1 /* -*- Mode: C; tab-width: 4 -*-
2 *
3 * Copyright (c) 2002-2003 Apple Computer, Inc. All rights reserved.
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 // Set mDNS_InstantiateInlines to tell mDNSEmbeddedAPI.h to instantiate inline functions, if necessary
19 #define mDNS_InstantiateInlines 1
20 #include "DNSCommon.h"
21
22 // Disable certain benign warnings with Microsoft compilers
23 #if (defined(_MSC_VER))
24 // Disable "conditional expression is constant" warning for debug macros.
25 // Otherwise, this generates warnings for the perfectly natural construct "while(1)"
26 // If someone knows a variant way of writing "while(1)" that doesn't generate warning messages, please let us know
27 #pragma warning(disable:4127)
28 // Disable "array is too small to include a terminating null character" warning
29 // -- domain labels have an initial length byte, not a terminating null character
30 #pragma warning(disable:4295)
31 #endif
32
33 // ***************************************************************************
34 #if COMPILER_LIKES_PRAGMA_MARK
35 #pragma mark - Program Constants
36 #endif
37
38 mDNSexport const mDNSInterfaceID mDNSInterface_Any = 0;
39 mDNSexport const mDNSInterfaceID mDNSInterfaceMark = (mDNSInterfaceID)-1;
40 mDNSexport const mDNSInterfaceID mDNSInterface_LocalOnly = (mDNSInterfaceID)-2;
41 mDNSexport const mDNSInterfaceID mDNSInterface_Unicast = (mDNSInterfaceID)-3;
42 mDNSexport const mDNSInterfaceID mDNSInterface_P2P = (mDNSInterfaceID)-4;
43
44 // Note: Microsoft's proposed "Link Local Multicast Name Resolution Protocol" (LLMNR) is essentially a limited version of
45 // Multicast DNS, using the same packet formats, naming syntax, and record types as Multicast DNS, but on a different UDP
46 // port and multicast address, which means it won't interoperate with the existing installed base of Multicast DNS responders.
47 // LLMNR uses IPv4 multicast address 224.0.0.252, IPv6 multicast address FF02::0001:0003, and UDP port 5355.
48 // Uncomment the appropriate lines below to build a special Multicast DNS responder for testing interoperability
49 // with Microsoft's LLMNR client code.
50
51 #define DiscardPortAsNumber 9
52 #define SSHPortAsNumber 22
53 #define UnicastDNSPortAsNumber 53
54 #define SSDPPortAsNumber 1900
55 #define IPSECPortAsNumber 4500
56 #define NSIPCPortAsNumber 5030 // Port used for dnsextd to talk to local nameserver bound to loopback
57 #define NATPMPAnnouncementPortAsNumber 5350
58 #define NATPMPPortAsNumber 5351
59 #define DNSEXTPortAsNumber 5352 // Port used for end-to-end DNS operations like LLQ, Updates with Leases, etc.
60 #define MulticastDNSPortAsNumber 5353
61 #define LoopbackIPCPortAsNumber 5354
62 //#define MulticastDNSPortAsNumber 5355 // LLMNR
63 #define PrivateDNSPortAsNumber 5533
64
65 mDNSexport const mDNSIPPort DiscardPort = { { DiscardPortAsNumber >> 8, DiscardPortAsNumber & 0xFF } };
66 mDNSexport const mDNSIPPort SSHPort = { { SSHPortAsNumber >> 8, SSHPortAsNumber & 0xFF } };
67 mDNSexport const mDNSIPPort UnicastDNSPort = { { UnicastDNSPortAsNumber >> 8, UnicastDNSPortAsNumber & 0xFF } };
68 mDNSexport const mDNSIPPort SSDPPort = { { SSDPPortAsNumber >> 8, SSDPPortAsNumber & 0xFF } };
69 mDNSexport const mDNSIPPort IPSECPort = { { IPSECPortAsNumber >> 8, IPSECPortAsNumber & 0xFF } };
70 mDNSexport const mDNSIPPort NSIPCPort = { { NSIPCPortAsNumber >> 8, NSIPCPortAsNumber & 0xFF } };
71 mDNSexport const mDNSIPPort NATPMPAnnouncementPort = { { NATPMPAnnouncementPortAsNumber >> 8, NATPMPAnnouncementPortAsNumber & 0xFF } };
72 mDNSexport const mDNSIPPort NATPMPPort = { { NATPMPPortAsNumber >> 8, NATPMPPortAsNumber & 0xFF } };
73 mDNSexport const mDNSIPPort DNSEXTPort = { { DNSEXTPortAsNumber >> 8, DNSEXTPortAsNumber & 0xFF } };
74 mDNSexport const mDNSIPPort MulticastDNSPort = { { MulticastDNSPortAsNumber >> 8, MulticastDNSPortAsNumber & 0xFF } };
75 mDNSexport const mDNSIPPort LoopbackIPCPort = { { LoopbackIPCPortAsNumber >> 8, LoopbackIPCPortAsNumber & 0xFF } };
76 mDNSexport const mDNSIPPort PrivateDNSPort = { { PrivateDNSPortAsNumber >> 8, PrivateDNSPortAsNumber & 0xFF } };
77
78 mDNSexport const OwnerOptData zeroOwner = { 0, 0, { { 0 } }, { { 0 } }, { { 0 } } };
79
80 mDNSexport const mDNSIPPort zeroIPPort = { { 0 } };
81 mDNSexport const mDNSv4Addr zerov4Addr = { { 0 } };
82 mDNSexport const mDNSv6Addr zerov6Addr = { { 0 } };
83 mDNSexport const mDNSEthAddr zeroEthAddr = { { 0 } };
84 mDNSexport const mDNSv4Addr onesIPv4Addr = { { 255, 255, 255, 255 } };
85 mDNSexport const mDNSv6Addr onesIPv6Addr = { { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 } };
86 mDNSexport const mDNSEthAddr onesEthAddr = { { 255, 255, 255, 255, 255, 255 } };
87 mDNSexport const mDNSAddr zeroAddr = { mDNSAddrType_None, {{{ 0 }}} };
88
89 mDNSexport const mDNSv4Addr AllDNSAdminGroup = { { 239, 255, 255, 251 } };
90 mDNSexport const mDNSv4Addr AllHosts_v4 = { { 224, 0, 0, 1 } }; // For NAT-PMP Annoucements
91 mDNSexport const mDNSv6Addr AllHosts_v6 = { { 0xFF,0x02,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x01 } };
92 mDNSexport const mDNSv6Addr NDP_prefix = { { 0xFF,0x02,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x01, 0xFF,0x00,0x00,0xFB } }; // FF02:0:0:0:0:1:FF00::/104
93 mDNSexport const mDNSEthAddr AllHosts_v6_Eth = { { 0x33, 0x33, 0x00, 0x00, 0x00, 0x01 } };
94 mDNSexport const mDNSAddr AllDNSLinkGroup_v4 = { mDNSAddrType_IPv4, { { { 224, 0, 0, 251 } } } };
95 //mDNSexport const mDNSAddr AllDNSLinkGroup_v4 = { mDNSAddrType_IPv4, { { { 224, 0, 0, 252 } } } }; // LLMNR
96 mDNSexport const mDNSAddr AllDNSLinkGroup_v6 = { mDNSAddrType_IPv6, { { { 0xFF,0x02,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0xFB } } } };
97 //mDNSexport const mDNSAddr AllDNSLinkGroup_v6 = { mDNSAddrType_IPv6, { { { 0xFF,0x02,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x01,0x00,0x03 } } } }; // LLMNR
98
99 mDNSexport const mDNSOpaque16 zeroID = { { 0, 0 } };
100 mDNSexport const mDNSOpaque16 onesID = { { 255, 255 } };
101 mDNSexport const mDNSOpaque16 QueryFlags = { { kDNSFlag0_QR_Query | kDNSFlag0_OP_StdQuery, 0 } };
102 mDNSexport const mDNSOpaque16 uQueryFlags = { { kDNSFlag0_QR_Query | kDNSFlag0_OP_StdQuery | kDNSFlag0_RD, 0 } };
103 mDNSexport const mDNSOpaque16 ResponseFlags = { { kDNSFlag0_QR_Response | kDNSFlag0_OP_StdQuery | kDNSFlag0_AA, 0 } };
104 mDNSexport const mDNSOpaque16 UpdateReqFlags = { { kDNSFlag0_QR_Query | kDNSFlag0_OP_Update, 0 } };
105 mDNSexport const mDNSOpaque16 UpdateRespFlags = { { kDNSFlag0_QR_Response | kDNSFlag0_OP_Update, 0 } };
106
107 mDNSexport const mDNSOpaque64 zeroOpaque64 = { { 0 } };
108
109 // ***************************************************************************
110 #if COMPILER_LIKES_PRAGMA_MARK
111 #pragma mark -
112 #pragma mark - General Utility Functions
113 #endif
114
115 // return true for RFC1918 private addresses
mDNSv4AddrIsRFC1918(mDNSv4Addr * addr)116 mDNSexport mDNSBool mDNSv4AddrIsRFC1918(mDNSv4Addr *addr)
117 {
118 return ((addr->b[0] == 10) || // 10/8 prefix
119 (addr->b[0] == 172 && (addr->b[1] & 0xF0) == 16) || // 172.16/12
120 (addr->b[0] == 192 && addr->b[1] == 168)); // 192.168/16
121 }
122
GetFirstActiveInterface(NetworkInterfaceInfo * intf)123 mDNSexport NetworkInterfaceInfo *GetFirstActiveInterface(NetworkInterfaceInfo *intf)
124 {
125 while (intf && !intf->InterfaceActive) intf = intf->next;
126 return(intf);
127 }
128
GetNextActiveInterfaceID(const NetworkInterfaceInfo * intf)129 mDNSexport mDNSInterfaceID GetNextActiveInterfaceID(const NetworkInterfaceInfo *intf)
130 {
131 const NetworkInterfaceInfo *next = GetFirstActiveInterface(intf->next);
132 if (next) return(next->InterfaceID); else return(mDNSNULL);
133 }
134
NumCacheRecordsForInterfaceID(const mDNS * const m,mDNSInterfaceID id)135 mDNSexport mDNSu32 NumCacheRecordsForInterfaceID(const mDNS *const m, mDNSInterfaceID id)
136 {
137 mDNSu32 slot, used = 0;
138 CacheGroup *cg;
139 const CacheRecord *rr;
140 FORALL_CACHERECORDS(slot, cg, rr)
141 if (rr->resrec.InterfaceID == id) used++;
142 return(used);
143 }
144
DNSTypeName(mDNSu16 rrtype)145 mDNSexport char *DNSTypeName(mDNSu16 rrtype)
146 {
147 switch (rrtype)
148 {
149 case kDNSType_A: return("Addr");
150 case kDNSType_NS: return("NS");
151 case kDNSType_CNAME:return("CNAME");
152 case kDNSType_SOA: return("SOA");
153 case kDNSType_NULL: return("NULL");
154 case kDNSType_PTR: return("PTR");
155 case kDNSType_HINFO:return("HINFO");
156 case kDNSType_TXT: return("TXT");
157 case kDNSType_AAAA: return("AAAA");
158 case kDNSType_SRV: return("SRV");
159 case kDNSType_OPT: return("OPT");
160 case kDNSType_NSEC: return("NSEC");
161 case kDNSType_TSIG: return("TSIG");
162 case kDNSQType_ANY: return("ANY");
163 default: {
164 static char buffer[16];
165 mDNS_snprintf(buffer, sizeof(buffer), "(%d)", rrtype);
166 return(buffer);
167 }
168 }
169 }
170
171 // Note slight bug: this code uses the rdlength from the ResourceRecord object, to display
172 // the rdata from the RDataBody object. Sometimes this could be the wrong length -- but as
173 // long as this routine is only used for debugging messages, it probably isn't a big problem.
