1 // SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*-
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines SimpleSValBuilder, a basic implementation of SValBuilder.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
14 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
15 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
17 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
18 #include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h"
19
20 using namespace clang;
21 using namespace ento;
22
23 namespace {
24 class SimpleSValBuilder : public SValBuilder {
25 protected:
26 SVal dispatchCast(SVal val, QualType castTy) override;
27 SVal evalCastFromNonLoc(NonLoc val, QualType castTy) override;
28 SVal evalCastFromLoc(Loc val, QualType castTy) override;
29
30 public:
SimpleSValBuilder(llvm::BumpPtrAllocator & alloc,ASTContext & context,ProgramStateManager & stateMgr)31 SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
32 ProgramStateManager &stateMgr)
33 : SValBuilder(alloc, context, stateMgr) {}
~SimpleSValBuilder()34 ~SimpleSValBuilder() override {}
35
36 SVal evalMinus(NonLoc val) override;
37 SVal evalComplement(NonLoc val) override;
38 SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op,
39 NonLoc lhs, NonLoc rhs, QualType resultTy) override;
40 SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op,
41 Loc lhs, Loc rhs, QualType resultTy) override;
42 SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op,
43 Loc lhs, NonLoc rhs, QualType resultTy) override;
44
45 /// getKnownValue - evaluates a given SVal. If the SVal has only one possible
46 /// (integer) value, that value is returned. Otherwise, returns NULL.
47 const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal V) override;
48
49 /// Recursively descends into symbolic expressions and replaces symbols
50 /// with their known values (in the sense of the getKnownValue() method).
51 SVal simplifySVal(ProgramStateRef State, SVal V) override;
52
53 SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op,
54 const llvm::APSInt &RHS, QualType resultTy);
55 };
56 } // end anonymous namespace
57
createSimpleSValBuilder(llvm::BumpPtrAllocator & alloc,ASTContext & context,ProgramStateManager & stateMgr)58 SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc,
59 ASTContext &context,
60 ProgramStateManager &stateMgr) {
61 return new SimpleSValBuilder(alloc, context, stateMgr);
62 }
63
64 //===----------------------------------------------------------------------===//
65 // Transfer function for Casts.
66 //===----------------------------------------------------------------------===//
67
dispatchCast(SVal Val,QualType CastTy)68 SVal SimpleSValBuilder::dispatchCast(SVal Val, QualType CastTy) {
69 assert(Val.getAs<Loc>() || Val.getAs<NonLoc>());
70 return Val.getAs<Loc>() ? evalCastFromLoc(Val.castAs<Loc>(), CastTy)
71 : evalCastFromNonLoc(Val.castAs<NonLoc>(), CastTy);
72 }
73
evalCastFromNonLoc(NonLoc val,QualType castTy)74 SVal SimpleSValBuilder::evalCastFromNonLoc(NonLoc val, QualType castTy) {
75 bool isLocType = Loc::isLocType(castTy);
76 if (val.getAs<nonloc::PointerToMember>())
77 return val;
78
79 if (Optional<nonloc::LocAsInteger> LI = val.getAs<nonloc::LocAsInteger>()) {
80 if (isLocType)
81 return LI->getLoc();
82 // FIXME: Correctly support promotions/truncations.
83 unsigned castSize = Context.getIntWidth(castTy);
84 if (castSize == LI->getNumBits())
85 return val;
86 return makeLocAsInteger(LI->getLoc(), castSize);
87 }
88
89 if (SymbolRef se = val.getAsSymbol()) {
90 QualType T = Context.getCanonicalType(se->getType());
91 // If types are the same or both are integers, ignore the cast.
92 // FIXME: Remove this hack when we support symbolic truncation/extension.
93 // HACK: If both castTy and T are integers, ignore the cast. This is
94 // not a permanent solution. Eventually we want to precisely handle
95 // extension/truncation of symbolic integers. This prevents us from losing
96 // precision when we assign 'x = y' and 'y' is symbolic and x and y are
97 // different integer types.
98 if (haveSameType(T, castTy))
99 return val;
100
101 if (!isLocType)
102 return makeNonLoc(se, T, castTy);
103 return UnknownVal();
104 }
105
106 // If value is a non-integer constant, produce unknown.
107 if (!val.getAs<nonloc::ConcreteInt>())
108 return UnknownVal();
109
110 // Handle casts to a boolean type.
111 if (castTy->isBooleanType()) {
112 bool b = val.castAs<nonloc::ConcreteInt>().getValue().getBoolValue();
113 return makeTruthVal(b, castTy);
114 }
115
116 // Only handle casts from integers to integers - if val is an integer constant
117 // being cast to a non-integer type, produce unknown.
118 if (!isLocType && !castTy->isIntegralOrEnumerationType())
119 return UnknownVal();
120
121 llvm::APSInt i = val.castAs<nonloc::ConcreteInt>().getValue();
122 BasicVals.getAPSIntType(castTy).apply(i);
123
124 if (isLocType)
125 return makeIntLocVal(i);
126 else
127 return makeIntVal(i);
128 }
129
evalCastFromLoc(Loc val,QualType castTy)130 SVal SimpleSValBuilder::evalCastFromLoc(Loc val, QualType castTy) {
131
132 // Casts from pointers -> pointers, just return the lval.
133 //
134 // Casts from pointers -> references, just return the lval. These
135 // can be introduced by the frontend for corner cases, e.g
136 // casting from va_list* to __builtin_va_list&.
137 //
138 if (Loc::isLocType(castTy) || castTy->isReferenceType())
139 return val;
140
141 // FIXME: Handle transparent unions where a value can be "transparently"
142 // lifted into a union type.
143 if (castTy->isUnionType())
144 return UnknownVal();
145
146 // Casting a Loc to a bool will almost always be true,
147 // unless this is a weak function or a symbolic region.
148 if (castTy->isBooleanType()) {
149 switch (val.getSubKind()) {
150 case loc::MemRegionValKind: {
151 const MemRegion *R = val.castAs<loc::MemRegionVal>().getRegion();
152 if (const FunctionCodeRegion *FTR = dyn_cast<FunctionCodeRegion>(R))
153 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FTR->getDecl()))
154 if (FD->isWeak())
155 // FIXME: Currently we are using an extent symbol here,
156 // because there are no generic region address metadata
157 // symbols to use, only content metadata.
158 return nonloc::SymbolVal(SymMgr.getExtentSymbol(FTR));
159
160 if (const SymbolicRegion *SymR = R->getSymbolicBase())
161 return makeNonLoc(SymR->getSymbol(), BO_NE,
162 BasicVals.getZeroWithPtrWidth(), castTy);
163
164 // FALL-THROUGH
165 LLVM_FALLTHROUGH;
166 }
167
168 case loc::GotoLabelKind:
169 // Labels and non-symbolic memory regions are always true.
170 return makeTruthVal(true, castTy);
171 }
172 }
173
174 if (castTy->isIntegralOrEnumerationType()) {
175 unsigned BitWidth = Context.getIntWidth(castTy);
176
177 if (!val.getAs<loc::ConcreteInt>())
178 return makeLocAsInteger(val, BitWidth);
179
180 llvm::APSInt i = val.castAs<loc::ConcreteInt>().getValue();
181 BasicVals.getAPSIntType(castTy).apply(i);
182 return makeIntVal(i);
183 }
184
185 // All other cases: return 'UnknownVal'. This includes casting pointers
186 // to floats, which is probably badness it itself, but this is a good
187 // intermediate solution until we do something better.
