the schedule tree.
2883 * We prepend the schedule dimensions at the leaf to the iteration
2884 * domains of the source and sink accesses and then extract
2885 * the individual accesses (per space).
2886 *
2887 * In particular, if the prefix schedule at the node is of the form
2888 *
2889 * D -> S
2890 *
2891 * while the access relations are of the form
2892 *
2893 * D -> A
2894 *
2895 * then the updated access relations are of the form
2896 *
2897 * [S -> D] -> A
2898 *
2899 * Note that S consists of a single space such that introducing S
2900 * in the access relations does not increase the number of spaces.
2901 */
collect_sink_source(__isl_keep isl_schedule_node * node,void * user)2902 static isl_bool collect_sink_source(__isl_keep isl_schedule_node *node,
2903 void *user)
2904 {
2905 struct isl_compute_flow_schedule_data *data = user;
2906 isl_union_map *prefix;
2907 isl_union_map *umap;
2908 isl_bool r = isl_bool_false;
2909
2910 if (isl_schedule_node_get_type(node) != isl_schedule_node_leaf)
2911 return isl_bool_true;
2912
2913 data->node = node;
2914
2915 prefix = isl_schedule_node_get_prefix_schedule_relation(node);
2916 prefix = isl_union_map_reverse(prefix);
2917 prefix = isl_union_map_range_map(prefix);
2918
2919 data->set_sink = 1;
2920 umap = isl_union_map_copy(data->access->access[isl_access_sink]);
2921 umap = isl_union_map_apply_range(isl_union_map_copy(prefix), umap);
2922 if (isl_union_map_foreach_map(umap, &extract_sink_source, data) < 0)
2923 r = isl_bool_error;
2924 isl_union_map_free(umap);
2925
2926 data->set_sink = 0;
2927 data->must = 1;
2928 umap = isl_union_map_copy(data->access->access[isl_access_must_source]);
2929 umap = isl_union_map_apply_range(isl_union_map_copy(prefix), umap);
2930 if (isl_union_map_foreach_map(umap, &extract_sink_source, data) < 0)
2931 r = isl_bool_error;
2932 isl_union_map_free(umap);
2933
2934 data->set_sink = 0;
2935 data->must = 0;
2936 umap = isl_union_map_copy(data->access->access[isl_access_may_source]);
2937 umap = isl_union_map_apply_range(isl_union_map_copy(prefix), umap);
2938 if (isl_union_map_foreach_map(umap, &extract_sink_source, data) < 0)
2939 r = isl_bool_error;
2940 isl_union_map_free(umap);
2941
2942 isl_union_map_free(prefix);
2943
2944 return r;
2945 }
2946
2947 /* isl_access_info_compute_flow callback for determining whether
2948 * the shared nesting level and the ordering within that level
2949 * for two scheduled accesses for use in compute_single_flow.
2950 *
2951 * The tokens passed to this function refer to the leaves
2952 * in the schedule tree where the accesses take place.
2953 *
2954 * If n is the shared number of loops, then we need to return
2955 * "2 * n + 1" if "first" precedes "second" inside the innermost
2956 * shared loop and "2 * n" otherwise.
2957 *
2958 * The innermost shared ancestor may be the leaves themselves
2959 * if the accesses take place in the same leaf. Otherwise,
2960 * it is either a set node or a sequence node. Only in the case
2961 * of a sequence node do we consider one access to precede the other.
2962 */
before_node(void * first,void * second)2963 static int before_node(void *first, void *second)
2964 {
2965 isl_schedule_node *node1 = first;
2966 isl_schedule_node *node2 = second;
2967 isl_schedule_node *shared;
2968 isl_size depth;
2969 int before = 0;
2970
2971 shared = isl_schedule_node_get_shared_ancestor(node1, node2);
2972 depth = isl_schedule_node_get_schedule_depth(shared);
2973 if (depth < 0) {
2974 isl_schedule_node_free(shared);
2975 return -1;
2976 }
2977
2978 if (isl_schedule_node_get_type(shared) == isl_schedule_node_sequence) {
2979 isl_size pos1, pos2;
2980
2981 pos1 = isl_schedule_node_get_ancestor_child_position(node1,
2982 shared);
2983 pos2 = isl_schedule_node_get_ancestor_child_position(node2,
2984 shared);
2985 if (pos1 < 0 || pos2 < 0) {
2986 isl_schedule_node_free(shared);
2987 return -1;
2988 }
2989 before = pos1 < pos2;
2990 }
2991
2992 isl_schedule_node_free(shared);
2993
2994 return 2 * depth + before;
2995 }
2996
2997 /* Check if the given two accesses may be coscheduled.
2998 * If so, return isl_bool_true. Otherwise return isl_bool_false.
2999 *
3000 * Two accesses may only be coscheduled if they appear in the same leaf.