GetRRDisplayString_rdb(const ResourceRecord * const rr,const RDataBody * const rd1,char * const buffer)174 mDNSexport char *GetRRDisplayString_rdb(const ResourceRecord *const rr, const RDataBody *const rd1, char *const buffer)
175 {
176 const RDataBody2 *const rd = (RDataBody2 *)rd1;
177 #define RemSpc (MaxMsg-1-length)
178 char *ptr = buffer;
179 mDNSu32 length = mDNS_snprintf(buffer, MaxMsg-1, "%4d %##s %s ", rr->rdlength, rr->name->c, DNSTypeName(rr->rrtype));
180 if (rr->RecordType == kDNSRecordTypePacketNegative) return(buffer);
181 if (!rr->rdlength) { mDNS_snprintf(buffer+length, RemSpc, "<< ZERO RDATA LENGTH >>"); return(buffer); }
182
183 switch (rr->rrtype)
184 {
185 case kDNSType_A: mDNS_snprintf(buffer+length, RemSpc, "%.4a", &rd->ipv4); break;
186
187 case kDNSType_NS: // Same as PTR
188 case kDNSType_CNAME:// Same as PTR
189 case kDNSType_PTR: mDNS_snprintf(buffer+length, RemSpc, "%##s", rd->name.c); break;
190
191 case kDNSType_SOA: mDNS_snprintf(buffer+length, RemSpc, "%##s %##s %d %d %d %d %d",
192 rd->soa.mname.c, rd->soa.rname.c,
193 rd->soa.serial, rd->soa.refresh, rd->soa.retry, rd->soa.expire, rd->soa.min);
194 break;
195
196 case kDNSType_HINFO:// Display this the same as TXT (show all constituent strings)
197 case kDNSType_TXT: {
198 const mDNSu8 *t = rd->txt.c;
199 while (t < rd->txt.c + rr->rdlength)
200 {
201 length += mDNS_snprintf(buffer+length, RemSpc, "%s%#s", t > rd->txt.c ? "¦" : "", t);
202 t += 1 + t[0];
203 }
204 } break;
205
206 case kDNSType_AAAA: mDNS_snprintf(buffer+length, RemSpc, "%.16a", &rd->ipv6); break;
207 case kDNSType_SRV: mDNS_snprintf(buffer+length, RemSpc, "%u %u %u %##s",
208 rd->srv.priority, rd->srv.weight, mDNSVal16(rd->srv.port), rd->srv.target.c); break;
209
210 case kDNSType_OPT: {
211 const rdataOPT *opt;
212 const rdataOPT *const end = (const rdataOPT *)&rd->data[rr->rdlength];
213 length += mDNS_snprintf(buffer+length, RemSpc, "Max %d", rr->rrclass);
214 for (opt = &rd->opt[0]; opt < end; opt++)
215 {
216 switch(opt->opt)
217 {
218 case kDNSOpt_LLQ:
219 length += mDNS_snprintf(buffer+length, RemSpc, " Vers %d", opt->u.llq.vers);
220 length += mDNS_snprintf(buffer+length, RemSpc, " Op %d", opt->u.llq.llqOp);
221 length += mDNS_snprintf(buffer+length, RemSpc, " Err/Port %d", opt->u.llq.err);
222 length += mDNS_snprintf(buffer+length, RemSpc, " ID %08X%08X", opt->u.llq.id.l[0], opt->u.llq.id.l[1]);
223 length += mDNS_snprintf(buffer+length, RemSpc, " Lease %d", opt->u.llq.llqlease);
224 break;
225 case kDNSOpt_Lease:
226 length += mDNS_snprintf(buffer+length, RemSpc, " Lease %d", opt->u.updatelease);
227 break;
228 case kDNSOpt_Owner:
229 length += mDNS_snprintf(buffer+length, RemSpc, " Vers %d", opt->u.owner.vers);
230 length += mDNS_snprintf(buffer+length, RemSpc, " Seq %3d", (mDNSu8)opt->u.owner.seq); // Display as unsigned
231 length += mDNS_snprintf(buffer+length, RemSpc, " MAC %.6a", opt->u.owner.HMAC.b);
232 if (opt->optlen >= DNSOpt_OwnerData_ID_Wake_Space-4)
233 {
234 length += mDNS_snprintf(buffer+length, RemSpc, " I-MAC %.6a", opt->u.owner.IMAC.b);
235 if (opt->optlen > DNSOpt_OwnerData_ID_Wake_Space-4)
236 length += mDNS_snprintf(buffer+length, RemSpc, " Password %.6a", opt->u.owner.password.b);
237 }
238 break;
239 default:
240 length += mDNS_snprintf(buffer+length, RemSpc, " Unknown %d", opt->opt);
241 break;
242 }
243 }
244 }
245 break;
246
247 case kDNSType_NSEC: {
248 mDNSu16 i;
249 for (i=0; i<255; i++)
250 if (rd->nsec.bitmap[i>>3] & (128 >> (i&7)))
251 length += mDNS_snprintf(buffer+length, RemSpc, "%s ", DNSTypeName(i));
252 }
253 break;
254
255 default: mDNS_snprintf(buffer+length, RemSpc, "RDLen %d: %s", rr->rdlength, rd->data);
256 // Really should scan buffer to check if text is valid UTF-8 and only replace with dots if not
257 for (ptr = buffer; *ptr; ptr++) if (*ptr < ' ') *ptr = '.';
258 break;
259 }
260 return(buffer);
261 }
262
263 // See comments in mDNSEmbeddedAPI.h
264 #if _PLATFORM_HAS_STRONG_PRNG_
265 #define mDNSRandomNumber mDNSPlatformRandomNumber
266 #else
mDNSRandomFromSeed(mDNSu32 seed)267 mDNSlocal mDNSu32 mDNSRandomFromSeed(mDNSu32 seed)
268 {
269 return seed * 21 + 1;
270 }
271
mDNSMixRandomSeed(mDNSu32 seed,mDNSu8 iteration)272 mDNSlocal mDNSu32 mDNSMixRandomSeed(mDNSu32 seed, mDNSu8 iteration)
273 {
274 return iteration ? mDNSMixRandomSeed(mDNSRandomFromSeed(seed), --iteration) : seed;
275 }
276
mDNSRandomNumber()277 mDNSlocal mDNSu32 mDNSRandomNumber()
278 {
279 static mDNSBool seeded = mDNSfalse;
280 static mDNSu32 seed = 0;
281 if (!seeded)
282 {
283 seed = mDNSMixRandomSeed(mDNSPlatformRandomSeed(), 100);
284 seeded = mDNStrue;
285 }
286 return (seed = mDNSRandomFromSeed(seed));
287 }
288 #endif // ! _PLATFORM_HAS_STRONG_PRNG_
289
mDNSRandom(mDNSu32 max)290 mDNSexport mDNSu32 mDNSRandom(mDNSu32 max) // Returns pseudo-random result from zero to max inclusive
291 {
292 mDNSu32 ret = 0;
293 mDNSu32 mask = 1;
294
295 while (mask < max) mask = (mask << 1) | 1;
296
297 do ret = mDNSRandomNumber() & mask;
298 while (ret > max);
299
300 return ret;
301 }
302
mDNSSameAddress(const mDNSAddr * ip1,const mDNSAddr * ip2)303 mDNSexport mDNSBool mDNSSameAddress(const mDNSAddr *ip1, const mDNSAddr *ip2)
304 {
305 if (ip1->type == ip2->type)
306 {
307 switch (ip1->type)
308 {
309 case mDNSAddrType_None : return(mDNStrue); // Empty addresses have no data and are therefore always equal
310 case mDNSAddrType_IPv4 : return(mDNSBool)(mDNSSameIPv4Address(ip1->ip.v4, ip2->ip.v4));
311 case mDNSAddrType_IPv6 : return(mDNSBool)(mDNSSameIPv6Address(ip1->ip.v6, ip2->ip.v6));
312 }
313 }
314 return(mDNSfalse);
315 }
316
mDNSAddrIsDNSMulticast(const mDNSAddr * ip)317 mDNSexport mDNSBool mDNSAddrIsDNSMulticast(const mDNSAddr *ip)
318 {
319 switch(ip->type)
320 {
321 case mDNSAddrType_IPv4: return(mDNSBool)(mDNSSameIPv4Address(ip->ip.v4, AllDNSLinkGroup_v4.ip.v4));
322 case mDNSAddrType_IPv6: return(mDNSBool)(mDNSSameIPv6Address(ip->ip.v6, AllDNSLinkGroup_v6.ip.v6));
323 default: return(mDNSfalse);
324 }
325 }
326
327 // ***************************************************************************
328 #if COMPILER_LIKES_PRAGMA_MARK
329 #pragma mark -
330 #pragma mark - Domain Name Utility Functions
331 #endif
332
SameDomainLabel(const mDNSu8 * a,const mDNSu8 * b)333 mDNSexport mDNSBool SameDomainLabel(const mDNSu8 *a, const mDNSu8 *b)
334 {
335 int i;
336 const int len = *a++;
337
338 if (len > MAX_DOMAIN_LABEL)
339 { debugf("Malformed label (too long)"); return(mDNSfalse); }
340
341 if (len != *b++) return(mDNSfalse);
342 for (i=0; i<len; i++)
343 {
344 mDNSu8 ac = *a++;
345 mDNSu8 bc = *b++;
346 if (mDNSIsUpperCase(ac)) ac += 'a' - 'A';
347 if (mDNSIsUpperCase(bc)) bc += 'a' - 'A';
348 if (ac != bc) return(mDNSfalse);
349 }
350 return(mDNStrue);
351 }
352
SameDomainName(const domainname * const d1,const domainname * const d2)353 mDNSexport mDNSBool SameDomainName(const domainname *const d1, const domainname *const d2)
354 {
355 const mDNSu8 * a = d1->c;
356 const mDNSu8 * b = d2->c;
357 const mDNSu8 *const max = d1->c + MAX_DOMAIN_NAME; // Maximum that's valid
358
359 while (*a || *b)
360 {
361 if (a + 1 + *a >= max)
362 { debugf("Malformed domain name (more than 256 characters)"); return(mDNSfalse); }
363 if (!SameDomainLabel(a, b)) return(mDNSfalse);
364 a += 1 + *a;
365 b += 1 + *b;
366 }
367
368 return(mDNStrue);
369 }
370
SameDomainNameCS(const domainname * const d1,const domainname * const d2)371 mDNSexport mDNSBool SameDomainNameCS(const domainname *const d1, const domainname *const d2)
372 {
373 mDNSu16 l1 = DomainNameLength(d1);
374 mDNSu16 l2 = DomainNameLength(d2);
375 return(l1 <= MAX_DOMAIN_NAME && l1 == l2 && mDNSPlatformMemSame(d1, d2, l1));
376 }
377
IsLocalDomain(const domainname * d)378 mDNSexport mDNSBool IsLocalDomain(const domainname *d)
379 {
380 // Domains that are defined to be resolved via link-local multicast are:
381 // local., 254.169.in-addr.arpa., and {8,9,A,B}.E.F.ip6.arpa.
382 static const domainname *nL = (const domainname*)"\x5" "local";
383 static const domainname *nR = (const domainname*)"\x3" "254" "\x3" "169" "\x7" "in-addr" "\x4" "arpa";
384 static const domainname *n8 = (const domainname*)"\x1" "8" "\x1" "e" "\x1" "f" "\x3" "ip6" "\x4" "arpa";
385 static const domainname *n9 = (const domainname*)"\x1" "9" "\x1" "e" "\x1" "f" "\x3" "ip6" "\x4" "arpa";
386 static const domainname *nA = (const domainname*)"\x1" "a" "\x1" "e" "\x1" "f" "\x3" "ip6" "\x4" "arpa";
387 static const domainname *nB = (const domainname*)"\x1" "b" "\x1" "e" "\x1" "f" "\x3" "ip6" "\x4" "arpa";
388
389 const domainname *d1, *d2, *d3, *d4, *d5; // Top-level domain, second-level domain, etc.
390 d1 = d2 = d3 = d4 = d5 = mDNSNULL;
391 while (d->c[0])
392 {
393 d5 = d4; d4 = d3; d3 = d2; d2 = d1; d1 = d;
394 d = (const domainname*)(d->c + 1 + d->c[0]);
395 }
396
397 if (d1 && SameDomainName(d1, nL)) return(mDNStrue);
398 if (d4 && SameDomainName(d4, nR)) return(mDNStrue);
399 if (d5 && SameDomainName(d5, n8)) return(mDNStrue);
400 if (d5 && SameDomainName(d5, n9)) return(mDNStrue);
401 if (d5 && SameDomainName(d5, nA)) return(mDNStrue);
402 if (d5 && SameDomainName(d5, nB)) return(mDNStrue);
403 return(mDNSfalse);
404 }
405
LastLabel(const domainname * d)406 mDNSexport const mDNSu8 *LastLabel(const domainname *d)
407 {
408 const mDNSu8 *p = d->c;
409 while (d->c[0])
410 {
411 p = d->c;
412 d = (const domainname*)(d->c + 1 + d->c[0]);
413 }
414 return(p);
415 }
416
417 // Returns length of a domain name INCLUDING the byte for the final null label
418 // e.g. for the root label "." it returns one
419 // For the FQDN "com." it returns 5 (length byte, three data bytes, final zero)
420 // Legal results are 1 (just root label) to 256 (MAX_DOMAIN_NAME)
421 // If the given domainname is invalid, result is 257 (MAX_DOMAIN_NAME+1)
DomainNameLengthLimit(const domainname * const name,const mDNSu8 * limit)422 mDNSexport mDNSu16 DomainNameLengthLimit(const domainname *const name, const mDNSu8 *limit)
423 {
424 const mDNSu8 *src = name->c;
425 while (src < limit && *src <= MAX_DOMAIN_LABEL)
426 {
427 if (*src == 0) return((mDNSu16)(src - name->c + 1));
428 src += 1 + *src;
429 }
430 return(MAX_DOMAIN_NAME+1);
431 }
432
433 // CompressedDomainNameLength returns the length of a domain name INCLUDING the byte
434 // for the final null label, e.g. for the root label "." it returns one.
435 // E.g. for the FQDN "foo.com." it returns 9
436 // (length, three data bytes, length, three more data bytes, final zero).
437 // In the case where a parent domain name is provided, and the given name is a child
438 // of that parent, CompressedDomainNameLength returns the length of the prefix portion
439 // of the child name, plus TWO bytes for the compression pointer.
440 // E.g. for the name "foo.com." with parent "com.", it returns 6
441 // (length, three data bytes, two-byte compression pointer).