188 return UnknownVal();
189 }
190
191 //===----------------------------------------------------------------------===//
192 // Transfer function for unary operators.
193 //===----------------------------------------------------------------------===//
194
evalMinus(NonLoc val)195 SVal SimpleSValBuilder::evalMinus(NonLoc val) {
196 switch (val.getSubKind()) {
197 case nonloc::ConcreteIntKind:
198 return val.castAs<nonloc::ConcreteInt>().evalMinus(*this);
199 default:
200 return UnknownVal();
201 }
202 }
203
evalComplement(NonLoc X)204 SVal SimpleSValBuilder::evalComplement(NonLoc X) {
205 switch (X.getSubKind()) {
206 case nonloc::ConcreteIntKind:
207 return X.castAs<nonloc::ConcreteInt>().evalComplement(*this);
208 default:
209 return UnknownVal();
210 }
211 }
212
213 //===----------------------------------------------------------------------===//
214 // Transfer function for binary operators.
215 //===----------------------------------------------------------------------===//
216
MakeSymIntVal(const SymExpr * LHS,BinaryOperator::Opcode op,const llvm::APSInt & RHS,QualType resultTy)217 SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS,
218 BinaryOperator::Opcode op,
219 const llvm::APSInt &RHS,
220 QualType resultTy) {
221 bool isIdempotent = false;
222
223 // Check for a few special cases with known reductions first.
224 switch (op) {
225 default:
226 // We can't reduce this case; just treat it normally.
227 break;
228 case BO_Mul:
229 // a*0 and a*1
230 if (RHS == 0)
231 return makeIntVal(0, resultTy);
232 else if (RHS == 1)
233 isIdempotent = true;
234 break;
235 case BO_Div:
236 // a/0 and a/1
237 if (RHS == 0)
238 // This is also handled elsewhere.
239 return UndefinedVal();
240 else if (RHS == 1)
241 isIdempotent = true;
242 break;
243 case BO_Rem:
244 // a%0 and a%1
245 if (RHS == 0)
246 // This is also handled elsewhere.
247 return UndefinedVal();
248 else if (RHS == 1)
249 return makeIntVal(0, resultTy);
250 break;
251 case BO_Add:
252 case BO_Sub:
253 case BO_Shl:
254 case BO_Shr:
255 case BO_Xor:
256 // a+0, a-0, a<<0, a>>0, a^0
257 if (RHS == 0)
258 isIdempotent = true;
259 break;
260 case BO_And:
261 // a&0 and a&(~0)
262 if (RHS == 0)
263 return makeIntVal(0, resultTy);
264 else if (RHS.isAllOnesValue())
265 isIdempotent = true;
266 break;
267 case BO_Or:
268 // a|0 and a|(~0)
269 if (RHS == 0)
270 isIdempotent = true;
271 else if (RHS.isAllOnesValue()) {
272 const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS);
273 return nonloc::ConcreteInt(Result);
274 }
275 break;
276 }
277
278 // Idempotent ops (like a*1) can still change the type of an expression.
279 // Wrap the LHS up in a NonLoc again and let evalCastFromNonLoc do the
280 // dirty work.
281 if (isIdempotent)
282 return evalCastFromNonLoc(nonloc::SymbolVal(LHS), resultTy);
283
284 // If we reach this point, the expression cannot be simplified.
285 // Make a SymbolVal for the entire expression, after converting the RHS.
286 const llvm::APSInt *ConvertedRHS = &RHS;
287 if (BinaryOperator::isComparisonOp(op)) {
288 // We're looking for a type big enough to compare the symbolic value
289 // with the given constant.
290 // FIXME: This is an approximation of Sema::UsualArithmeticConversions.
291 ASTContext &Ctx = getContext();
292 QualType SymbolType = LHS->getType();
293 uint64_t ValWidth = RHS.getBitWidth();
294 uint64_t TypeWidth = Ctx.getTypeSize(SymbolType);
295
296 if (ValWidth < TypeWidth) {
297 // If the value is too small, extend it.
298 ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
299 } else if (ValWidth == TypeWidth) {
300 // If the value is signed but the symbol is unsigned, do the comparison
301 // in unsigned space. [C99 6.3.1.8]
302 // (For the opposite case, the value is already unsigned.)
303 if (RHS.isSigned() && !SymbolType->isSignedIntegerOrEnumerationType())
304 ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
305 }
306 } else
307 ConvertedRHS = &BasicVals.Convert(resultTy, RHS);
308
309 return makeNonLoc(LHS, op, *ConvertedRHS, resultTy);
310 }
311
312 // See if Sym is known to be a relation Rel with Bound.
isInRelation(BinaryOperator::Opcode Rel,SymbolRef Sym,llvm::APSInt Bound,ProgramStateRef State)313 static bool isInRelation(BinaryOperator::Opcode Rel, SymbolRef Sym,
314 llvm::APSInt Bound, ProgramStateRef State) {
315 SValBuilder &SVB = State->getStateManager().getSValBuilder();
316 SVal Result =
317 SVB.evalBinOpNN(State, Rel, nonloc::SymbolVal(Sym),
318 nonloc::ConcreteInt(Bound), SVB.getConditionType());
319 if (auto DV = Result.getAs<DefinedSVal>()) {
320 return !State->assume(*DV, false);
321 }
322 return false;
323 }
324
325 // See if Sym is known to be within [min/4, max/4], where min and max
326 // are the bounds of the symbol's integral type. With such symbols,
327 // some manipulations can be performed without the risk of overflow.
328 // assume() doesn't cause infinite recursion because we should be dealing
329 // with simpler symbols on every recursive call.
isWithinConstantOverflowBounds(SymbolRef Sym,ProgramStateRef State)330 static bool isWithinConstantOverflowBounds(SymbolRef Sym,
331 ProgramStateRef State) {
332 SValBuilder &SVB = State->getStateManager().getSValBuilder();
333 BasicValueFactory &BV = SVB.getBasicValueFactory();
334
335 QualType T = Sym->getType();
336 assert(T->isSignedIntegerOrEnumerationType() &&
337 "This only works with signed integers!");
338 APSIntType AT = BV.getAPSIntType(T);
339
340 llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max;
341 return isInRelation(BO_LE, Sym, Max, State) &&
342 isInRelation(BO_GE, Sym, Min, State);
343 }
344
345 // Same for the concrete integers: see if I is within [min/4, max/4].
isWithinConstantOverflowBounds(llvm::APSInt I)346 static bool isWithinConstantOverflowBounds(llvm::APSInt I) {
347 APSIntType AT(I);
348 assert(!AT.isUnsigned() &&
349 "This only works with signed integers!");
350
351 llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max;
352 return (I <= Max) && (I >= -Max);
353 }
354
355 static std::pair<SymbolRef, llvm::APSInt>
decomposeSymbol(SymbolRef Sym,BasicValueFactory & BV)356 decomposeSymbol(SymbolRef Sym, BasicValueFactory &BV) {
357 if (const auto *SymInt = dyn_cast<SymIntExpr>(Sym))
358 if (BinaryOperator::isAdditiveOp(SymInt->getOpcode()))
359 return std::make_pair(SymInt->getLHS(),
360 (SymInt->getOpcode() == BO_Add) ?