3001 */
coscheduled_node(void * first,void * second)3002 static isl_bool coscheduled_node(void *first, void *second)
3003 {
3004 isl_schedule_node *node1 = first;
3005 isl_schedule_node *node2 = second;
3006
3007 return isl_bool_ok(node1 == node2);
3008 }
3009
3010 /* Add the scheduled sources from "data" that access
3011 * the same data space as "sink" to "access".
3012 */
add_matching_sources(__isl_take isl_access_info * access,struct isl_scheduled_access * sink,struct isl_compute_flow_schedule_data * data)3013 static __isl_give isl_access_info *add_matching_sources(
3014 __isl_take isl_access_info *access, struct isl_scheduled_access *sink,
3015 struct isl_compute_flow_schedule_data *data)
3016 {
3017 int i;
3018 isl_space *space;
3019
3020 space = isl_space_range(isl_map_get_space(sink->access));
3021 for (i = 0; i < data->n_source; ++i) {
3022 struct isl_scheduled_access *source;
3023 isl_space *source_space;
3024 int eq;
3025
3026 source = &data->source[i];
3027 source_space = isl_map_get_space(source->access);
3028 source_space = isl_space_range(source_space);
3029 eq = isl_space_is_equal(space, source_space);
3030 isl_space_free(source_space);
3031
3032 if (!eq)
3033 continue;
3034 if (eq < 0)
3035 goto error;
3036
3037 access = isl_access_info_add_source(access,
3038 isl_map_copy(source->access), source->must, source->node);
3039 }
3040
3041 isl_space_free(space);
3042 return access;
3043 error:
3044 isl_space_free(space);
3045 isl_access_info_free(access);
3046 return NULL;
3047 }
3048
3049 /* Given a scheduled sink access relation "sink", compute the corresponding
3050 * dependences on the sources in "data" and add the computed dependences
3051 * to "uf".
3052 *
3053 * The dependences computed by access_info_compute_flow_core are of the form
3054 *
3055 * [S -> I] -> [[S' -> I'] -> A]
3056 *
3057 * The schedule dimensions are projected out by first currying the range,
3058 * resulting in
3059 *
3060 * [S -> I] -> [S' -> [I' -> A]]
3061 *
3062 * and then computing the factor range
3063 *
3064 * I -> [I' -> A]
3065 */
compute_single_flow(__isl_take isl_union_flow * uf,struct isl_scheduled_access * sink,struct isl_compute_flow_schedule_data * data)3066 static __isl_give isl_union_flow *compute_single_flow(
3067 __isl_take isl_union_flow *uf, struct isl_scheduled_access *sink,
3068 struct isl_compute_flow_schedule_data *data)
3069 {
3070 int i;
3071 isl_access_info *access;
3072 isl_flow *flow;
3073 isl_map *map;
3074
3075 if (!uf)
3076 return NULL;
3077
3078 access = isl_access_info_alloc(isl_map_copy(sink->access), sink->node,
3079 &before_node, data->n_source);
3080 if (access)
3081 access->coscheduled = &coscheduled_node;
3082 access = add_matching_sources(access, sink, data);
3083
3084 flow = access_info_compute_flow_core(access);
3085 if (!flow)
3086 return isl_union_flow_free(uf);
3087
3088 map = isl_map_domain_factor_range(isl_flow_get_no_source(flow, 1));
3089 uf->must_no_source = isl_union_map_union(uf->must_no_source,
3090 isl_union_map_from_map(map));
3091 map = isl_map_domain_factor_range(isl_flow_get_no_source(flow, 0));
3092 uf->may_no_source = isl_union_map_union(uf->may_no_source,
3093 isl_union_map_from_map(map));
3094
3095 for (i = 0; i < flow->n_source; ++i) {
3096 isl_union_map *dep;
3097
3098 map = isl_map_range_curry(isl_map_copy(flow->dep[i].map));
3099 map = isl_map_factor_range(map);
3100 dep = isl_union_map_from_map(map);
3101 if (flow->dep[i].must)
3102 uf->must_dep = isl_union_map_union(uf->must_dep, dep);
3103 else
3104 uf->may_dep = isl_union_map_union(uf->may_dep, dep);
3105 }
3106
3107 isl_flow_free(flow);
3108
3109 return uf;
3110 }
3111
3112 /* Given a description of the "sink" accesses, the "source" accesses and
3113 * a schedule, compute for each instance of a sink access
3114 * and for each element accessed by that instance,
3115 * the possible or definite source accesses that last accessed the
3116 * element accessed by the sink access before this sink access
3117 * in the sense that there is no intermediate definite source access.
3118 * Only consider dependences between statement instances that belong
3119 * to the domain of the schedule.