CompressedDomainNameLength(const domainname * const name,const domainname * parent)442 mDNSexport mDNSu16 CompressedDomainNameLength(const domainname *const name, const domainname *parent)
443 {
444 const mDNSu8 *src = name->c;
445 if (parent && parent->c[0] == 0) parent = mDNSNULL;
446 while (*src)
447 {
448 if (*src > MAX_DOMAIN_LABEL) return(MAX_DOMAIN_NAME+1);
449 if (parent && SameDomainName((const domainname *)src, parent)) return((mDNSu16)(src - name->c + 2));
450 src += 1 + *src;
451 if (src - name->c >= MAX_DOMAIN_NAME) return(MAX_DOMAIN_NAME+1);
452 }
453 return((mDNSu16)(src - name->c + 1));
454 }
455
456 // CountLabels() returns number of labels in name, excluding final root label
457 // (e.g. for "apple.com." CountLabels returns 2.)
CountLabels(const domainname * d)458 mDNSexport int CountLabels(const domainname *d)
459 {
460 int count = 0;
461 const mDNSu8 *ptr;
462 for (ptr = d->c; *ptr; ptr = ptr + ptr[0] + 1) count++;
463 return count;
464 }
465
466 // SkipLeadingLabels skips over the first 'skip' labels in the domainname,
467 // returning a pointer to the suffix with 'skip' labels removed.
SkipLeadingLabels(const domainname * d,int skip)468 mDNSexport const domainname *SkipLeadingLabels(const domainname *d, int skip)
469 {
470 while (skip > 0 && d->c[0]) { d = (const domainname *)(d->c + 1 + d->c[0]); skip--; }
471 return(d);
472 }
473
474 // AppendLiteralLabelString appends a single label to an existing (possibly empty) domainname.
475 // The C string contains the label as-is, with no escaping, etc.
476 // Any dots in the name are literal dots, not label separators
477 // If successful, AppendLiteralLabelString returns a pointer to the next unused byte
478 // in the domainname bufer (i.e. the next byte after the terminating zero).
479 // If unable to construct a legal domain name (i.e. label more than 63 bytes, or total more than 256 bytes)
480 // AppendLiteralLabelString returns mDNSNULL.
AppendLiteralLabelString(domainname * const name,const char * cstr)481 mDNSexport mDNSu8 *AppendLiteralLabelString(domainname *const name, const char *cstr)
482 {
483 mDNSu8 * ptr = name->c + DomainNameLength(name) - 1; // Find end of current name
484 const mDNSu8 *const lim1 = name->c + MAX_DOMAIN_NAME - 1; // Limit of how much we can add (not counting final zero)
485 const mDNSu8 *const lim2 = ptr + 1 + MAX_DOMAIN_LABEL;
486 const mDNSu8 *const lim = (lim1 < lim2) ? lim1 : lim2;
487 mDNSu8 *lengthbyte = ptr++; // Record where the length is going to go
488
489 while (*cstr && ptr < lim) *ptr++ = (mDNSu8)*cstr++; // Copy the data
490 *lengthbyte = (mDNSu8)(ptr - lengthbyte - 1); // Fill in the length byte
491 *ptr++ = 0; // Put the null root label on the end
492 if (*cstr) return(mDNSNULL); // Failure: We didn't successfully consume all input
493 else return(ptr); // Success: return new value of ptr
494 }
495
496 // AppendDNSNameString appends zero or more labels to an existing (possibly empty) domainname.
497 // The C string is in conventional DNS syntax:
498 // Textual labels, escaped as necessary using the usual DNS '\' notation, separated by dots.
499 // If successful, AppendDNSNameString returns a pointer to the next unused byte
500 // in the domainname bufer (i.e. the next byte after the terminating zero).
501 // If unable to construct a legal domain name (i.e. label more than 63 bytes, or total more than 256 bytes)
502 // AppendDNSNameString returns mDNSNULL.
AppendDNSNameString(domainname * const name,const char * cstring)503 mDNSexport mDNSu8 *AppendDNSNameString(domainname *const name, const char *cstring)
504 {
505 const char *cstr = cstring;
506 mDNSu8 * ptr = name->c + DomainNameLength(name) - 1; // Find end of current name
507 const mDNSu8 *const lim = name->c + MAX_DOMAIN_NAME - 1; // Limit of how much we can add (not counting final zero)
508 while (*cstr && ptr < lim) // While more characters, and space to put them...
509 {
510 mDNSu8 *lengthbyte = ptr++; // Record where the length is going to go
511 if (*cstr == '.') { LogMsg("AppendDNSNameString: Illegal empty label in name \"%s\"", cstring); return(mDNSNULL); }
512 while (*cstr && *cstr != '.' && ptr < lim) // While we have characters in the label...
513 {
514 mDNSu8 c = (mDNSu8)*cstr++; // Read the character
515 if (c == '\\') // If escape character, check next character
516 {
517 c = (mDNSu8)*cstr++; // Assume we'll just take the next character
518 if (mDNSIsDigit(cstr[-1]) && mDNSIsDigit(cstr[0]) && mDNSIsDigit(cstr[1]))
519 { // If three decimal digits,
520 int v0 = cstr[-1] - '0'; // then interpret as three-digit decimal
521 int v1 = cstr[ 0] - '0';
522 int v2 = cstr[ 1] - '0';
523 int val = v0 * 100 + v1 * 10 + v2;
524 if (val <= 255) { c = (mDNSu8)val; cstr += 2; } // If valid three-digit decimal value, use it
525 }
526 }
527 *ptr++ = c; // Write the character
528 }
529 if (*cstr) cstr++; // Skip over the trailing dot (if present)
530 if (ptr - lengthbyte - 1 > MAX_DOMAIN_LABEL) // If illegal label, abort
531 return(mDNSNULL);
532 *lengthbyte = (mDNSu8)(ptr - lengthbyte - 1); // Fill in the length byte
533 }
534
535 *ptr++ = 0; // Put the null root label on the end
536 if (*cstr) return(mDNSNULL); // Failure: We didn't successfully consume all input
537 else return(ptr); // Success: return new value of ptr
538 }
539
540 // AppendDomainLabel appends a single label to a name.
541 // If successful, AppendDomainLabel returns a pointer to the next unused byte
542 // in the domainname bufer (i.e. the next byte after the terminating zero).
543 // If unable to construct a legal domain name (i.e. label more than 63 bytes, or total more than 256 bytes)
544 // AppendDomainLabel returns mDNSNULL.
AppendDomainLabel(domainname * const name,const domainlabel * const label)545 mDNSexport mDNSu8 *AppendDomainLabel(domainname *const name, const domainlabel *const label)
546 {
547 int i;
548 mDNSu8 *ptr = name->c + DomainNameLength(name) - 1;
549
550 // Check label is legal
551 if (label->c[0] > MAX_DOMAIN_LABEL) return(mDNSNULL);
552
553 // Check that ptr + length byte + data bytes + final zero does not exceed our limit
554 if (ptr + 1 + label->c[0] + 1 > name->c + MAX_DOMAIN_NAME) return(mDNSNULL);
555
556 for (i=0; i<=label->c[0]; i++) *ptr++ = label->c[i]; // Copy the label data
557 *ptr++ = 0; // Put the null root label on the end
558 return(ptr);
559 }
560
AppendDomainName(domainname * const name,const domainname * const append)561 mDNSexport mDNSu8 *AppendDomainName(domainname *const name, const domainname *const append)
562 {
563 mDNSu8 * ptr = name->c + DomainNameLength(name) - 1; // Find end of current name
564 const mDNSu8 *const lim = name->c + MAX_DOMAIN_NAME - 1; // Limit of how much we can add (not counting final zero)
565 const mDNSu8 * src = append->c;
566 while (src[0])
567 {
568 int i;
569 if (ptr + 1 + src[0] > lim) return(mDNSNULL);
570 for (i=0; i<=src[0]; i++) *ptr++ = src[i];
571 *ptr = 0; // Put the null root label on the end
572 src += i;
573 }
574 return(ptr);
575 }
576
577 // MakeDomainLabelFromLiteralString makes a single domain label from a single literal C string (with no escaping).
578 // If successful, MakeDomainLabelFromLiteralString returns mDNStrue.
579 // If unable to convert the whole string to a legal domain label (i.e. because length is more than 63 bytes) then
580 // MakeDomainLabelFromLiteralString makes a legal domain label from the first 63 bytes of the string and returns mDNSfalse.
581 // In some cases silently truncated oversized names to 63 bytes is acceptable, so the return result may be ignored.
582 // In other cases silent truncation may not be acceptable, so in those cases the calling function needs to check the return result.
MakeDomainLabelFromLiteralString(domainlabel * const label,const char * cstr)583 mDNSexport mDNSBool MakeDomainLabelFromLiteralString(domainlabel *const label, const char *cstr)
584 {
585 mDNSu8 * ptr = label->c + 1; // Where we're putting it
586 const mDNSu8 *const limit = label->c + 1 + MAX_DOMAIN_LABEL; // The maximum we can put
587 while (*cstr && ptr < limit) *ptr++ = (mDNSu8)*cstr++; // Copy the label
588 label->c[0] = (mDNSu8)(ptr - label->c - 1); // Set the length byte
589 return(*cstr == 0); // Return mDNStrue if we successfully consumed all input
590 }
591
592 // MakeDomainNameFromDNSNameString makes a native DNS-format domainname from a C string.
593 // The C string is in conventional DNS syntax:
594 // Textual labels, escaped as necessary using the usual DNS '\' notation, separated by dots.
595 // If successful, MakeDomainNameFromDNSNameString returns a pointer to the next unused byte
596 // in the domainname bufer (i.e. the next byte after the terminating zero).
597 // If unable to construct a legal domain name (i.e. label more than 63 bytes, or total more than 256 bytes)
598 // MakeDomainNameFromDNSNameString returns mDNSNULL.
MakeDomainNameFromDNSNameString(domainname * const name,const char * cstr)599 mDNSexport mDNSu8 *MakeDomainNameFromDNSNameString(domainname *const name, const char *cstr)
600 {
601 name->c[0] = 0; // Make an empty domain name
602 return(AppendDNSNameString(name, cstr)); // And then add this string to it
603 }
604
ConvertDomainLabelToCString_withescape(const domainlabel * const label,char * ptr,char esc)605 mDNSexport char *ConvertDomainLabelToCString_withescape(const domainlabel *const label, char *ptr, char esc)
606 {
607 const mDNSu8 * src = label->c; // Domain label we're reading
608 const mDNSu8 len = *src++; // Read length of this (non-null) label
609 const mDNSu8 *const end = src + len; // Work out where the label ends
610 if (len > MAX_DOMAIN_LABEL) return(mDNSNULL); // If illegal label, abort
611 while (src < end) // While we have characters in the label
612 {
613 mDNSu8 c = *src++;
614 if (esc)
615 {
616 if (c == '.' || c == esc) // If character is a dot or the escape character
617 *ptr++ = esc; // Output escape character
618 else if (c <= ' ') // If non-printing ascii,
619 { // Output decimal escape sequence
620 *ptr++ = esc;
621 *ptr++ = (char) ('0' + (c / 100) );
622 *ptr++ = (char) ('0' + (c / 10) % 10);
623 c = (mDNSu8)('0' + (c ) % 10);
624 }
625 }
626 *ptr++ = (char)c; // Copy the character
627 }
628 *ptr = 0; // Null-terminate the string
629 return(ptr); // and return
630 }
631
632 // Note: To guarantee that there will be no possible overrun, cstr must be at least MAX_ESCAPED_DOMAIN_NAME (1009 bytes)
ConvertDomainNameToCString_withescape(const domainname * const name,char * ptr,char esc)633 mDNSexport char *ConvertDomainNameToCString_withescape(const domainname *const name, char *ptr, char esc)
634 {
635 const mDNSu8 *src = name->c; // Domain name we're reading
636 const mDNSu8 *const max = name->c + MAX_DOMAIN_NAME; // Maximum that's valid
637
638 if (*src == 0) *ptr++ = '.'; // Special case: For root, just write a dot
639
640 while (*src) // While more characters in the domain name
641 {
642 if (src + 1 + *src >= max) return(mDNSNULL);
643 ptr = ConvertDomainLabelToCString_withescape((const domainlabel *)src, ptr, esc);
644 if (!ptr) return(mDNSNULL);
645 src += 1 + *src;
646 *ptr++ = '.'; // Write the dot after the label
647 }
648
649 *ptr++ = 0; // Null-terminate the string
650 return(ptr); // and return
651 }
652
653 // RFC 1034 rules:
654 // Host names must start with a letter, end with a letter or digit,
655 // and have as interior characters only letters, digits, and hyphen.