361 (SymInt->getRHS()) :
362 (-SymInt->getRHS()));
363
364 // Fail to decompose: "reduce" the problem to the "$x + 0" case.
365 return std::make_pair(Sym, BV.getValue(0, Sym->getType()));
366 }
367
368 // Simplify "(LSym + LInt) Op (RSym + RInt)" assuming all values are of the
369 // same signed integral type and no overflows occur (which should be checked
370 // by the caller).
doRearrangeUnchecked(ProgramStateRef State,BinaryOperator::Opcode Op,SymbolRef LSym,llvm::APSInt LInt,SymbolRef RSym,llvm::APSInt RInt)371 static NonLoc doRearrangeUnchecked(ProgramStateRef State,
372 BinaryOperator::Opcode Op,
373 SymbolRef LSym, llvm::APSInt LInt,
374 SymbolRef RSym, llvm::APSInt RInt) {
375 SValBuilder &SVB = State->getStateManager().getSValBuilder();
376 BasicValueFactory &BV = SVB.getBasicValueFactory();
377 SymbolManager &SymMgr = SVB.getSymbolManager();
378
379 QualType SymTy = LSym->getType();
380 assert(SymTy == RSym->getType() &&
381 "Symbols are not of the same type!");
382 assert(APSIntType(LInt) == BV.getAPSIntType(SymTy) &&
383 "Integers are not of the same type as symbols!");
384 assert(APSIntType(RInt) == BV.getAPSIntType(SymTy) &&
385 "Integers are not of the same type as symbols!");
386
387 QualType ResultTy;
388 if (BinaryOperator::isComparisonOp(Op))
389 ResultTy = SVB.getConditionType();
390 else if (BinaryOperator::isAdditiveOp(Op))
391 ResultTy = SymTy;
392 else
393 llvm_unreachable("Operation not suitable for unchecked rearrangement!");
394
395 // FIXME: Can we use assume() without getting into an infinite recursion?
396 if (LSym == RSym)
397 return SVB.evalBinOpNN(State, Op, nonloc::ConcreteInt(LInt),
398 nonloc::ConcreteInt(RInt), ResultTy)
399 .castAs<NonLoc>();
400
401 SymbolRef ResultSym = nullptr;
402 BinaryOperator::Opcode ResultOp;
403 llvm::APSInt ResultInt;
404 if (BinaryOperator::isComparisonOp(Op)) {
405 // Prefer comparing to a non-negative number.
406 // FIXME: Maybe it'd be better to have consistency in
407 // "$x - $y" vs. "$y - $x" because those are solver's keys.
408 if (LInt > RInt) {
409 ResultSym = SymMgr.getSymSymExpr(RSym, BO_Sub, LSym, SymTy);
410 ResultOp = BinaryOperator::reverseComparisonOp(Op);
411 ResultInt = LInt - RInt; // Opposite order!
412 } else {
413 ResultSym = SymMgr.getSymSymExpr(LSym, BO_Sub, RSym, SymTy);
414 ResultOp = Op;
415 ResultInt = RInt - LInt; // Opposite order!
416 }
417 } else {
418 ResultSym = SymMgr.getSymSymExpr(LSym, Op, RSym, SymTy);
419 ResultInt = (Op == BO_Add) ? (LInt + RInt) : (LInt - RInt);
420 ResultOp = BO_Add;
421 // Bring back the cosmetic difference.
422 if (ResultInt < 0) {
423 ResultInt = -ResultInt;
424 ResultOp = BO_Sub;
425 } else if (ResultInt == 0) {
426 // Shortcut: Simplify "$x + 0" to "$x".
427 return nonloc::SymbolVal(ResultSym);
428 }
429 }
430 const llvm::APSInt &PersistentResultInt = BV.getValue(ResultInt);
431 return nonloc::SymbolVal(
432 SymMgr.getSymIntExpr(ResultSym, ResultOp, PersistentResultInt, ResultTy));
433 }
434
435 // Rearrange if symbol type matches the result type and if the operator is a
436 // comparison operator, both symbol and constant must be within constant
437 // overflow bounds.
shouldRearrange(ProgramStateRef State,BinaryOperator::Opcode Op,SymbolRef Sym,llvm::APSInt Int,QualType Ty)438 static bool shouldRearrange(ProgramStateRef State, BinaryOperator::Opcode Op,
439 SymbolRef Sym, llvm::APSInt Int, QualType Ty) {
440 return Sym->getType() == Ty &&
441 (!BinaryOperator::isComparisonOp(Op) ||
442 (isWithinConstantOverflowBounds(Sym, State) &&
443 isWithinConstantOverflowBounds(Int)));
444 }
445
tryRearrange(ProgramStateRef State,BinaryOperator::Opcode Op,NonLoc Lhs,NonLoc Rhs,QualType ResultTy)446 static Optional<NonLoc> tryRearrange(ProgramStateRef State,
447 BinaryOperator::Opcode Op, NonLoc Lhs,
448 NonLoc Rhs, QualType ResultTy) {
449 ProgramStateManager &StateMgr = State->getStateManager();
450 SValBuilder &SVB = StateMgr.getSValBuilder();
451
452 // We expect everything to be of the same type - this type.
453 QualType SingleTy;
454
455 auto &Opts =
456 StateMgr.getOwningEngine().getAnalysisManager().getAnalyzerOptions();
457
458 // FIXME: After putting complexity threshold to the symbols we can always
459 // rearrange additive operations but rearrange comparisons only if
460 // option is set.
461 if(!Opts.ShouldAggressivelySimplifyBinaryOperation)
462 return None;
463
464 SymbolRef LSym = Lhs.getAsSymbol();
465 if (!LSym)
466 return None;
467
468 if (BinaryOperator::isComparisonOp(Op)) {
469 SingleTy = LSym->getType();
470 if (ResultTy != SVB.getConditionType())
471 return None;
472 // Initialize SingleTy later with a symbol's type.
473 } else if (BinaryOperator::isAdditiveOp(Op)) {
474 SingleTy = ResultTy;
475 if (LSym->getType() != SingleTy)
476 return None;
477 } else {
478 // Don't rearrange other operations.
479 return None;
480 }
481
482 assert(!SingleTy.isNull() && "We should have figured out the type by now!");
483
484 // Rearrange signed symbolic expressions only
485 if (!SingleTy->isSignedIntegerOrEnumerationType())
486 return None;
487
488 SymbolRef RSym = Rhs.getAsSymbol();
489 if (!RSym || RSym->getType() != SingleTy)
490 return None;
491
492 BasicValueFactory &BV = State->getBasicVals();
493 llvm::APSInt LInt, RInt;
494 std::tie(LSym, LInt) = decomposeSymbol(LSym, BV);
495 std::tie(RSym, RInt) = decomposeSymbol(RSym, BV);
496 if (!shouldRearrange(State, Op, LSym, LInt, SingleTy) ||
497 !shouldRearrange(State, Op, RSym, RInt, SingleTy))
498 return None;
499
500 // We know that no overflows can occur anymore.