3120 *
3121 * The must_no_source and may_no_source elements of the result
3122 * are subsets of access->sink. The elements must_dep and may_dep
3123 * map domain elements of access->{may,must)_source to
3124 * domain elements of access->sink.
3125 *
3126 * This function is used when a schedule tree representation
3127 * is available.
3128 *
3129 * We extract the individual scheduled source and sink access relations
3130 * (taking into account the domain of the schedule) and
3131 * then compute dependences for each scheduled sink individually.
3132 */
compute_flow_schedule(__isl_take isl_union_access_info * access)3133 static __isl_give isl_union_flow *compute_flow_schedule(
3134 __isl_take isl_union_access_info *access)
3135 {
3136 struct isl_compute_flow_schedule_data data = { access };
3137 int i, n;
3138 isl_ctx *ctx;
3139 isl_space *space;
3140 isl_union_flow *flow;
3141
3142 ctx = isl_union_access_info_get_ctx(access);
3143
3144 data.n_sink = 0;
3145 data.n_source = 0;
3146 if (isl_schedule_foreach_schedule_node_top_down(access->schedule,
3147 &count_sink_source, &data) < 0)
3148 goto error;
3149
3150 n = data.n_sink + data.n_source;
3151 data.sink = isl_calloc_array(ctx, struct isl_scheduled_access, n);
3152 if (n && !data.sink)
3153 goto error;
3154 data.source = data.sink + data.n_sink;
3155
3156 data.n_sink = 0;
3157 data.n_source = 0;
3158 if (isl_schedule_foreach_schedule_node_top_down(access->schedule,
3159 &collect_sink_source, &data) < 0)
3160 goto error;
3161
3162 space = isl_union_map_get_space(access->access[isl_access_sink]);
3163 flow = isl_union_flow_alloc(space);
3164
3165 isl_compute_flow_schedule_data_align_params(&data);
3166
3167 for (i = 0; i < data.n_sink; ++i)
3168 flow = compute_single_flow(flow, &data.sink[i], &data);
3169
3170 isl_compute_flow_schedule_data_clear(&data);
3171
3172 isl_union_access_info_free(access);
3173 return flow;
3174 error:
3175 isl_union_access_info_free(access);
3176 isl_compute_flow_schedule_data_clear(&data);
3177 return NULL;
3178 }
3179
3180 /* Given a description of the "sink" accesses, the "source" accesses and
3181 * a schedule, compute for each instance of a sink access
3182 * and for each element accessed by that instance,
3183 * the possible or definite source accesses that last accessed the
3184 * element accessed by the sink access before this sink access
3185 * in the sense that there is no intermediate definite source access.
3186 *
3187 * The must_no_source and may_no_source elements of the result
3188 * are subsets of access->sink. The elements must_dep and may_dep
3189 * map domain elements of access->{may,must)_source to
3190 * domain elements of access->sink.
3191 *
3192 * If any kills have been specified, then they are treated as
3193 * must-sources internally. Any dependence that purely derives
3194 * from an original kill is removed from the output.
3195 *
3196 * We check whether the schedule is available as a schedule tree
3197 * or a schedule map and call the corresponding function to perform
3198 * the analysis.
3199 */
isl_union_access_info_compute_flow(__isl_take isl_union_access_info * access)3200 __isl_give isl_union_flow *isl_union_access_info_compute_flow(
3201 __isl_take isl_union_access_info *access)
3202 {
3203 isl_bool has_kill;
3204 isl_union_map *must = NULL, *may = NULL;
3205 isl_union_flow *flow;
3206
3207 has_kill = isl_union_access_has_kill(access);
3208 if (has_kill < 0)
3209 goto error;
3210 if (has_kill) {
3211 must = isl_union_access_info_get_must_source(access);
3212 may = isl_union_access_info_get_may_source(access);
3213 }
3214 access = isl_union_access_info_add_kill_to_must_source(access);
3215 access = isl_union_access_info_normalize(access);
3216 if (!access)
3217 goto error;
3218 if (access->schedule)
3219 flow = compute_flow_schedule(access);
3220 else
3221 flow = compute_flow_union_map(access);
3222 if (has_kill)
3223 flow = isl_union_flow_drop_kill_source(flow, must, may);
3224 return flow;
3225 error:
3226 isl_union_access_info_free(access);
3227 isl_union_map_free(must);
3228 isl_union_map_free(may);
3229 return NULL;
3230 }
3231
3232 /* Print the information contained in "flow" to "p".
3233 * The information is printed as a YAML document.