656 // This was subsequently modified in RFC 1123 to allow the first character to be either a letter or a digit
657
ConvertUTF8PstringToRFC1034HostLabel(const mDNSu8 UTF8Name[],domainlabel * const hostlabel)658 mDNSexport void ConvertUTF8PstringToRFC1034HostLabel(const mDNSu8 UTF8Name[], domainlabel *const hostlabel)
659 {
660 const mDNSu8 * src = &UTF8Name[1];
661 const mDNSu8 *const end = &UTF8Name[1] + UTF8Name[0];
662 mDNSu8 * ptr = &hostlabel->c[1];
663 const mDNSu8 *const lim = &hostlabel->c[1] + MAX_DOMAIN_LABEL;
664 while (src < end)
665 {
666 // Delete apostrophes from source name
667 if (src[0] == '\'') { src++; continue; } // Standard straight single quote
668 if (src + 2 < end && src[0] == 0xE2 && src[1] == 0x80 && src[2] == 0x99)
669 { src += 3; continue; } // Unicode curly apostrophe
670 if (ptr < lim)
671 {
672 if (mDNSValidHostChar(*src, (ptr > &hostlabel->c[1]), (src < end-1))) *ptr++ = *src;
673 else if (ptr > &hostlabel->c[1] && ptr[-1] != '-') *ptr++ = '-';
674 }
675 src++;
676 }
677 while (ptr > &hostlabel->c[1] && ptr[-1] == '-') ptr--; // Truncate trailing '-' marks
678 hostlabel->c[0] = (mDNSu8)(ptr - &hostlabel->c[1]);
679 }
680
681 #define ValidTransportProtocol(X) ( (X)[0] == 4 && (X)[1] == '_' && \
682 ((((X)[2] | 0x20) == 'u' && ((X)[3] | 0x20) == 'd') || (((X)[2] | 0x20) == 't' && ((X)[3] | 0x20) == 'c')) && \
683 ((X)[4] | 0x20) == 'p')
684
ConstructServiceName(domainname * const fqdn,const domainlabel * name,const domainname * type,const domainname * const domain)685 mDNSexport mDNSu8 *ConstructServiceName(domainname *const fqdn,
686 const domainlabel *name, const domainname *type, const domainname *const domain)
687 {
688 int i, len;
689 mDNSu8 *dst = fqdn->c;
690 const mDNSu8 *src;
691 const char *errormsg;
692 #if APPLE_OSX_mDNSResponder
693 mDNSBool loggedUnderscore = mDNSfalse;
694 static char typeBuf[MAX_ESCAPED_DOMAIN_NAME];
695 #endif
696
697 // In the case where there is no name (and ONLY in that case),
698 // a single-label subtype is allowed as the first label of a three-part "type"
699 if (!name && type)
700 {
701 const mDNSu8 *s0 = type->c;
702 if (s0[0] && s0[0] < 0x40) // If legal first label (at least one character, and no more than 63)
703 {
704 const mDNSu8 * s1 = s0 + 1 + s0[0];
705 if (s1[0] && s1[0] < 0x40) // and legal second label (at least one character, and no more than 63)
706 {
707 const mDNSu8 *s2 = s1 + 1 + s1[0];
708 if (s2[0] && s2[0] < 0x40 && s2[1+s2[0]] == 0) // and we have three and only three labels
709 {
710 static const mDNSu8 SubTypeLabel[5] = "\x04_sub";
711 src = s0; // Copy the first label
712 len = *src;
713 for (i=0; i <= len; i++) *dst++ = *src++;
714 for (i=0; i < (int)sizeof(SubTypeLabel); i++) *dst++ = SubTypeLabel[i];
715 type = (const domainname *)s1;
716
717 // Special support to enable the DNSServiceBrowse call made by Bonjour Browser
718 // For these queries, we retract the "._sub" we just added between the subtype and the main type
719 // Remove after Bonjour Browser is updated to use DNSServiceQueryRecord instead of DNSServiceBrowse
720 if (SameDomainName((domainname*)s0, (const domainname*)"\x09_services\x07_dns-sd\x04_udp"))
721 dst -= sizeof(SubTypeLabel);
722 }
723 }
724 }
725 }
726
727 if (name && name->c[0])
728 {
729 src = name->c; // Put the service name into the domain name
730 len = *src;
731 if (len >= 0x40) { errormsg = "Service instance name too long"; goto fail; }
732 for (i=0; i<=len; i++) *dst++ = *src++;
733 }
734 else
735 name = (domainlabel*)""; // Set this up to be non-null, to avoid errors if we have to call LogMsg() below
736
737 src = type->c; // Put the service type into the domain name
738 len = *src;
739 if (len < 2 || len > 16)
740 {
741 LogMsg("Bad service type in %#s.%##s%##s Application protocol name must be underscore plus 1-15 characters. "
742 "See <http://www.dns-sd.org/ServiceTypes.html>", name->c, type->c, domain->c);
743 #if APPLE_OSX_mDNSResponder
744 ConvertDomainNameToCString(type, typeBuf);
745 mDNSASLLog(mDNSNULL, "serviceType.nameTooLong", "noop", typeBuf, "");
746 #endif
747 }
748 if (len < 2 || len >= 0x40 || (len > 16 && !SameDomainName(domain, &localdomain))) return(mDNSNULL);
749 if (src[1] != '_') { errormsg = "Application protocol name must begin with underscore"; goto fail; }
750 for (i=2; i<=len; i++)
751 {
752 // Letters and digits are allowed anywhere
753 if (mDNSIsLetter(src[i]) || mDNSIsDigit(src[i])) continue;
754 // Hyphens are only allowed as interior characters
755 // Underscores are not supposed to be allowed at all, but for backwards compatibility with some old products we do allow them,
756 // with the same rule as hyphens
757 if ((src[i] == '-' || src[i] == '_') && i > 2 && i < len)
758 {
759 #if APPLE_OSX_mDNSResponder
760 if (src[i] == '_' && loggedUnderscore == mDNSfalse)
761 {
762 ConvertDomainNameToCString(type, typeBuf);
763 mDNSASLLog(mDNSNULL, "serviceType.nameWithUnderscore", "noop", typeBuf, "");
764 loggedUnderscore = mDNStrue;
765 }
766 #endif
767 continue;
768 }
769 errormsg = "Application protocol name must contain only letters, digits, and hyphens";
770 #if APPLE_OSX_mDNSResponder
771 {
772 ConvertDomainNameToCString(type, typeBuf);
773 mDNSASLLog(mDNSNULL, "serviceType.nameWithIllegalCharacters", "noop", typeBuf, "");
774 }
775 #endif
776 goto fail;
777 }
778 for (i=0; i<=len; i++) *dst++ = *src++;
779
780 len = *src;
781 if (!ValidTransportProtocol(src)) { errormsg = "Transport protocol name must be _udp or _tcp"; goto fail; }
782 for (i=0; i<=len; i++) *dst++ = *src++;
783
784 if (*src) { errormsg = "Service type must have only two labels"; goto fail; }
785
786 *dst = 0;
787 if (!domain->c[0]) { errormsg = "Service domain must be non-empty"; goto fail; }
788 if (SameDomainName(domain, (const domainname*)"\x05" "local" "\x04" "arpa"))
789 { errormsg = "Illegal domain \"local.arpa.\" Use \"local.\" (or empty string)"; goto fail; }
790 dst = AppendDomainName(fqdn, domain);
791 if (!dst) { errormsg = "Service domain too long"; goto fail; }
792 return(dst);
793
794 fail:
795 LogMsg("ConstructServiceName: %s: %#s.%##s%##s", errormsg, name->c, type->c, domain->c);
796 return(mDNSNULL);
797 }
798
799 // A service name has the form: instance.application-protocol.transport-protocol.domain
800 // DeconstructServiceName is currently fairly forgiving: It doesn't try to enforce character
801 // set or length limits for the protocol names, and the final domain is allowed to be empty.
802 // However, if the given FQDN doesn't contain at least three labels,
803 // DeconstructServiceName will reject it and return mDNSfalse.
DeconstructServiceName(const domainname * const fqdn,domainlabel * const name,domainname * const type,domainname * const domain)804 mDNSexport mDNSBool DeconstructServiceName(const domainname *const fqdn,
805 domainlabel *const name, domainname *const type, domainname *const domain)
806 {
807 int i, len;
808 const mDNSu8 *src = fqdn->c;
809 const mDNSu8 *max = fqdn->c + MAX_DOMAIN_NAME;
810 mDNSu8 *dst;
811
812 dst = name->c; // Extract the service name
813 len = *src;
814 if (!len) { debugf("DeconstructServiceName: FQDN empty!"); return(mDNSfalse); }
815 if (len >= 0x40) { debugf("DeconstructServiceName: Instance name too long"); return(mDNSfalse); }
816 for (i=0; i<=len; i++) *dst++ = *src++;
817
818 dst = type->c; // Extract the service type
819 len = *src;
820 if (!len) { debugf("DeconstructServiceName: FQDN contains only one label!"); return(mDNSfalse); }
821 if (len >= 0x40) { debugf("DeconstructServiceName: Application protocol name too long"); return(mDNSfalse); }
822 if (src[1] != '_'){ debugf("DeconstructServiceName: No _ at start of application protocol"); return(mDNSfalse); }
823 for (i=0; i<=len; i++) *dst++ = *src++;
824
825 len = *src;
826 if (!len) { debugf("DeconstructServiceName: FQDN contains only two labels!"); return(mDNSfalse); }
827 if (!ValidTransportProtocol(src))
828 { debugf("DeconstructServiceName: Transport protocol must be _udp or _tcp"); return(mDNSfalse); }
829 for (i=0; i<=len; i++) *dst++ = *src++;
830 *dst++ = 0; // Put terminator on the end of service type
831
832 dst = domain->c; // Extract the service domain
833 while (*src)
834 {
835 len = *src;
836 if (len >= 0x40)
837 { debugf("DeconstructServiceName: Label in service domain too long"); return(mDNSfalse); }
838 if (src + 1 + len + 1 >= max)
839 { debugf("DeconstructServiceName: Total service domain too long"); return(mDNSfalse); }
840 for (i=0; i<=len; i++) *dst++ = *src++;
841 }
842 *dst++ = 0; // Put the null root label on the end
843
844 return(mDNStrue);
845 }
846
847 // Notes on UTF-8:
848 // 0xxxxxxx represents a 7-bit ASCII value from 0x00 to 0x7F
849 // 10xxxxxx is a continuation byte of a multi-byte character
850 // 110xxxxx is the first byte of a 2-byte character (11 effective bits; values 0x 80 - 0x 800-1)
851 // 1110xxxx is the first byte of a 3-byte character (16 effective bits; values 0x 800 - 0x 10000-1)
852 // 11110xxx is the first byte of a 4-byte character (21 effective bits; values 0x 10000 - 0x 200000-1)
853 // 111110xx is the first byte of a 5-byte character (26 effective bits; values 0x 200000 - 0x 4000000-1)
854 // 1111110x is the first byte of a 6-byte character (31 effective bits; values 0x4000000 - 0x80000000-1)
855 //
856 // UTF-16 surrogate pairs are used in UTF-16 to encode values larger than 0xFFFF.
857 // Although UTF-16 surrogate pairs are not supposed to appear in legal UTF-8, we want to be defensive
858 // about that too. (See <http://www.unicode.org/faq/utf_bom.html#34>, "What are surrogates?")
859 // The first of pair is a UTF-16 value in the range 0xD800-0xDBFF (11101101 1010xxxx 10xxxxxx in UTF-8),
860 // and the second is a UTF-16 value in the range 0xDC00-0xDFFF (11101101 1011xxxx 10xxxxxx in UTF-8).
861
TruncateUTF8ToLength(mDNSu8 * string,mDNSu32 length,mDNSu32 max)862 mDNSexport mDNSu32 TruncateUTF8ToLength(mDNSu8 *string, mDNSu32 length, mDNSu32 max)
863 {
864 if (length > max)
865 {
866 mDNSu8 c1 = string[max]; // First byte after cut point
867 mDNSu8 c2 = (max+1 < length) ? string[max+1] : (mDNSu8)0xB0; // Second byte after cut point
868 length = max; // Trim length down
869 while (length > 0)
870 {
871 // Check if the byte right after the chop point is a UTF-8 continuation byte,
872 // or if the character right after the chop point is the second of a UTF-16 surrogate pair.
873 // If so, then we continue to chop more bytes until we get to a legal chop point.
874 mDNSBool continuation = ((c1 & 0xC0) == 0x80);
875 mDNSBool secondsurrogate = (c1 == 0xED && (c2 & 0xF0) == 0xB0);
876 if (!continuation && !secondsurrogate) break;
877 c2 = c1;
878 c1 = string[--length];
879 }
880 // Having truncated characters off the end of our string, also cut off any residual white space
881 while (length > 0 && string[length-1] <= ' ') length--;
882 }
883 return(length);
884 }
885
886 // Returns true if a rich text label ends in " (nnn)", or if an RFC 1034
887 // name ends in "-nnn", where n is some decimal number.
LabelContainsSuffix(const domainlabel * const name,const mDNSBool RichText)888 mDNSexport mDNSBool LabelContainsSuffix(const domainlabel *const name, const mDNSBool RichText)
889 {
890 mDNSu16 l = name->c[0];
891
892 if (RichText)
893 {
894 if (l < 4) return mDNSfalse; // Need at least " (2)"
895 if (name->c[l--] != ')') return mDNSfalse; // Last char must be ')'
896 if (!mDNSIsDigit(name->c[l])) return mDNSfalse; // Preceeded by a digit
897 l--;
898 while (l > 2 && mDNSIsDigit(name->c[l])) l--; // Strip off digits
899 return (name->c[l] == '(' && name->c[l - 1] == ' ');
900 }
901 else
902 {
903 if (l < 2) return mDNSfalse; // Need at least "-2"
904 if (!mDNSIsDigit(name->c[l])) return mDNSfalse; // Last char must be a digit
905 l--;
906 while (l > 2 && mDNSIsDigit(name->c[l])) l--; // Strip off digits
907 return (name->c[l] == '-');
908 }
909 }
910
911 // removes an auto-generated suffix (appended on a name collision) from a label. caller is
912 // responsible for ensuring that the label does indeed contain a suffix. returns the number
913 // from the suffix that was removed.