501 return doRearrangeUnchecked(State, Op, LSym, LInt, RSym, RInt);
502 }
503
evalBinOpNN(ProgramStateRef state,BinaryOperator::Opcode op,NonLoc lhs,NonLoc rhs,QualType resultTy)504 SVal SimpleSValBuilder::evalBinOpNN(ProgramStateRef state,
505 BinaryOperator::Opcode op,
506 NonLoc lhs, NonLoc rhs,
507 QualType resultTy) {
508 NonLoc InputLHS = lhs;
509 NonLoc InputRHS = rhs;
510
511 // Handle trivial case where left-side and right-side are the same.
512 if (lhs == rhs)
513 switch (op) {
514 default:
515 break;
516 case BO_EQ:
517 case BO_LE:
518 case BO_GE:
519 return makeTruthVal(true, resultTy);
520 case BO_LT:
521 case BO_GT:
522 case BO_NE:
523 return makeTruthVal(false, resultTy);
524 case BO_Xor:
525 case BO_Sub:
526 if (resultTy->isIntegralOrEnumerationType())
527 return makeIntVal(0, resultTy);
528 return evalCastFromNonLoc(makeIntVal(0, /*isUnsigned=*/false), resultTy);
529 case BO_Or:
530 case BO_And:
531 return evalCastFromNonLoc(lhs, resultTy);
532 }
533
534 while (1) {
535 switch (lhs.getSubKind()) {
536 default:
537 return makeSymExprValNN(op, lhs, rhs, resultTy);
538 case nonloc::PointerToMemberKind: {
539 assert(rhs.getSubKind() == nonloc::PointerToMemberKind &&
540 "Both SVals should have pointer-to-member-type");
541 auto LPTM = lhs.castAs<nonloc::PointerToMember>(),
542 RPTM = rhs.castAs<nonloc::PointerToMember>();
543 auto LPTMD = LPTM.getPTMData(), RPTMD = RPTM.getPTMData();
544 switch (op) {
545 case BO_EQ:
546 return makeTruthVal(LPTMD == RPTMD, resultTy);
547 case BO_NE:
548 return makeTruthVal(LPTMD != RPTMD, resultTy);
549 default:
550 return UnknownVal();
551 }
552 }
553 case nonloc::LocAsIntegerKind: {
554 Loc lhsL = lhs.castAs<nonloc::LocAsInteger>().getLoc();
555 switch (rhs.getSubKind()) {
556 case nonloc::LocAsIntegerKind:
557 // FIXME: at the moment the implementation
558 // of modeling "pointers as integers" is not complete.
559 if (!BinaryOperator::isComparisonOp(op))
560 return UnknownVal();
561 return evalBinOpLL(state, op, lhsL,
562 rhs.castAs<nonloc::LocAsInteger>().getLoc(),
563 resultTy);
564 case nonloc::ConcreteIntKind: {
565 // FIXME: at the moment the implementation
566 // of modeling "pointers as integers" is not complete.
567 if (!BinaryOperator::isComparisonOp(op))
568 return UnknownVal();
569 // Transform the integer into a location and compare.
570 // FIXME: This only makes sense for comparisons. If we want to, say,
571 // add 1 to a LocAsInteger, we'd better unpack the Loc and add to it,
572 // then pack it back into a LocAsInteger.
573 llvm::APSInt i = rhs.castAs<nonloc::ConcreteInt>().getValue();
574 // If the region has a symbolic base, pay attention to the type; it
575 // might be coming from a non-default address space. For non-symbolic
576 // regions it doesn't matter that much because such comparisons would
577 // most likely evaluate to concrete false anyway. FIXME: We might
578 // still need to handle the non-comparison case.
579 if (SymbolRef lSym = lhs.getAsLocSymbol(true))
580 BasicVals.getAPSIntType(lSym->getType()).apply(i);
581 else
582 BasicVals.getAPSIntType(Context.VoidPtrTy).apply(i);
583 return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy);
584 }
585 default:
586 switch (op) {
587 case BO_EQ:
588 return makeTruthVal(false, resultTy);
589 case BO_NE:
590 return makeTruthVal(true, resultTy);
591 default:
592 // This case also handles pointer arithmetic.
593 return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
594 }
595 }
596 }
597 case nonloc::ConcreteIntKind: {
598 llvm::APSInt LHSValue = lhs.castAs<nonloc::ConcreteInt>().getValue();
599
600 // If we're dealing with two known constants, just perform the operation.
601 if (const llvm::APSInt *KnownRHSValue = getKnownValue(state, rhs)) {
602 llvm::APSInt RHSValue = *KnownRHSValue;
603 if (BinaryOperator::isComparisonOp(op)) {
604 // We're looking for a type big enough to compare the two values.
605 // FIXME: This is not correct. char + short will result in a promotion
606 // to int. Unfortunately we have lost types by this point.
607 APSIntType CompareType = std::max(APSIntType(LHSValue),
608 APSIntType(RHSValue));
609 CompareType.apply(LHSValue);
610 CompareType.apply(RHSValue);
611 } else if (!BinaryOperator::isShiftOp(op)) {
612 APSIntType IntType = BasicVals.getAPSIntType(resultTy);
613 IntType.apply(LHSValue);
614 IntType.apply(RHSValue);
615 }
616
617 const llvm::APSInt *Result =
618 BasicVals.evalAPSInt(op, LHSValue, RHSValue);
619 if (!Result)
620 return UndefinedVal();
621
622 return nonloc::ConcreteInt(*Result);
623 }
624
625 // Swap the left and right sides and flip the operator if doing so
626 // allows us to better reason about the expression (this is a form
627 // of expression canonicalization).
628 // While we're at it, catch some special cases for non-commutative ops.
629 switch (op) {
630 case BO_LT:
631 case BO_GT:
632 case BO_LE:
633 case BO_GE:
634 op = BinaryOperator::reverseComparisonOp(op);
635 LLVM_FALLTHROUGH;
636 case BO_EQ:
637 case BO_NE:
638 case BO_Add:
639 case BO_Mul:
640 case BO_And:
641 case BO_Xor:
642 case BO_Or:
643 std::swap(lhs, rhs);
644 continue;
645 case BO_Shr:
646 // (~0)>>a
647 if (LHSValue.isAllOnesValue() && LHSValue.isSigned())
648 return evalCastFromNonLoc(lhs, resultTy);
649 LLVM_FALLTHROUGH;
650 case BO_Shl:
651 // 0<<a and 0>>a
652 if (LHSValue == 0)
653 return evalCastFromNonLoc(lhs, resultTy);
654 return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
655 case BO_Rem:
656 // 0 % x == 0
657 if (LHSValue == 0)
658 return makeZeroVal(resultTy);
659 LLVM_FALLTHROUGH;
660 default:
661 return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
662 }
663 }
664 case nonloc::SymbolValKind: {
665 // We only handle LHS as simple symbols or SymIntExprs.
666 SymbolRef Sym = lhs.castAs<nonloc::SymbolVal>().getSymbol();
667
668 // LHS is a symbolic expression.
669 if (const SymIntExpr *symIntExpr = dyn_cast<SymIntExpr>(Sym)) {
670
671 // Is this a logical not? (!x is represented as x == 0.)
672 if (op == BO_EQ && rhs.isZeroConstant()) {
673 // We know how to negate certain expressions. Simplify them here.