3234 */
isl_printer_print_union_flow(__isl_take isl_printer * p,__isl_keep isl_union_flow * flow)3235 __isl_give isl_printer *isl_printer_print_union_flow(
3236 __isl_take isl_printer *p, __isl_keep isl_union_flow *flow)
3237 {
3238 isl_union_map *umap;
3239
3240 if (!flow)
3241 return isl_printer_free(p);
3242
3243 p = isl_printer_yaml_start_mapping(p);
3244 umap = isl_union_flow_get_full_must_dependence(flow);
3245 p = print_yaml_field_union_map(p, "must_dependence", umap);
3246 isl_union_map_free(umap);
3247 umap = isl_union_flow_get_full_may_dependence(flow);
3248 p = print_yaml_field_union_map(p, "may_dependence", umap);
3249 isl_union_map_free(umap);
3250 p = print_yaml_field_union_map(p, "must_no_source",
3251 flow->must_no_source);
3252 umap = isl_union_flow_get_may_no_source(flow);
3253 p = print_yaml_field_union_map(p, "may_no_source", umap);
3254 isl_union_map_free(umap);
3255 p = isl_printer_yaml_end_mapping(p);
3256
3257 return p;
3258 }
3259
3260 /* Return a string representation of the information in "flow".
3261 * The information is printed in flow format.
3262 */
isl_union_flow_to_str(__isl_keep isl_union_flow * flow)3263 __isl_give char *isl_union_flow_to_str(__isl_keep isl_union_flow *flow)
3264 {
3265 isl_printer *p;
3266 char *s;
3267
3268 if (!flow)
3269 return NULL;
3270
3271 p = isl_printer_to_str(isl_union_flow_get_ctx(flow));
3272 p = isl_printer_set_yaml_style(p, ISL_YAML_STYLE_FLOW);
3273 p = isl_printer_print_union_flow(p, flow);
3274 s = isl_printer_get_str(p);
3275 isl_printer_free(p);
3276
3277 return s;
3278 }
3279
3280 /* Given a collection of "sink" and "source" accesses,
3281 * compute for each iteration of a sink access
3282 * and for each element accessed by that iteration,
3283 * the source access in the list that last accessed the
3284 * element accessed by the sink access before this sink access.
3285 * Each access is given as a map from the loop iterators
3286 * to the array indices.
3287 * The result is a relations between source and sink
3288 * iterations and a subset of the domain of the sink accesses,
3289 * corresponding to those iterations that access an element
3290 * not previously accessed.
3291 *
3292 * We collect the inputs in an isl_union_access_info object,
3293 * call isl_union_access_info_compute_flow and extract
3294 * the outputs from the result.
3295 */
isl_union_map_compute_flow(__isl_take isl_union_map * sink,__isl_take isl_union_map * must_source,__isl_take isl_union_map * may_source,__isl_take isl_union_map * schedule,__isl_give isl_union_map ** must_dep,__isl_give isl_union_map ** may_dep,__isl_give isl_union_map ** must_no_source,__isl_give isl_union_map ** may_no_source)3296 int isl_union_map_compute_flow(__isl_take isl_union_map *sink,
3297 __isl_take isl_union_map *must_source,
3298 __isl_take isl_union_map *may_source,
3299 __isl_take isl_union_map *schedule,
3300 __isl_give isl_union_map **must_dep, __isl_give isl_union_map **may_dep,
3301 __isl_give isl_union_map **must_no_source,
3302 __isl_give isl_union_map **may_no_source)
3303 {
3304 isl_union_access_info *access;
3305 isl_union_flow *flow;
3306
3307 access = isl_union_access_info_from_sink(sink);
3308 access = isl_union_access_info_set_must_source(access, must_source);
3309 access = isl_union_access_info_set_may_source(access, may_source);
3310 access = isl_union_access_info_set_schedule_map(access, schedule);
3311 flow = isl_union_access_info_compute_flow(access);
3312
3313 if (must_dep)
3314 *must_dep = isl_union_flow_get_must_dependence(flow);
3315 if (may_dep)
3316 *may_dep = isl_union_flow_get_non_must_dependence(flow);
3317 if (must_no_source)
3318 *must_no_source = isl_union_flow_get_must_no_source(flow);
3319 if (may_no_source)
3320 *may_no_source = isl_union_flow_get_non_must_no_source(flow);
3321
3322 isl_union_flow_free(flow);
3323
3324 if ((must_dep && !*must_dep) || (may_dep && !*may_dep) ||
3325 (must_no_source && !*must_no_source) ||
3326 (may_no_source && !*may_no_source))
3327 goto error;
3328
3329 return 0;
3330 error:
3331 if (must_dep)
3332 *must_dep = isl_union_map_free(*must_dep);
3333 if (may_dep)
3334 *may_dep = isl_union_map_free(*may_dep);
3335 if (must_no_source)
3336 *must_no_source = isl_union_map_free(*must_no_source);
3337 if (may_no_source)
3338 *may_no_source = isl_union_map_free(*may_no_source);
3339 return -1;
3340 }
3341