RemoveLabelSuffix(domainlabel * name,mDNSBool RichText)914 mDNSexport mDNSu32 RemoveLabelSuffix(domainlabel *name, mDNSBool RichText)
915 {
916 mDNSu32 val = 0, multiplier = 1;
917
918 // Chop closing parentheses from RichText suffix
919 if (RichText && name->c[0] >= 1 && name->c[name->c[0]] == ')') name->c[0]--;
920
921 // Get any existing numerical suffix off the name
922 while (mDNSIsDigit(name->c[name->c[0]]))
923 { val += (name->c[name->c[0]] - '0') * multiplier; multiplier *= 10; name->c[0]--; }
924
925 // Chop opening parentheses or dash from suffix
926 if (RichText)
927 {
928 if (name->c[0] >= 2 && name->c[name->c[0]] == '(' && name->c[name->c[0]-1] == ' ') name->c[0] -= 2;
929 }
930 else
931 {
932 if (name->c[0] >= 1 && name->c[name->c[0]] == '-') name->c[0] -= 1;
933 }
934
935 return(val);
936 }
937
938 // appends a numerical suffix to a label, with the number following a whitespace and enclosed
939 // in parentheses (rich text) or following two consecutive hyphens (RFC 1034 domain label).
AppendLabelSuffix(domainlabel * const name,mDNSu32 val,const mDNSBool RichText)940 mDNSexport void AppendLabelSuffix(domainlabel *const name, mDNSu32 val, const mDNSBool RichText)
941 {
942 mDNSu32 divisor = 1, chars = 2; // Shortest possible RFC1034 name suffix is 2 characters ("-2")
943 if (RichText) chars = 4; // Shortest possible RichText suffix is 4 characters (" (2)")
944
945 // Truncate trailing spaces from RichText names
946 if (RichText) while (name->c[name->c[0]] == ' ') name->c[0]--;
947
948 while (divisor < 0xFFFFFFFFUL/10 && val >= divisor * 10) { divisor *= 10; chars++; }
949
950 name->c[0] = (mDNSu8) TruncateUTF8ToLength(name->c+1, name->c[0], MAX_DOMAIN_LABEL - chars);
951
952 if (RichText) { name->c[++name->c[0]] = ' '; name->c[++name->c[0]] = '('; }
953 else { name->c[++name->c[0]] = '-'; }
954
955 while (divisor)
956 {
957 name->c[++name->c[0]] = (mDNSu8)('0' + val / divisor);
958 val %= divisor;
959 divisor /= 10;
960 }
961
962 if (RichText) name->c[++name->c[0]] = ')';
963 }
964
IncrementLabelSuffix(domainlabel * name,mDNSBool RichText)965 mDNSexport void IncrementLabelSuffix(domainlabel *name, mDNSBool RichText)
966 {
967 mDNSu32 val = 0;
968
969 if (LabelContainsSuffix(name, RichText))
970 val = RemoveLabelSuffix(name, RichText);
971
972 // If no existing suffix, start by renaming "Foo" as "Foo (2)" or "Foo-2" as appropriate.
973 // If existing suffix in the range 2-9, increment it.
974 // If we've had ten conflicts already, there are probably too many hosts trying to use the same name,
975 // so add a random increment to improve the chances of finding an available name next time.
976 if (val == 0) val = 2;
977 else if (val < 10) val++;
978 else val += 1 + mDNSRandom(99);
979
980 AppendLabelSuffix(name, val, RichText);
981 }
982
983 // ***************************************************************************
984 #if COMPILER_LIKES_PRAGMA_MARK
985 #pragma mark -
986 #pragma mark - Resource Record Utility Functions
987 #endif
988
989 // Set up a AuthRecord with sensible default values.
990 // These defaults may be overwritten with new values before mDNS_Register is called
mDNS_SetupResourceRecord(AuthRecord * rr,RData * RDataStorage,mDNSInterfaceID InterfaceID,mDNSu16 rrtype,mDNSu32 ttl,mDNSu8 RecordType,AuthRecType artype,mDNSRecordCallback Callback,void * Context)991 mDNSexport void mDNS_SetupResourceRecord(AuthRecord *rr, RData *RDataStorage, mDNSInterfaceID InterfaceID,
992 mDNSu16 rrtype, mDNSu32 ttl, mDNSu8 RecordType, AuthRecType artype, mDNSRecordCallback Callback, void *Context)
993 {
994 //
995 // LocalOnly auth record can be created with LocalOnly InterfaceID or a valid InterfaceID.
996 // Most of the applications normally create with LocalOnly InterfaceID and we store them as
997 // such, so that we can deliver the response to questions that specify LocalOnly InterfaceID.
998 // LocalOnly resource records can also be created with valid InterfaceID which happens today
999 // when we create LocalOnly records for /etc/hosts.
1000
1001 if (InterfaceID == mDNSInterface_LocalOnly && artype != AuthRecordLocalOnly)
1002 {
1003 LogMsg("mDNS_SetupResourceRecord: ERROR!! Mismatch LocalOnly record InterfaceID %p called with artype %d", InterfaceID, artype);
1004 return;
1005 }
1006 else if (InterfaceID == mDNSInterface_P2P && artype != AuthRecordP2P)
1007 {
1008 LogMsg("mDNS_SetupResourceRecord: ERROR!! Mismatch P2P record InterfaceID %p called with artype %d", InterfaceID, artype);
1009 return;
1010 }
1011 else if (!InterfaceID && (artype == AuthRecordP2P || artype == AuthRecordLocalOnly))
1012 {
1013 LogMsg("mDNS_SetupResourceRecord: ERROR!! Mismatch InterfaceAny record InterfaceID %p called with artype %d", InterfaceID, artype);
1014 return;
1015 }
1016
1017 // Don't try to store a TTL bigger than we can represent in platform time units
1018 if (ttl > 0x7FFFFFFFUL / mDNSPlatformOneSecond)
1019 ttl = 0x7FFFFFFFUL / mDNSPlatformOneSecond;
1020 else if (ttl == 0) // And Zero TTL is illegal
1021 ttl = DefaultTTLforRRType(rrtype);
1022
1023 // Field Group 1: The actual information pertaining to this resource record
1024 rr->resrec.RecordType = RecordType;
1025 rr->resrec.InterfaceID = InterfaceID;
1026 rr->resrec.name = &rr->namestorage;
1027 rr->resrec.rrtype = rrtype;
1028 rr->resrec.rrclass = kDNSClass_IN;
1029 rr->resrec.rroriginalttl = ttl;
1030 rr->resrec.rDNSServer = mDNSNULL;
1031 // rr->resrec.rdlength = MUST set by client and/or in mDNS_Register_internal
1032 // rr->resrec.rdestimate = set in mDNS_Register_internal
1033 // rr->resrec.rdata = MUST be set by client
1034
1035 if (RDataStorage)
1036 rr->resrec.rdata = RDataStorage;
1037 else
1038 {
1039 rr->resrec.rdata = &rr->rdatastorage;
1040 rr->resrec.rdata->MaxRDLength = sizeof(RDataBody);
1041 }
1042
1043 // Field Group 2: Persistent metadata for Authoritative Records
1044 rr->Additional1 = mDNSNULL;
1045 rr->Additional2 = mDNSNULL;
1046 rr->DependentOn = mDNSNULL;
1047 rr->RRSet = mDNSNULL;
1048 rr->RecordCallback = Callback;
1049 rr->RecordContext = Context;
1050
1051 rr->AutoTarget = Target_Manual;
1052 rr->AllowRemoteQuery = mDNSfalse;
1053 rr->ForceMCast = mDNSfalse;
1054
1055 rr->WakeUp = zeroOwner;
1056 rr->AddressProxy = zeroAddr;
1057 rr->TimeRcvd = 0;
1058 rr->TimeExpire = 0;
1059 rr->ARType = artype;
1060
1061 // Field Group 3: Transient state for Authoritative Records (set in mDNS_Register_internal)
1062 // Field Group 4: Transient uDNS state for Authoritative Records (set in mDNS_Register_internal)
1063
1064 // For now, until the uDNS code is fully integrated, it's helpful to zero the uDNS state fields here too, just in case
1065 // (e.g. uDNS_RegisterService short-circuits the usual mDNS_Register_internal record registration calls, so a bunch
1066 // of fields don't get set up properly. In particular, if we don't zero rr->QueuedRData then the uDNS code crashes.)
1067 rr->state = regState_Zero;
1068 rr->uselease = 0;
1069 rr->expire = 0;
1070 rr->Private = 0;
1071 rr->updateid = zeroID;
1072 rr->zone = rr->resrec.name;
1073 rr->nta = mDNSNULL;
1074 rr->tcp = mDNSNULL;
1075 rr->OrigRData = 0;
1076 rr->OrigRDLen = 0;
1077 rr->InFlightRData = 0;
1078 rr->InFlightRDLen = 0;
1079 rr->QueuedRData = 0;
1080 rr->QueuedRDLen = 0;
1081 mDNSPlatformMemZero(&rr->NATinfo, sizeof(rr->NATinfo));
1082 rr->SRVChanged = mDNSfalse;
1083 rr->mState = mergeState_Zero;
1084
1085 rr->namestorage.c[0] = 0; // MUST be set by client before calling mDNS_Register()
1086 }
1087
mDNS_SetupQuestion(DNSQuestion * const q,const mDNSInterfaceID InterfaceID,const domainname * const name,const mDNSu16 qtype,mDNSQuestionCallback * const callback,void * const context)1088 mDNSexport void mDNS_SetupQuestion(DNSQuestion *const q, const mDNSInterfaceID InterfaceID, const domainname *const name,
1089 const mDNSu16 qtype, mDNSQuestionCallback *const callback, void *const context)
1090 {
1091 q->InterfaceID = InterfaceID;
1092 q->Target = zeroAddr;
1093 AssignDomainName(&q->qname, name);
1094 q->qtype = qtype;
1095 q->qclass = kDNSClass_IN;
1096 q->LongLived = (qtype == kDNSType_PTR);
1097 q->ExpectUnique = (qtype != kDNSType_PTR);
1098 q->ForceMCast = mDNSfalse;
1099 q->ReturnIntermed = mDNSfalse;
1100 q->SuppressUnusable = mDNSfalse;
1101 q->SearchListIndex = 0;
1102 q->AppendSearchDomains = 0;
1103 q->RetryWithSearchDomains = mDNSfalse;
1104 q->TimeoutQuestion = 0;
1105 q->WakeOnResolve = 0;
1106 q->qnameOrig = mDNSNULL;
1107 q->QuestionCallback = callback;
1108 q->QuestionContext = context;
1109 }
1110
RDataHashValue(const ResourceRecord * const rr)1111 mDNSexport mDNSu32 RDataHashValue(const ResourceRecord *const rr)
1112 {
1113 int len = rr->rdlength;
1114 const RDataBody2 *const rdb = (RDataBody2 *)rr->rdata->u.data;
1115 switch(rr->rrtype)
1116 {
1117 case kDNSType_NS:
1118 case kDNSType_CNAME:
1119 case kDNSType_PTR:
1120 case kDNSType_DNAME: return DomainNameHashValue(&rdb->name);
1121
1122 case kDNSType_SOA: return rdb->soa.serial +
1123 rdb->soa.refresh +
1124 rdb->soa.retry +
1125 rdb->soa.expire +
1126 rdb->soa.min +
1127 DomainNameHashValue(&rdb->soa.mname) +
1128 DomainNameHashValue(&rdb->soa.rname);
1129
1130 case kDNSType_MX:
1131 case kDNSType_AFSDB:
1132 case kDNSType_RT:
1133 case kDNSType_KX: return DomainNameHashValue(&rdb->mx.exchange);
1134
1135 case kDNSType_RP: return DomainNameHashValue(&rdb->rp.mbox) + DomainNameHashValue(&rdb->rp.txt);
1136
1137 case kDNSType_PX: return DomainNameHashValue(&rdb->px.map822) + DomainNameHashValue(&rdb->px.mapx400);
1138
1139 case kDNSType_SRV: return DomainNameHashValue(&rdb->srv.target);
1140
1141 case kDNSType_OPT: return 0; // OPT is a pseudo-RR container structure; makes no sense to compare
1142
1143 case kDNSType_NSEC: len = sizeof(rdataNSEC); // Use in-memory length of 32, and fall through default checksum computation below
1144
1145 default:
1146 {
1147 mDNSu32 sum = 0;
1148 int i;
1149 for (i=0; i+1 < len; i+=2)
1150 {
1151 sum += (((mDNSu32)(rdb->data[i])) << 8) | rdb->data[i+1];
1152 sum = (sum<<3) | (sum>>29);
1153 }
1154 if (i < len)
1155 {
1156 sum += ((mDNSu32)(rdb->data[i])) << 8;
1157 }
1158 return(sum);
1159 }
1160 }
1161 }
1162
1163 // r1 has to be a full ResourceRecord including rrtype and rdlength
1164 // r2 is just a bare RDataBody, which MUST be the same rrtype and rdlength as r1
SameRDataBody(const ResourceRecord * const r1,const RDataBody * const r2,DomainNameComparisonFn * samename)1165 mDNSexport mDNSBool SameRDataBody(const ResourceRecord *const r1, const RDataBody *const r2, DomainNameComparisonFn *samename)
1166 {
1167 const RDataBody2 *const b1 = (RDataBody2 *)r1->rdata->u.data;
1168 const RDataBody2 *const b2 = (RDataBody2 *)r2;
1169 switch(r1->rrtype)
1170 {
1171 case kDNSType_NS:
1172 case kDNSType_CNAME:
1173 case kDNSType_PTR:
1174 case kDNSType_DNAME:return(SameDomainName(&b1->name, &b2->name));
1175
1176 case kDNSType_SOA: return(mDNSBool)( b1->soa.serial == b2->soa.serial &&
1177 b1->soa.refresh == b2->soa.refresh &&
1178 b1->soa.retry == b2->soa.retry &&
1179 b1->soa.expire == b2->soa.expire &&
1180 b1->soa.min == b2->soa.min &&
1181 samename(&b1->soa.mname, &b2->soa.mname) &&
1182 samename(&b1->soa.rname, &b2->soa.rname));
1183
1184 case kDNSType_MX:
1185 case kDNSType_AFSDB:
1186 case kDNSType_RT:
1187 case kDNSType_KX: return(mDNSBool)( b1->mx.preference == b2->mx.preference &&
1188 samename(&b1->mx.exchange, &b2->mx.exchange));
1189
1190 case kDNSType_RP: return(mDNSBool)( samename(&b1->rp.mbox, &b2->rp.mbox) &&
1191 samename(&b1->rp.txt, &b2->rp.txt));
1192
1193 case kDNSType_PX: return(mDNSBool)( b1->px.preference == b2->px.preference &&
1194 samename(&b1->px.map822, &b2->px.map822) &&
1195 samename(&b1->px.mapx400, &b2->px.mapx400));
1196
1197 case kDNSType_SRV: return(mDNSBool)( b1->srv.priority == b2->srv.priority &&
1198 b1->srv.weight == b2->srv.weight &&
1199 mDNSSameIPPort(b1->srv.port, b2->srv.port) &&
1200 samename(&b1->srv.target, &b2->srv.target));
1201
1202 case kDNSType_OPT: return mDNSfalse; // OPT is a pseudo-RR container structure; makes no sense to compare
1203
1204 case kDNSType_NSEC: return(mDNSPlatformMemSame(b1->data, b2->data, sizeof(rdataNSEC)));
1205
1206 default: return(mDNSPlatformMemSame(b1->data, b2->data, r1->rdlength));
1207 }
1208 }
1209
1210 // ResourceRecordAnswersQuestion returns mDNStrue if the given resource record is a valid answer to the given question.