674
675 BinaryOperator::Opcode opc = symIntExpr->getOpcode();
676 switch (opc) {
677 default:
678 // We don't know how to negate this operation.
679 // Just handle it as if it were a normal comparison to 0.
680 break;
681 case BO_LAnd:
682 case BO_LOr:
683 llvm_unreachable("Logical operators handled by branching logic.");
684 case BO_Assign:
685 case BO_MulAssign:
686 case BO_DivAssign:
687 case BO_RemAssign:
688 case BO_AddAssign:
689 case BO_SubAssign:
690 case BO_ShlAssign:
691 case BO_ShrAssign:
692 case BO_AndAssign:
693 case BO_XorAssign:
694 case BO_OrAssign:
695 case BO_Comma:
696 llvm_unreachable("'=' and ',' operators handled by ExprEngine.");
697 case BO_PtrMemD:
698 case BO_PtrMemI:
699 llvm_unreachable("Pointer arithmetic not handled here.");
700 case BO_LT:
701 case BO_GT:
702 case BO_LE:
703 case BO_GE:
704 case BO_EQ:
705 case BO_NE:
706 assert(resultTy->isBooleanType() ||
707 resultTy == getConditionType());
708 assert(symIntExpr->getType()->isBooleanType() ||
709 getContext().hasSameUnqualifiedType(symIntExpr->getType(),
710 getConditionType()));
711 // Negate the comparison and make a value.
712 opc = BinaryOperator::negateComparisonOp(opc);
713 return makeNonLoc(symIntExpr->getLHS(), opc,
714 symIntExpr->getRHS(), resultTy);
715 }
716 }
717
718 // For now, only handle expressions whose RHS is a constant.
719 if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) {
720 // If both the LHS and the current expression are additive,
721 // fold their constants and try again.
722 if (BinaryOperator::isAdditiveOp(op)) {
723 BinaryOperator::Opcode lop = symIntExpr->getOpcode();
724 if (BinaryOperator::isAdditiveOp(lop)) {
725 // Convert the two constants to a common type, then combine them.
726
727 // resultTy may not be the best type to convert to, but it's
728 // probably the best choice in expressions with mixed type
729 // (such as x+1U+2LL). The rules for implicit conversions should
730 // choose a reasonable type to preserve the expression, and will
731 // at least match how the value is going to be used.
732 APSIntType IntType = BasicVals.getAPSIntType(resultTy);
733 const llvm::APSInt &first = IntType.convert(symIntExpr->getRHS());
734 const llvm::APSInt &second = IntType.convert(*RHSValue);
735
736 const llvm::APSInt *newRHS;
737 if (lop == op)
738 newRHS = BasicVals.evalAPSInt(BO_Add, first, second);
739 else
740 newRHS = BasicVals.evalAPSInt(BO_Sub, first, second);
741
742 assert(newRHS && "Invalid operation despite common type!");
743 rhs = nonloc::ConcreteInt(*newRHS);
744 lhs = nonloc::SymbolVal(symIntExpr->getLHS());
745 op = lop;
746 continue;
747 }
748 }
749
750 // Otherwise, make a SymIntExpr out of the expression.
751 return MakeSymIntVal(symIntExpr, op, *RHSValue, resultTy);
752 }
753 }
754
755 // Does the symbolic expression simplify to a constant?
756 // If so, "fold" the constant by setting 'lhs' to a ConcreteInt
757 // and try again.
758 SVal simplifiedLhs = simplifySVal(state, lhs);
759 if (simplifiedLhs != lhs)
760 if (auto simplifiedLhsAsNonLoc = simplifiedLhs.getAs<NonLoc>()) {
761 lhs = *simplifiedLhsAsNonLoc;
762 continue;
763 }
764
765 // Is the RHS a constant?
766 if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs))
767 return MakeSymIntVal(Sym, op, *RHSValue, resultTy);
768
769 if (Optional<NonLoc> V = tryRearrange(state, op, lhs, rhs, resultTy))
770 return *V;
771
772 // Give up -- this is not a symbolic expression we can handle.
773 return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
774 }
775 }
776 }
777 }
778
evalBinOpFieldRegionFieldRegion(const FieldRegion * LeftFR,const FieldRegion * RightFR,BinaryOperator::Opcode op,QualType resultTy,SimpleSValBuilder & SVB)779 static SVal evalBinOpFieldRegionFieldRegion(const FieldRegion *LeftFR,
780 const FieldRegion *RightFR,
781 BinaryOperator::Opcode op,
782 QualType resultTy,
783 SimpleSValBuilder &SVB) {
784 // Only comparisons are meaningful here!
785 if (!BinaryOperator::isComparisonOp(op))
786 return UnknownVal();
787
788 // Next, see if the two FRs have the same super-region.
789 // FIXME: This doesn't handle casts yet, and simply stripping the casts
790 // doesn't help.
791 if (LeftFR->getSuperRegion() != RightFR->getSuperRegion())
792 return UnknownVal();
793
794 const FieldDecl *LeftFD = LeftFR->getDecl();
795 const FieldDecl *RightFD = RightFR->getDecl();
796 const RecordDecl *RD = LeftFD->getParent();
797
798 // Make sure the two FRs are from the same kind of record. Just in case!
799 // FIXME: This is probably where inheritance would be a problem.
800 if (RD != RightFD->getParent())
801 return UnknownVal();
802
803 // We know for sure that the two fields are not the same, since that
804 // would have given us the same SVal.
805 if (op == BO_EQ)
806 return SVB.makeTruthVal(false, resultTy);
807 if (op == BO_NE)
808 return SVB.makeTruthVal(true, resultTy);
809
810 // Iterate through the fields and see which one comes first.
811 // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field
812 // members and the units in which bit-fields reside have addresses that
813 // increase in the order in which they are declared."
814 bool leftFirst = (op == BO_LT || op == BO_LE);
815 for (const auto *I : RD->fields()) {
816 if (I == LeftFD)
817 return SVB.makeTruthVal(leftFirst, resultTy);
818 if (I == RightFD)
819 return SVB.makeTruthVal(!leftFirst, resultTy);
820 }
821
822 llvm_unreachable("Fields not found in parent record's definition");
823 }
824
825 // FIXME: all this logic will change if/when we have MemRegion::getLocation().
evalBinOpLL(ProgramStateRef state,BinaryOperator::Opcode op,Loc lhs,Loc rhs,QualType resultTy)826 SVal SimpleSValBuilder::evalBinOpLL(ProgramStateRef state,
827 BinaryOperator::Opcode op,
828 Loc lhs, Loc rhs,
829 QualType resultTy) {
830 // Only comparisons and subtractions are valid operations on two pointers.
831 // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15].
832 // However, if a pointer is casted to an integer, evalBinOpNN may end up
833 // calling this function with another operation (PR7527). We don't attempt to
834 // model this for now, but it could be useful, particularly when the
835 // "location" is actually an integer value that's been passed through a void*.
836 if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub))
837 return UnknownVal();
838
839 // Special cases for when both sides are identical.
840 if (lhs == rhs) {
841 switch (op) {
842 default:
843 llvm_unreachable("Unimplemented operation for two identical values");
844 case BO_Sub:
845 return makeZeroVal(resultTy);
846 case BO_EQ:
847 case BO_LE:
848 case BO_GE:
849 return makeTruthVal(true, resultTy);
850 case BO_NE:
851 case BO_LT:
852 case BO_GT:
853 return makeTruthVal(false, resultTy);
854 }
855 }
856
857 switch (lhs.getSubKind()) {
858 default:
859 llvm_unreachable("Ordering not implemented for this Loc.");
860
861 case loc::GotoLabelKind:
862 // The only thing we know about labels is that they're non-null.
863 if (rhs.isZeroConstant()) {
864 switch (op) {
865 default:
866 break;
867 case BO_Sub:
868 return evalCastFromLoc(lhs, resultTy);
869 case BO_EQ:
870 case BO_LE:
871 case BO_LT:
872 return makeTruthVal(false, resultTy);
873 case BO_NE:
874 case BO_GT:
875 case BO_GE:
876 return makeTruthVal(true, resultTy);
877 }
878 }
879 // There may be two labels for the same location, and a function region may
880 // have the same address as a label at the start of the function (depending
881 // on the ABI).
882 // FIXME: we can probably do a comparison against other MemRegions, though.
883 // FIXME: is there a way to tell if two labels refer to the same location?
884 return UnknownVal();
885
886 case loc::ConcreteIntKind: {
887 // If one of the operands is a symbol and the other is a constant,
888 // build an expression for use by the constraint manager.
889 if (SymbolRef rSym = rhs.getAsLocSymbol()) {
890 // We can only build expressions with symbols on the left,
891 // so we need a reversible operator.
892 if (!BinaryOperator::isComparisonOp(op) || op == BO_Cmp)
893 return UnknownVal();
894
895 const llvm::APSInt &lVal = lhs.castAs<loc::ConcreteInt>().getValue();
896 op = BinaryOperator::reverseComparisonOp(op);
897 return makeNonLoc(rSym, op, lVal, resultTy);
898 }
899
900 // If both operands are constants, just perform the operation.
901 if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
902 SVal ResultVal =
903 lhs.castAs<loc::ConcreteInt>().evalBinOp(BasicVals, op, *rInt);
904 if (Optional<NonLoc> Result = ResultVal.getAs<NonLoc>())
905 return evalCastFromNonLoc(*Result, resultTy);
906
907 assert(!ResultVal.getAs<Loc>() && "Loc-Loc ops should not produce Locs");
908 return UnknownVal();
909 }
910
911 // Special case comparisons against NULL.
912 // This must come after the test if the RHS is a symbol, which is used to
913 // build constraints. The address of any non-symbolic region is guaranteed
914 // to be non-NULL, as is any label.
915 assert(rhs.getAs<loc::MemRegionVal>() || rhs.getAs<loc::GotoLabel>());
916 if (lhs.isZeroConstant()) {
917 switch (op) {
918 default:
919 break;
920 case BO_EQ:
921 case BO_GT:
922 case BO_GE:
923 return makeTruthVal(false, resultTy);
924 case BO_NE:
925 case BO_LT:
926 case BO_LE:
927 return makeTruthVal(true, resultTy);
928 }
929 }
930
931 // Comparing an arbitrary integer to a region or label address is
932 // completely unknowable.
933 return UnknownVal();
934 }
935 case loc::MemRegionValKind: {
936 if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
937 // If one of the operands is a symbol and the other is a constant,
938 // build an expression for use by the constraint manager.
939 if (SymbolRef lSym = lhs.getAsLocSymbol(true)) {
940 if (BinaryOperator::isComparisonOp(op))
941 return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy);
942 return UnknownVal();
943 }
944 // Special case comparisons to NULL.
945 // This must come after the test if the LHS is a symbol, which is used to
946 // build constraints. The address of any non-symbolic region is guaranteed
947 // to be non-NULL.
948 if (rInt->isZeroConstant()) {
949 if (op == BO_Sub)
950 return evalCastFromLoc(lhs, resultTy);
951
952 if (BinaryOperator::isComparisonOp(op)) {
953 QualType boolType = getContext().BoolTy;
954 NonLoc l = evalCastFromLoc(lhs, boolType).castAs<NonLoc>();
955 NonLoc r = makeTruthVal(false, boolType).castAs<NonLoc>();
956 return evalBinOpNN(state, op, l, r, resultTy);
957 }
958 }
959
960 // Comparing a region to an arbitrary integer is completely unknowable.
961 return UnknownVal();
962 }
963
964 // Get both values as regions, if possible.
965 const MemRegion *LeftMR = lhs.getAsRegion();
966 assert(LeftMR && "MemRegionValKind SVal doesn't have a region!");
967
968 const MemRegion *RightMR = rhs.getAsRegion();
969 if (!RightMR)
970 // The RHS is probably a label, which in theory could address a region.
971 // FIXME: we can probably make a more useful statement about non-code
972 // regions, though.
973 return UnknownVal();
974
975 const MemRegion *LeftBase = LeftMR->getBaseRegion();
976 const MemRegion *RightBase = RightMR->getBaseRegion();
977 const MemSpaceRegion *LeftMS = LeftBase->getMemorySpace();
978 const MemSpaceRegion *RightMS = RightBase->getMemorySpace();
979 const MemSpaceRegion *UnknownMS = MemMgr.getUnknownRegion();
980
981 // If the two regions are from different known memory spaces they cannot be
982 // equal. Also, assume that no symbolic region (whose memory space is
983 // unknown) is on the stack.
984 if (LeftMS != RightMS &&
985 ((LeftMS != UnknownMS && RightMS != UnknownMS) ||
986 (isa<StackSpaceRegion>(LeftMS) || isa<StackSpaceRegion>(RightMS)))) {
987 switch (op) {
988 default:
989 return UnknownVal();
990 case BO_EQ:
991 return makeTruthVal(false, resultTy);
992 case BO_NE:
993 return makeTruthVal(true, resultTy);
994 }
995 }
996
997 // If both values wrap regions, see if they're from different base regions.
998 // Note, heap base symbolic regions are assumed to not alias with
999 // each other; for example, we assume that malloc returns different address
1000 // on each invocation.
1001 // FIXME: ObjC object pointers always reside on the heap, but currently
1002 // we treat their memory space as unknown, because symbolic pointers
1003 // to ObjC objects may alias. There should be a way to construct
1004 // possibly-aliasing heap-based regions. For instance, MacOSXApiChecker
1005 // guesses memory space for ObjC object pointers manually instead of
1006 // relying on us.
1007 if (LeftBase != RightBase &&
1008 ((!isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) ||
1009 (isa<HeapSpaceRegion>(LeftMS) || isa<HeapSpaceRegion>(RightMS))) ){
1010 switch (op) {
1011 default:
1012 return UnknownVal();
1013 case BO_EQ:
1014 return makeTruthVal(false, resultTy);
1015 case BO_NE:
1016 return makeTruthVal(true, resultTy);
1017 }
1018 }
1019
1020 // Handle special cases for when both regions are element regions.
1021 const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR);
1022 const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR);
1023 if (RightER && LeftER) {
1024 // Next, see if the two ERs have the same super-region and matching types.
1025 // FIXME: This should do something useful even if the types don't match,
1026 // though if both indexes are constant the RegionRawOffset path will
1027 // give the correct answer.