1211 // SameNameRecordAnswersQuestion is the same, except it skips the expensive SameDomainName() call.
1212 // SameDomainName() is generally cheap when the names don't match, but expensive when they do match,
1213 // because it has to check all the way to the end of the names to be sure.
1214 // In cases where we know in advance that the names match it's especially advantageous to skip the
1215 // SameDomainName() call because that's precisely the time when it's most expensive and least useful.
1216
SameNameRecordAnswersQuestion(const ResourceRecord * const rr,const DNSQuestion * const q)1217 mDNSexport mDNSBool SameNameRecordAnswersQuestion(const ResourceRecord *const rr, const DNSQuestion *const q)
1218 {
1219 // LocalOnly/P2P questions can be answered with AuthRecordAny in this function. LocalOnly/P2P records
1220 // are handled in LocalOnlyRecordAnswersQuestion
1221 if ((rr->InterfaceID == mDNSInterface_LocalOnly) || (rr->InterfaceID == mDNSInterface_P2P))
1222 {
1223 LogMsg("SameNameRecordAnswersQuestion: ERROR!! called with LocalOnly ResourceRecord %p, Question %p", rr->InterfaceID, q->InterfaceID);
1224 return mDNSfalse;
1225 }
1226 if (rr->InterfaceID &&
1227 q ->InterfaceID && q->InterfaceID != mDNSInterface_LocalOnly &&
1228 rr->InterfaceID != q->InterfaceID) return(mDNSfalse);
1229
1230 // Resource record received via unicast, the DNSServer entries should match ?
1231 if (!rr->InterfaceID && rr->rDNSServer != q->qDNSServer) return(mDNSfalse);
1232
1233 // If ResourceRecord received via multicast, but question was unicast, then shouldn't use record to answer this question
1234 if (rr->InterfaceID && !mDNSOpaque16IsZero(q->TargetQID)) return(mDNSfalse);
1235
1236 // RR type CNAME matches any query type. QTYPE ANY matches any RR type. QCLASS ANY matches any RR class.
1237 if (!RRTypeAnswersQuestionType(rr,q->qtype)) return(mDNSfalse);
1238 if (rr->rrclass != q->qclass && q->qclass != kDNSQClass_ANY) return(mDNSfalse);
1239
1240 return(mDNStrue);
1241 }
1242
ResourceRecordAnswersQuestion(const ResourceRecord * const rr,const DNSQuestion * const q)1243 mDNSexport mDNSBool ResourceRecordAnswersQuestion(const ResourceRecord *const rr, const DNSQuestion *const q)
1244 {
1245 // LocalOnly/P2P questions can be answered with AuthRecordAny in this function. LocalOnly/P2P records
1246 // are handled in LocalOnlyRecordAnswersQuestion
1247 if ((rr->InterfaceID == mDNSInterface_LocalOnly) || (rr->InterfaceID == mDNSInterface_P2P))
1248 {
1249 LogMsg("ResourceRecordAnswersQuestion: ERROR!! called with LocalOnly/P2P ResourceRecord %p, Question %p", rr->InterfaceID, q->InterfaceID);
1250 return mDNSfalse;
1251 }
1252
1253 if (rr->InterfaceID &&
1254 q ->InterfaceID && q->InterfaceID != mDNSInterface_LocalOnly &&
1255 rr->InterfaceID != q->InterfaceID) return(mDNSfalse);
1256
1257 // Resource record received via unicast, the DNSServer entries should match ?
1258 if (!rr->InterfaceID && rr->rDNSServer != q->qDNSServer) return(mDNSfalse);
1259
1260 // If ResourceRecord received via multicast, but question was unicast, then shouldn't use record to answer this question.
1261 if (rr->InterfaceID && !mDNSOpaque16IsZero(q->TargetQID)) return(mDNSfalse);
1262
1263 // RR type CNAME matches any query type. QTYPE ANY matches any RR type. QCLASS ANY matches any RR class.
1264 if (!RRTypeAnswersQuestionType(rr,q->qtype)) return(mDNSfalse);
1265 if (rr->rrclass != q->qclass && q->qclass != kDNSQClass_ANY) return(mDNSfalse);
1266
1267 return(rr->namehash == q->qnamehash && SameDomainName(rr->name, &q->qname));
1268 }
1269
1270 // We have a separate function to handle LocalOnly AuthRecords because they can be created with
1271 // a valid InterfaceID (e.g., scoped /etc/hosts) and can be used to answer unicast questions unlike
1272 // multicast resource records (which has a valid InterfaceID) which can't be used to answer
1273 // unicast questions. ResourceRecordAnswersQuestion/SameNameRecordAnswersQuestion can't tell whether
1274 // a resource record is multicast or LocalOnly by just looking at the ResourceRecord because
1275 // LocalOnly records are truly identified by ARType in the AuthRecord. As P2P and LocalOnly record
1276 // are kept in the same hash table, we use the same function to make it easy for the callers when
1277 // they walk the hash table to answer LocalOnly/P2P questions
1278 //
LocalOnlyRecordAnswersQuestion(AuthRecord * const ar,const DNSQuestion * const q)1279 mDNSexport mDNSBool LocalOnlyRecordAnswersQuestion(AuthRecord *const ar, const DNSQuestion *const q)
1280 {
1281 ResourceRecord *rr = &ar->resrec;
1282
1283 // mDNSInterface_Any questions can be answered with LocalOnly/P2P records in this function. AuthRecord_Any
1284 // records are handled in ResourceRecordAnswersQuestion/SameNameRecordAnswersQuestion
1285 if (RRAny(ar))
1286 {
1287 LogMsg("LocalOnlyRecordAnswersQuestion: ERROR!! called with regular AuthRecordAny %##s", rr->name->c);
1288 return mDNSfalse;
1289 }
1290
1291 // Questions with mDNSInterface_LocalOnly InterfaceID should be answered with all resource records that are
1292 // *local* to the machine. These include resource records that have InterfaceID set to mDNSInterface_LocalOnly,
1293 // mDNSInterface_Any and any other real InterfaceID. Hence, LocalOnly questions should not be checked against
1294 // the InterfaceID in the resource record.
1295 //
1296 // mDNSInterface_Unicast does not indicate any scope and hence treat them like mDNSInterface_Any.
1297
1298 if (rr->InterfaceID &&
1299 q->InterfaceID && q->InterfaceID != mDNSInterface_LocalOnly && q->InterfaceID != mDNSInterface_Unicast &&
1300 rr->InterfaceID != q->InterfaceID) return(mDNSfalse);
1301
1302 // Entries in /etc/hosts are added as LocalOnly resource records. The LocalOnly resource records
1303 // may have a scope e.g., fe80::1%en0. The question may be scoped or not: the InterfaceID may be set
1304 // to mDNSInterface_Any, mDNSInterface_LocalOnly or a real InterfaceID (scoped).
1305 //
1306 // 1) Question: Any, LocalOnly Record: no scope. This question should be answered with this record.
1307 //
1308 // 2) Question: Any, LocalOnly Record: scoped. This question should be answered with the record because
1309 // traditionally applications never specify scope e.g., getaddrinfo, but need to be able
1310 // to get to /etc/hosts entries.
1311 //
1312 // 3) Question: Scoped (LocalOnly or InterfaceID), LocalOnly Record: no scope. This is the inverse of (2).
1313 // If we register a LocalOnly record, we need to answer a LocalOnly question. If the /etc/hosts has a
1314 // non scoped entry, it may not make sense to answer a scoped question. But we can't tell these two
1315 // cases apart. As we currently answer LocalOnly question with LocalOnly record, we continue to do so.
1316 //
1317 // 4) Question: Scoped (LocalOnly or InterfaceID), LocalOnly Record: scoped. LocalOnly questions should be
1318 // answered with any resource record where as if it has a valid InterfaceID, the scope should match.
1319 //
1320 // (1) and (2) is bypassed because we check for a non-NULL InterfaceID above. For (3), the InterfaceID is NULL
1321 // and hence bypassed above. For (4) we bypassed LocalOnly questions and checked the scope of the record
1322 // against the question.
1323 //
1324 // For P2P, InterfaceIDs of the question and the record should match.
1325
1326 // If ResourceRecord received via multicast, but question was unicast, then shouldn't use record to answer this question.
1327 // LocalOnly authoritative answers are exempt. LocalOnly authoritative answers are used for /etc/host entries.
1328 // We don't want a local process to be able to create a fake LocalOnly address record for "www.bigbank.com" which would then
1329 // cause other applications (e.g. Safari) to connect to the wrong address. The rpc to register records filters out records
1330 // with names that don't end in local and have mDNSInterface_LocalOnly set.
1331 //
1332 // Note: The check is bypassed for LocalOnly and for P2P it is not needed as only .local records are registered and for
1333 // a question to match its names, it also has to end in .local and that question can't be a unicast question (See
1334 // Question_uDNS macro and its usage). As P2P does not enforce .local only registrations we still make this check
1335 // and also makes it future proof.
1336
1337 if (ar->ARType != AuthRecordLocalOnly && rr->InterfaceID && !mDNSOpaque16IsZero(q->TargetQID)) return(mDNSfalse);
1338
1339 // RR type CNAME matches any query type. QTYPE ANY matches any RR type. QCLASS ANY matches any RR class.
1340 if (!RRTypeAnswersQuestionType(rr,q->qtype)) return(mDNSfalse);
1341 if (rr->rrclass != q->qclass && q->qclass != kDNSQClass_ANY) return(mDNSfalse);
1342
1343 return(rr->namehash == q->qnamehash && SameDomainName(rr->name, &q->qname));
1344 }
1345
AnyTypeRecordAnswersQuestion(const ResourceRecord * const rr,const DNSQuestion * const q)1346 mDNSexport mDNSBool AnyTypeRecordAnswersQuestion(const ResourceRecord *const rr, const DNSQuestion *const q)
1347 {
1348 // LocalOnly/P2P questions can be answered with AuthRecordAny in this function. LocalOnly/P2P records
1349 // are handled in LocalOnlyRecordAnswersQuestion
1350 if ((rr->InterfaceID == mDNSInterface_LocalOnly) || (rr->InterfaceID == mDNSInterface_P2P))
1351 {
1352 LogMsg("AnyTypeRecordAnswersQuestion: ERROR!! called with LocalOnly ResourceRecord %p, Question %p", rr->InterfaceID, q->InterfaceID);
1353 return mDNSfalse;
1354 }
1355 if (rr->InterfaceID &&
1356 q ->InterfaceID && q->InterfaceID != mDNSInterface_LocalOnly &&
1357 rr->InterfaceID != q->InterfaceID) return(mDNSfalse);
1358
1359 // Resource record received via unicast, the DNSServer entries should match ?