1028 if (LeftER->getSuperRegion() == RightER->getSuperRegion() &&
1029 LeftER->getElementType() == RightER->getElementType()) {
1030 // Get the left index and cast it to the correct type.
1031 // If the index is unknown or undefined, bail out here.
1032 SVal LeftIndexVal = LeftER->getIndex();
1033 Optional<NonLoc> LeftIndex = LeftIndexVal.getAs<NonLoc>();
1034 if (!LeftIndex)
1035 return UnknownVal();
1036 LeftIndexVal = evalCastFromNonLoc(*LeftIndex, ArrayIndexTy);
1037 LeftIndex = LeftIndexVal.getAs<NonLoc>();
1038 if (!LeftIndex)
1039 return UnknownVal();
1040
1041 // Do the same for the right index.
1042 SVal RightIndexVal = RightER->getIndex();
1043 Optional<NonLoc> RightIndex = RightIndexVal.getAs<NonLoc>();
1044 if (!RightIndex)
1045 return UnknownVal();
1046 RightIndexVal = evalCastFromNonLoc(*RightIndex, ArrayIndexTy);
1047 RightIndex = RightIndexVal.getAs<NonLoc>();
1048 if (!RightIndex)
1049 return UnknownVal();
1050
1051 // Actually perform the operation.
1052 // evalBinOpNN expects the two indexes to already be the right type.
1053 return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy);
1054 }
1055 }
1056
1057 // Special handling of the FieldRegions, even with symbolic offsets.
1058 const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR);
1059 const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR);
1060 if (RightFR && LeftFR) {
1061 SVal R = evalBinOpFieldRegionFieldRegion(LeftFR, RightFR, op, resultTy,
1062 *this);
1063 if (!R.isUnknown())
1064 return R;
1065 }
1066
1067 // Compare the regions using the raw offsets.
1068 RegionOffset LeftOffset = LeftMR->getAsOffset();
1069 RegionOffset RightOffset = RightMR->getAsOffset();
1070
1071 if (LeftOffset.getRegion() != nullptr &&
1072 LeftOffset.getRegion() == RightOffset.getRegion() &&
1073 !LeftOffset.hasSymbolicOffset() && !RightOffset.hasSymbolicOffset()) {
1074 int64_t left = LeftOffset.getOffset();
1075 int64_t right = RightOffset.getOffset();
1076
1077 switch (op) {
1078 default:
1079 return UnknownVal();
1080 case BO_LT:
1081 return makeTruthVal(left < right, resultTy);
1082 case BO_GT:
1083 return makeTruthVal(left > right, resultTy);
1084 case BO_LE:
1085 return makeTruthVal(left <= right, resultTy);
1086 case BO_GE:
1087 return makeTruthVal(left >= right, resultTy);
1088 case BO_EQ:
1089 return makeTruthVal(left == right, resultTy);
1090 case BO_NE:
1091 return makeTruthVal(left != right, resultTy);
1092 }
1093 }
1094
1095 // At this point we're not going to get a good answer, but we can try
1096 // conjuring an expression instead.
1097 SymbolRef LHSSym = lhs.getAsLocSymbol();
1098 SymbolRef RHSSym = rhs.getAsLocSymbol();
1099 if (LHSSym && RHSSym)
1100 return makeNonLoc(LHSSym, op, RHSSym, resultTy);
1101
1102 // If we get here, we have no way of comparing the regions.
1103 return UnknownVal();
1104 }
1105 }
1106 }
1107
evalBinOpLN(ProgramStateRef state,BinaryOperator::Opcode op,Loc lhs,NonLoc rhs,QualType resultTy)1108 SVal SimpleSValBuilder::evalBinOpLN(ProgramStateRef state,
1109 BinaryOperator::Opcode op, Loc lhs,
1110 NonLoc rhs, QualType resultTy) {
1111 if (op >= BO_PtrMemD && op <= BO_PtrMemI) {
1112 if (auto PTMSV = rhs.getAs<nonloc::PointerToMember>()) {
1113 if (PTMSV->isNullMemberPointer())
1114 return UndefinedVal();
1115
1116 auto getFieldLValue = [&](const auto *FD) -> SVal {
1117 SVal Result = lhs;
1118
1119 for (const auto &I : *PTMSV)
1120 Result = StateMgr.getStoreManager().evalDerivedToBase(
1121 Result, I->getType(), I->isVirtual());
1122
1123 return state->getLValue(FD, Result);
1124 };
1125
1126 if (const auto *FD = PTMSV->getDeclAs<FieldDecl>()) {
1127 return getFieldLValue(FD);
1128 }
1129 if (const auto *FD = PTMSV->getDeclAs<IndirectFieldDecl>()) {
1130 return getFieldLValue(FD);
1131 }
1132 }
1133
1134 return rhs;
1135 }
1136
1137 assert(!BinaryOperator::isComparisonOp(op) &&
1138 "arguments to comparison ops must be of the same type");
1139
1140 // Special case: rhs is a zero constant.
1141 if (rhs.isZeroConstant())
1142 return lhs;
1143
1144 // Perserve the null pointer so that it can be found by the DerefChecker.
1145 if (lhs.isZeroConstant())
1146 return lhs;
1147
1148 // We are dealing with pointer arithmetic.
1149
1150 // Handle pointer arithmetic on constant values.
1151 if (Optional<nonloc::ConcreteInt> rhsInt = rhs.getAs<nonloc::ConcreteInt>()) {
1152 if (Optional<loc::ConcreteInt> lhsInt = lhs.getAs<loc::ConcreteInt>()) {
1153 const llvm::APSInt &leftI = lhsInt->getValue();
1154 assert(leftI.isUnsigned());
1155 llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true);
1156
1157 // Convert the bitwidth of rightI. This should deal with overflow
1158 // since we are dealing with concrete values.
1159 rightI = rightI.extOrTrunc(leftI.getBitWidth());
1160
1161 // Offset the increment by the pointer size.
1162 llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true);
1163 QualType pointeeType = resultTy->getPointeeType();
1164 Multiplicand = getContext().getTypeSizeInChars(pointeeType).getQuantity();
1165 rightI *= Multiplicand;
1166
1167 // Compute the adjusted pointer.
1168 switch (op) {
1169 case BO_Add:
1170 rightI = leftI + rightI;
1171 break;
1172 case BO_Sub:
1173 rightI = leftI - rightI;
1174 break;
1175 default:
1176 llvm_unreachable("Invalid pointer arithmetic operation");
1177 }
1178 return loc::ConcreteInt(getBasicValueFactory().getValue(rightI));
1179 }
1180 }
1181
1182 // Handle cases where 'lhs' is a region.
1183 if (const MemRegion *region = lhs.getAsRegion()) {
1184 rhs = convertToArrayIndex(rhs).castAs<NonLoc>();
1185 SVal index = UnknownVal();
1186 const SubRegion *superR = nullptr;
1187 // We need to know the type of the pointer in order to add an integer to it.
1188 // Depending on the type, different amount of bytes is added.