1360 // Note that Auth Records are normally setup with NULL InterfaceID and
1361 // both the DNSServers are assumed to be NULL in that case
1362 if (!rr->InterfaceID && rr->rDNSServer != q->qDNSServer) return(mDNSfalse);
1363
1364 // If ResourceRecord received via multicast, but question was unicast, then shouldn't use record to answer this question
1365 if (rr->InterfaceID && !mDNSOpaque16IsZero(q->TargetQID)) return(mDNSfalse);
1366
1367 if (rr->rrclass != q->qclass && q->qclass != kDNSQClass_ANY) return(mDNSfalse);
1368
1369 return(rr->namehash == q->qnamehash && SameDomainName(rr->name, &q->qname));
1370 }
1371
1372 // This is called with both unicast resource record and multicast resource record. The question that
1373 // received the unicast response could be the regular unicast response from a DNS server or a response
1374 // to a mDNS QU query. The main reason we need this function is that we can't compare DNSServers between the
1375 // question and the resource record because the resource record is not completely initialized in
1376 // mDNSCoreReceiveResponse when this function is called.
ResourceRecordAnswersUnicastResponse(const ResourceRecord * const rr,const DNSQuestion * const q)1377 mDNSexport mDNSBool ResourceRecordAnswersUnicastResponse(const ResourceRecord *const rr, const DNSQuestion *const q)
1378 {
1379 // For resource records created using multicast, the InterfaceIDs have to match
1380 if (rr->InterfaceID &&
1381 q->InterfaceID && rr->InterfaceID != q->InterfaceID) return(mDNSfalse);
1382
1383 // If ResourceRecord received via multicast, but question was unicast, then shouldn't use record to answer this question.
1384 if (rr->InterfaceID && !mDNSOpaque16IsZero(q->TargetQID)) return(mDNSfalse);
1385
1386 // RR type CNAME matches any query type. QTYPE ANY matches any RR type. QCLASS ANY matches any RR class.
1387 if (!RRTypeAnswersQuestionType(rr,q->qtype)) return(mDNSfalse);
1388
1389 if (rr->rrclass != q->qclass && q->qclass != kDNSQClass_ANY) return(mDNSfalse);
1390
1391 return(rr->namehash == q->qnamehash && SameDomainName(rr->name, &q->qname));
1392 }
1393
GetRDLength(const ResourceRecord * const rr,mDNSBool estimate)1394 mDNSexport mDNSu16 GetRDLength(const ResourceRecord *const rr, mDNSBool estimate)
1395 {
1396 const RDataBody2 *const rd = (RDataBody2 *)rr->rdata->u.data;
1397 const domainname *const name = estimate ? rr->name : mDNSNULL;
1398 if (rr->rrclass == kDNSQClass_ANY) return(rr->rdlength); // Used in update packets to mean "Delete An RRset" (RFC 2136)
1399 else switch (rr->rrtype)
1400 {
1401 case kDNSType_A: return(sizeof(rd->ipv4));
1402
1403 case kDNSType_NS:
1404 case kDNSType_CNAME:
1405 case kDNSType_PTR:
1406 case kDNSType_DNAME:return(CompressedDomainNameLength(&rd->name, name));
1407
1408 case kDNSType_SOA: return(mDNSu16)(CompressedDomainNameLength(&rd->soa.mname, name) +
1409 CompressedDomainNameLength(&rd->soa.rname, name) +
1410 5 * sizeof(mDNSOpaque32));
1411
1412 case kDNSType_NULL:
1413 case kDNSType_TSIG:
1414 case kDNSType_TXT:
1415 case kDNSType_X25:
1416 case kDNSType_ISDN:
1417 case kDNSType_LOC:
1418 case kDNSType_DHCID:return(rr->rdlength); // Not self-describing, so have to just trust rdlength
1419
1420 case kDNSType_HINFO:return(mDNSu16)(2 + (int)rd->data[0] + (int)rd->data[1 + (int)rd->data[0]]);
1421
1422 case kDNSType_MX:
1423 case kDNSType_AFSDB:
1424 case kDNSType_RT:
1425 case kDNSType_KX: return(mDNSu16)(2 + CompressedDomainNameLength(&rd->mx.exchange, name));
1426
1427 case kDNSType_RP: return(mDNSu16)(CompressedDomainNameLength(&rd->rp.mbox, name) +
1428 CompressedDomainNameLength(&rd->rp.txt, name));
1429
1430 case kDNSType_PX: return(mDNSu16)(2 + CompressedDomainNameLength(&rd->px.map822, name) +
1431 CompressedDomainNameLength(&rd->px.mapx400, name));
1432
1433 case kDNSType_AAAA: return(sizeof(rd->ipv6));
1434
1435 case kDNSType_SRV: return(mDNSu16)(6 + CompressedDomainNameLength(&rd->srv.target, name));
1436
1437 case kDNSType_OPT: return(rr->rdlength);
1438
1439 case kDNSType_NSEC: {
1440 int i;
1441 for (i=sizeof(rdataNSEC); i>0; i--) if (rd->nsec.bitmap[i-1]) break;
1442 // For our simplified use of NSEC synthetic records:
1443 // nextname is always the record's own name,
1444 // and if we have at least one record type that exists,
1445 // - the block number is always 0,
1446 // - the count byte is a value in the range 1-32,
1447 // - followed by the 1-32 data bytes
1448 return(mDNSu16)((estimate ? 2 : DomainNameLength(rr->name)) + (i ? (2 + i) : 0));
1449 }
1450
1451 default: debugf("Warning! Don't know how to get length of resource type %d", rr->rrtype);
1452 return(rr->rdlength);
1453 }
1454 }
1455
1456 // When a local client registers (or updates) a record, we use this routine to do some simple validation checks
1457 // to help reduce the risk of bogus malformed data on the network
ValidateRData(const mDNSu16 rrtype,const mDNSu16 rdlength,const RData * const rd)1458 mDNSexport mDNSBool ValidateRData(const mDNSu16 rrtype, const mDNSu16 rdlength, const RData *const rd)
1459 {
1460 mDNSu16 len;
1461
1462 switch(rrtype)
1463 {
1464 case kDNSType_A: return(rdlength == sizeof(mDNSv4Addr));
1465
1466 case kDNSType_NS: // Same as PTR
1467 case kDNSType_MD: // Same as PTR
1468 case kDNSType_MF: // Same as PTR
1469 case kDNSType_CNAME:// Same as PTR
1470 //case kDNSType_SOA not checked
1471 case kDNSType_MB: // Same as PTR
1472 case kDNSType_MG: // Same as PTR
1473 case kDNSType_MR: // Same as PTR
1474 //case kDNSType_NULL not checked (no specified format, so always valid)
1475 //case kDNSType_WKS not checked
1476 case kDNSType_PTR: len = DomainNameLengthLimit(&rd->u.name, rd->u.data + rdlength);
1477 return(len <= MAX_DOMAIN_NAME && rdlength == len);
1478
1479 case kDNSType_HINFO:// Same as TXT (roughly)
1480 case kDNSType_MINFO:// Same as TXT (roughly)
1481 case kDNSType_TXT: if (!rdlength) return(mDNSfalse); // TXT record has to be at least one byte (RFC 1035)
1482 {
1483 const mDNSu8 *ptr = rd->u.txt.c;
1484 const mDNSu8 *end = rd->u.txt.c + rdlength;
1485 while (ptr < end) ptr += 1 + ptr[0];
1486 return (ptr == end);
1487 }
1488
1489 case kDNSType_AAAA: return(rdlength == sizeof(mDNSv6Addr));
1490
1491 case kDNSType_MX: // Must be at least two-byte preference, plus domainname
1492 // Call to DomainNameLengthLimit() implicitly enforces both requirements for us
1493 len = DomainNameLengthLimit(&rd->u.mx.exchange, rd->u.data + rdlength);
1494 return(len <= MAX_DOMAIN_NAME && rdlength == 2+len);
1495
1496 case kDNSType_SRV: // Must be at least priority+weight+port, plus domainname
1497 // Call to DomainNameLengthLimit() implicitly enforces both requirements for us
1498 len = DomainNameLengthLimit(&rd->u.srv.target, rd->u.data + rdlength);
1499 return(len <= MAX_DOMAIN_NAME && rdlength == 6+len);
1500
1501 //case kDNSType_NSEC not checked
1502
1503 default: return(mDNStrue); // Allow all other types without checking
1504 }
1505 }
1506
1507 // ***************************************************************************
1508 #if COMPILER_LIKES_PRAGMA_MARK
1509 #pragma mark -
1510 #pragma mark - DNS Message Creation Functions
1511 #endif
1512
InitializeDNSMessage(DNSMessageHeader * h,mDNSOpaque16 id,mDNSOpaque16 flags)1513 mDNSexport void InitializeDNSMessage(DNSMessageHeader *h, mDNSOpaque16 id, mDNSOpaque16 flags)
1514 {
1515 h->id = id;
1516 h->flags = flags;
1517 h->numQuestions = 0;
1518 h->numAnswers = 0;
1519 h->numAuthorities = 0;
1520 h->numAdditionals = 0;
1521 }
1522
FindCompressionPointer(const mDNSu8 * const base,const mDNSu8 * const end,const mDNSu8 * const domname)1523 mDNSexport const mDNSu8 *FindCompressionPointer(const mDNSu8 *const base, const mDNSu8 *const end, const mDNSu8 *const domname)
1524 {
1525 const mDNSu8 *result = end - *domname - 1;
1526
1527 if (*domname == 0) return(mDNSNULL); // There's no point trying to match just the root label
1528
1529 // This loop examines each possible starting position in packet, starting end of the packet and working backwards
1530 while (result >= base)
1531 {
1532 // If the length byte and first character of the label match, then check further to see
1533 // if this location in the packet will yield a useful name compression pointer.
1534 if (result[0] == domname[0] && result[1] == domname[1])
1535 {
1536 const mDNSu8 *name = domname;
1537 const mDNSu8 *targ = result;
1538 while (targ + *name < end)
1539 {
1540 // First see if this label matches
1541 int i;
1542 const mDNSu8 *pointertarget;
1543 for (i=0; i <= *name; i++) if (targ[i] != name[i]) break;
1544 if (i <= *name) break; // If label did not match, bail out
1545 targ += 1 + *name; // Else, did match, so advance target pointer
1546 name += 1 + *name; // and proceed to check next label
1547 if (*name == 0 && *targ == 0) return(result); // If no more labels, we found a match!
1548 if (*name == 0) break; // If no more labels to match, we failed, so bail out
1549
1550 // The label matched, so now follow the pointer (if appropriate) and then see if the next label matches
1551 if (targ[0] < 0x40) continue; // If length value, continue to check next label
1552 if (targ[0] < 0xC0) break; // If 40-BF, not valid
1553 if (targ+1 >= end) break; // Second byte not present!
1554 pointertarget = base + (((mDNSu16)(targ[0] & 0x3F)) << 8) + targ[1];
1555 if (targ < pointertarget) break; // Pointertarget must point *backwards* in the packet
1556 if (pointertarget[0] >= 0x40) break; // Pointertarget must point to a valid length byte
1557 targ = pointertarget;
1558 }
1559 }
1560 result--; // We failed to match at this search position, so back up the tentative result pointer and try again
1561 }
1562 return(mDNSNULL);
1563 }
1564
1565 // Put a string of dot-separated labels as length-prefixed labels
1566 // domainname is a fully-qualified name (i.e. assumed to be ending in a dot, even if it doesn't)
1567 // msg points to the message we're building (pass mDNSNULL if we don't want to use compression pointers)
1568 // end points to the end of the message so far
1569 // ptr points to where we want to put the name
1570 // limit points to one byte past the end of the buffer that we must not overrun
1571 // domainname is the name to put
putDomainNameAsLabels(const DNSMessage * const msg,mDNSu8 * ptr,const mDNSu8 * const limit,const domainname * const name)1572 mDNSexport mDNSu8 *putDomainNameAsLabels(const DNSMessage *const msg,
1573 mDNSu8 *ptr, const mDNSu8 *const limit, const domainname *const name)
1574 {
1575 const mDNSu8 *const base = (const mDNSu8 *)msg;
1576 const mDNSu8 * np = name->c;
1577 const mDNSu8 *const max = name->c + MAX_DOMAIN_NAME; // Maximum that's valid
1578 const mDNSu8 * pointer = mDNSNULL;
1579 const mDNSu8 *const searchlimit = ptr;
1580
1581 if (!ptr) { LogMsg("putDomainNameAsLabels %##s ptr is null", name->c); return(mDNSNULL); }
1582
1583 if (!*np) // If just writing one-byte root label, make sure we have space for that
1584 {
1585 if (ptr >= limit) return(mDNSNULL);
1586 }
1587 else // else, loop through writing labels and/or a compression offset
1588 {
1589 do {
1590 if (*np > MAX_DOMAIN_LABEL)
1591 { LogMsg("Malformed domain name %##s (label more than 63 bytes)", name->c); return(mDNSNULL); }
1592
1593 // This check correctly allows for the final trailing root label:
1594 // e.g.
1595 // Suppose our domain name is exactly 256 bytes long, including the final trailing root label.