1189 QualType elementType;
1190
1191 if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) {
1192 assert(op == BO_Add || op == BO_Sub);
1193 index = evalBinOpNN(state, op, elemReg->getIndex(), rhs,
1194 getArrayIndexType());
1195 superR = cast<SubRegion>(elemReg->getSuperRegion());
1196 elementType = elemReg->getElementType();
1197 }
1198 else if (isa<SubRegion>(region)) {
1199 assert(op == BO_Add || op == BO_Sub);
1200 index = (op == BO_Add) ? rhs : evalMinus(rhs);
1201 superR = cast<SubRegion>(region);
1202 // TODO: Is this actually reliable? Maybe improving our MemRegion
1203 // hierarchy to provide typed regions for all non-void pointers would be
1204 // better. For instance, we cannot extend this towards LocAsInteger
1205 // operations, where result type of the expression is integer.
1206 if (resultTy->isAnyPointerType())
1207 elementType = resultTy->getPointeeType();
1208 }
1209
1210 // Represent arithmetic on void pointers as arithmetic on char pointers.
1211 // It is fine when a TypedValueRegion of char value type represents
1212 // a void pointer. Note that arithmetic on void pointers is a GCC extension.
1213 if (elementType->isVoidType())
1214 elementType = getContext().CharTy;
1215
1216 if (Optional<NonLoc> indexV = index.getAs<NonLoc>()) {
1217 return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV,
1218 superR, getContext()));
1219 }
1220 }
1221 return UnknownVal();
1222 }
1223
getKnownValue(ProgramStateRef state,SVal V)1224 const llvm::APSInt *SimpleSValBuilder::getKnownValue(ProgramStateRef state,
1225 SVal V) {
1226 V = simplifySVal(state, V);
1227 if (V.isUnknownOrUndef())
1228 return nullptr;
1229
1230 if (Optional<loc::ConcreteInt> X = V.getAs<loc::ConcreteInt>())
1231 return &X->getValue();
1232
1233 if (Optional<nonloc::ConcreteInt> X = V.getAs<nonloc::ConcreteInt>())
1234 return &X->getValue();
1235
1236 if (SymbolRef Sym = V.getAsSymbol())
1237 return state->getConstraintManager().getSymVal(state, Sym);
1238
1239 // FIXME: Add support for SymExprs.
1240 return nullptr;
1241 }
1242
simplifySVal(ProgramStateRef State,SVal V)1243 SVal SimpleSValBuilder::simplifySVal(ProgramStateRef State, SVal V) {
1244 // For now, this function tries to constant-fold symbols inside a
1245 // nonloc::SymbolVal, and does nothing else. More simplifications should
1246 // be possible, such as constant-folding an index in an ElementRegion.
1247
1248 class Simplifier : public FullSValVisitor<Simplifier, SVal> {
1249 ProgramStateRef State;
1250 SValBuilder &SVB;
1251
1252 // Cache results for the lifetime of the Simplifier. Results change every
1253 // time new constraints are added to the program state, which is the whole
1254 // point of simplifying, and for that very reason it's pointless to maintain
1255 // the same cache for the duration of the whole analysis.
1256 llvm::DenseMap<SymbolRef, SVal> Cached;
1257
1258 static bool isUnchanged(SymbolRef Sym, SVal Val) {
1259 return Sym == Val.getAsSymbol();
1260 }
1261
1262 SVal cache(SymbolRef Sym, SVal V) {
1263 Cached[Sym] = V;
1264 return V;
1265 }
1266
1267 SVal skip(SymbolRef Sym) {
1268 return cache(Sym, SVB.makeSymbolVal(Sym));
1269 }
1270
1271 public:
1272 Simplifier(ProgramStateRef State)
1273 : State(State), SVB(State->getStateManager().getSValBuilder()) {}
1274
1275 SVal VisitSymbolData(const SymbolData *S) {
1276 // No cache here.
1277 if (const llvm::APSInt *I =
1278 SVB.getKnownValue(State, SVB.makeSymbolVal(S)))
1279 return Loc::isLocType(S->getType()) ? (SVal)SVB.makeIntLocVal(*I)
1280 : (SVal)SVB.makeIntVal(*I);
1281 return SVB.makeSymbolVal(S);
1282 }
1283
1284 // TODO: Support SymbolCast. Support IntSymExpr when/if we actually
1285 // start producing them.
1286
1287 SVal VisitSymIntExpr(const SymIntExpr *S) {
1288 auto I = Cached.find(S);
1289 if (I != Cached.end())
1290 return I->second;
1291
1292 SVal LHS = Visit(S->getLHS());
1293 if (isUnchanged(S->getLHS(), LHS))
1294 return skip(S);
1295
1296 SVal RHS;
1297 // By looking at the APSInt in the right-hand side of S, we cannot
1298 // figure out if it should be treated as a Loc or as a NonLoc.
1299 // So make our guess by recalling that we cannot multiply pointers
1300 // or compare a pointer to an integer.
1301 if (Loc::isLocType(S->getLHS()->getType()) &&
1302 BinaryOperator::isComparisonOp(S->getOpcode())) {
1303 // The usual conversion of $sym to &SymRegion{$sym}, as they have
1304 // the same meaning for Loc-type symbols, but the latter form
1305 // is preferred in SVal computations for being Loc itself.
1306 if (SymbolRef Sym = LHS.getAsSymbol()) {
1307 assert(Loc::isLocType(Sym->getType()));
1308 LHS = SVB.makeLoc(Sym);
1309 }
1310 RHS = SVB.makeIntLocVal(S->getRHS());
1311 } else {
1312 RHS = SVB.makeIntVal(S->getRHS());
1313 }
1314
1315 return cache(
1316 S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType()));
1317 }
1318
1319 SVal VisitSymSymExpr(const SymSymExpr *S) {
1320 auto I = Cached.find(S);
1321 if (I != Cached.end())
1322 return I->second;
1323
1324 // For now don't try to simplify mixed Loc/NonLoc expressions
1325 // because they often appear from LocAsInteger operations
1326 // and we don't know how to combine a LocAsInteger
1327 // with a concrete value.
1328 if (Loc::isLocType(S->getLHS()->getType()) !=
1329 Loc::isLocType(S->getRHS()->getType()))
1330 return skip(S);
1331
1332 SVal LHS = Visit(S->getLHS());
1333 SVal RHS = Visit(S->getRHS());
1334 if (isUnchanged(S->getLHS(), LHS) && isUnchanged(S->getRHS(), RHS))
1335 return skip(S);
1336
1337 return cache(
1338 S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType()));
1339 }
1340
1341 SVal VisitSymExpr(SymbolRef S) { return nonloc::SymbolVal(S); }
1342
1343 SVal VisitMemRegion(const MemRegion *R) { return loc::MemRegionVal(R); }
1344
1345 SVal VisitNonLocSymbolVal(nonloc::SymbolVal V) {
1346 // Simplification is much more costly than computing complexity.
1347 // For high complexity, it may be not worth it.
1348 return Visit(V.getSymbol());
1349 }
1350
1351 SVal VisitSVal(SVal V) { return V; }
1352 };
1353
1354 // A crude way of preventing this function from calling itself from evalBinOp.
1355 static bool isReentering = false;
1356 if (isReentering)
1357 return V;
1358
1359 isReentering = true;
1360 SVal SimplifiedV = Simplifier(State).Visit(V);
1361 isReentering = false;
1362
1363 return SimplifiedV;
1364 }
1365