1596 // Suppose np is now at name->c[249], and we're about to write our last non-null label ("local").
1597 // We know that max will be at name->c[256]
1598 // That means that np + 1 + 5 == max - 1, so we (just) pass the "if" test below, write our
1599 // six bytes, then exit the loop, write the final terminating root label, and the domain
1600 // name we've written is exactly 256 bytes long, exactly at the correct legal limit.
1601 // If the name is one byte longer, then we fail the "if" test below, and correctly bail out.
1602 if (np + 1 + *np >= max)
1603 { LogMsg("Malformed domain name %##s (more than 256 bytes)", name->c); return(mDNSNULL); }
1604
1605 if (base) pointer = FindCompressionPointer(base, searchlimit, np);
1606 if (pointer) // Use a compression pointer if we can
1607 {
1608 const mDNSu16 offset = (mDNSu16)(pointer - base);
1609 if (ptr+2 > limit) return(mDNSNULL); // If we don't have two bytes of space left, give up
1610 *ptr++ = (mDNSu8)(0xC0 | (offset >> 8));
1611 *ptr++ = (mDNSu8)( offset & 0xFF);
1612 return(ptr);
1613 }
1614 else // Else copy one label and try again
1615 {
1616 int i;
1617 mDNSu8 len = *np++;
1618 // If we don't at least have enough space for this label *plus* a terminating zero on the end, give up
1619 if (ptr + 1 + len >= limit) return(mDNSNULL);
1620 *ptr++ = len;
1621 for (i=0; i<len; i++) *ptr++ = *np++;
1622 }
1623 } while (*np); // While we've got characters remaining in the name, continue
1624 }
1625
1626 *ptr++ = 0; // Put the final root label
1627 return(ptr);
1628 }
1629
putVal16(mDNSu8 * ptr,mDNSu16 val)1630 mDNSlocal mDNSu8 *putVal16(mDNSu8 *ptr, mDNSu16 val)
1631 {
1632 ptr[0] = (mDNSu8)((val >> 8 ) & 0xFF);
1633 ptr[1] = (mDNSu8)((val ) & 0xFF);
1634 return ptr + sizeof(mDNSOpaque16);
1635 }
1636
putVal32(mDNSu8 * ptr,mDNSu32 val)1637 mDNSlocal mDNSu8 *putVal32(mDNSu8 *ptr, mDNSu32 val)
1638 {
1639 ptr[0] = (mDNSu8)((val >> 24) & 0xFF);
1640 ptr[1] = (mDNSu8)((val >> 16) & 0xFF);
1641 ptr[2] = (mDNSu8)((val >> 8) & 0xFF);
1642 ptr[3] = (mDNSu8)((val ) & 0xFF);
1643 return ptr + sizeof(mDNSu32);
1644 }
1645
1646 // msg points to the message we're building (pass mDNSNULL if we don't want to use compression pointers)
putRData(const DNSMessage * const msg,mDNSu8 * ptr,const mDNSu8 * const limit,const ResourceRecord * const rr)1647 mDNSexport mDNSu8 *putRData(const DNSMessage *const msg, mDNSu8 *ptr, const mDNSu8 *const limit, const ResourceRecord *const rr)
1648 {
1649 const RDataBody2 *const rdb = (RDataBody2 *)rr->rdata->u.data;
1650 switch (rr->rrtype)
1651 {
1652 case kDNSType_A: if (rr->rdlength != 4)
1653 { debugf("putRData: Illegal length %d for kDNSType_A", rr->rdlength); return(mDNSNULL); }
1654 if (ptr + 4 > limit) return(mDNSNULL);
1655 *ptr++ = rdb->ipv4.b[0];
1656 *ptr++ = rdb->ipv4.b[1];
1657 *ptr++ = rdb->ipv4.b[2];
1658 *ptr++ = rdb->ipv4.b[3];
1659 return(ptr);
1660
1661 case kDNSType_NS:
1662 case kDNSType_CNAME:
1663 case kDNSType_PTR:
1664 case kDNSType_DNAME:return(putDomainNameAsLabels(msg, ptr, limit, &rdb->name));
1665
1666 case kDNSType_SOA: ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->soa.mname);
1667 if (!ptr) return(mDNSNULL);
1668 ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->soa.rname);
1669 if (!ptr || ptr + 20 > limit) return(mDNSNULL);
1670 ptr = putVal32(ptr, rdb->soa.serial);
1671 ptr = putVal32(ptr, rdb->soa.refresh);
1672 ptr = putVal32(ptr, rdb->soa.retry);
1673 ptr = putVal32(ptr, rdb->soa.expire);
1674 ptr = putVal32(ptr, rdb->soa.min);
1675 return(ptr);
1676
1677 case kDNSType_NULL:
1678 case kDNSType_HINFO:
1679 case kDNSType_TSIG:
1680 case kDNSType_TXT:
1681 case kDNSType_X25:
1682 case kDNSType_ISDN:
1683 case kDNSType_LOC:
1684 case kDNSType_DHCID:if (ptr + rr->rdlength > limit) return(mDNSNULL);
1685 mDNSPlatformMemCopy(ptr, rdb->data, rr->rdlength);
1686 return(ptr + rr->rdlength);
1687
1688 case kDNSType_MX:
1689 case kDNSType_AFSDB:
1690 case kDNSType_RT:
1691 case kDNSType_KX: if (ptr + 3 > limit) return(mDNSNULL);
1692 ptr = putVal16(ptr, rdb->mx.preference);
1693 return(putDomainNameAsLabels(msg, ptr, limit, &rdb->mx.exchange));
1694
1695 case kDNSType_RP: ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->rp.mbox);
1696 if (!ptr) return(mDNSNULL);
1697 ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->rp.txt);
1698 return(ptr);
1699
1700 case kDNSType_PX: if (ptr + 5 > limit) return(mDNSNULL);
1701 ptr = putVal16(ptr, rdb->px.preference);
1702 ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->px.map822);
1703 if (!ptr) return(mDNSNULL);
1704 ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->px.mapx400);
1705 return(ptr);
1706
1707 case kDNSType_AAAA: if (rr->rdlength != sizeof(rdb->ipv6))
1708 { debugf("putRData: Illegal length %d for kDNSType_AAAA", rr->rdlength); return(mDNSNULL); }
1709 if (ptr + sizeof(rdb->ipv6) > limit) return(mDNSNULL);
1710 mDNSPlatformMemCopy(ptr, &rdb->ipv6, sizeof(rdb->ipv6));
1711 return(ptr + sizeof(rdb->ipv6));
1712
1713 case kDNSType_SRV: if (ptr + 7 > limit) return(mDNSNULL);
1714 *ptr++ = (mDNSu8)(rdb->srv.priority >> 8);
1715 *ptr++ = (mDNSu8)(rdb->srv.priority & 0xFF);
1716 *ptr++ = (mDNSu8)(rdb->srv.weight >> 8);
1717 *ptr++ = (mDNSu8)(rdb->srv.weight & 0xFF);
1718 *ptr++ = rdb->srv.port.b[0];
1719 *ptr++ = rdb->srv.port.b[1];
1720 return(putDomainNameAsLabels(msg, ptr, limit, &rdb->srv.target));
1721
1722 case kDNSType_OPT: {
1723 int len = 0;
1724 const rdataOPT *opt;
1725 const rdataOPT *const end = (const rdataOPT *)&rr->rdata->u.data[rr->rdlength];
1726 for (opt = &rr->rdata->u.opt[0]; opt < end; opt++) len += DNSOpt_Data_Space(opt);
1727 if (ptr + len > limit) { LogMsg("ERROR: putOptRData - out of space"); return mDNSNULL; }
1728
1729 for (opt = &rr->rdata->u.opt[0]; opt < end; opt++)
1730 {
1731 const int space = DNSOpt_Data_Space(opt);
1732 ptr = putVal16(ptr, opt->opt);
1733 ptr = putVal16(ptr, (mDNSu16)space - 4);
1734 switch (opt->opt)
1735 {
1736 case kDNSOpt_LLQ:
1737 ptr = putVal16(ptr, opt->u.llq.vers);
1738 ptr = putVal16(ptr, opt->u.llq.llqOp);
1739 ptr = putVal16(ptr, opt->u.llq.err);
1740 mDNSPlatformMemCopy(ptr, opt->u.llq.id.b, 8); // 8-byte id
1741 ptr += 8;
1742 ptr = putVal32(ptr, opt->u.llq.llqlease);
1743 break;
1744 case kDNSOpt_Lease:
1745 ptr = putVal32(ptr, opt->u.updatelease);
1746 break;
1747 case kDNSOpt_Owner:
1748 *ptr++ = opt->u.owner.vers;
1749 *ptr++ = opt->u.owner.seq;
1750 mDNSPlatformMemCopy(ptr, opt->u.owner.HMAC.b, 6); // 6-byte Host identifier
1751 ptr += 6;
1752 if (space >= DNSOpt_OwnerData_ID_Wake_Space)
1753 {
1754 mDNSPlatformMemCopy(ptr, opt->u.owner.IMAC.b, 6); // 6-byte interface MAC
1755 ptr += 6;
1756 if (space > DNSOpt_OwnerData_ID_Wake_Space)
1757 {
1758 mDNSPlatformMemCopy(ptr, opt->u.owner.password.b, space - DNSOpt_OwnerData_ID_Wake_Space);
1759 ptr += space - DNSOpt_OwnerData_ID_Wake_Space;
1760 }
1761 }
1762 break;
1763 }
1764 }
1765 return ptr;
1766 }
1767
1768 case kDNSType_NSEC: {
1769 // For our simplified use of NSEC synthetic records:
1770 // nextname is always the record's own name,
1771 // the block number is always 0,
1772 // the count byte is a value in the range 1-32,
1773 // followed by the 1-32 data bytes
1774 int i, j;
1775 for (i=sizeof(rdataNSEC); i>0; i--) if (rdb->nsec.bitmap[i-1]) break;
1776 ptr = putDomainNameAsLabels(msg, ptr, limit, rr->name);
1777 if (!ptr) return(mDNSNULL);
1778 if (i) // Only put a block if at least one type exists for this name
1779 {
1780 if (ptr + 2 + i > limit) return(mDNSNULL);
1781 *ptr++ = 0;
1782 *ptr++ = (mDNSu8)i;
1783 for (j=0; j<i; j++) *ptr++ = rdb->nsec.bitmap[j];
1784 }
1785 return ptr;
1786 }
1787
1788 default: debugf("putRData: Warning! Writing unknown resource type %d as raw data", rr->rrtype);
1789 if (ptr + rr->rdlength > limit) return(mDNSNULL);
1790 mDNSPlatformMemCopy(ptr, rdb->data, rr->rdlength);
1791 return(ptr + rr->rdlength);
1792 }
1793 }
1794
1795 #define IsUnicastUpdate(X) (!mDNSOpaque16IsZero((X)->h.id) && ((X)->h.flags.b[0] & kDNSFlag0_OP_Mask) == kDNSFlag0_OP_Update)
1796
PutResourceRecordTTLWithLimit(DNSMessage * const msg,mDNSu8 * ptr,mDNSu16 * count,ResourceRecord * rr,mDNSu32 ttl,const mDNSu8 * limit)1797 mDNSexport mDNSu8 *PutResourceRecordTTLWithLimit(DNSMessage *const msg, mDNSu8 *ptr, mDNSu16 *count, ResourceRecord *rr, mDNSu32 ttl, const mDNSu8 *limit)
1798 {
1799 mDNSu8 *endofrdata;
1800 mDNSu16 actualLength;
1801 // When sending SRV to conventional DNS server (i.e. in DNS update requests) we should not do name compression on the rdata (RFC 2782)
1802 const DNSMessage *const rdatacompressionbase = (IsUnicastUpdate(msg) && rr->rrtype == kDNSType_SRV) ? mDNSNULL : msg;
1803
1804 if (rr->RecordType == kDNSRecordTypeUnregistered)
1805 {
1806 LogMsg("PutResourceRecord ERROR! Attempt to put kDNSRecordTypeUnregistered %##s (%s)", rr->name->c, DNSTypeName(rr->rrtype));
1807 return(ptr);
1808 }
1809
1810 if (!ptr) { LogMsg("PutResourceRecordTTLWithLimit ptr is null"); return(mDNSNULL); }
1811
1812 ptr = putDomainNameAsLabels(msg, ptr, limit, rr->name);
1813 if (!ptr || ptr + 10 >= limit) return(mDNSNULL); // If we're out-of-space, return mDNSNULL
1814 ptr[0] = (mDNSu8)(rr->rrtype >> 8);
1815 ptr[1] = (mDNSu8)(rr->rrtype & 0xFF);
1816 ptr[2] = (mDNSu8)(rr->rrclass >> 8);
1817 ptr[3] = (mDNSu8)(rr->rrclass & 0xFF);
1818 ptr[4] = (mDNSu8)((ttl >> 24) & 0xFF);
1819 ptr[5] = (mDNSu8)((ttl >> 16) & 0xFF);
1820 ptr[6] = (mDNSu8)((ttl >> 8) & 0xFF);
1821 ptr[7] = (mDNSu8)( ttl & 0xFF);
1822 // ptr[8] and ptr[9] filled in *after* we find out how much space the rdata takes
1823
1824 endofrdata = putRData(rdatacompressionbase, ptr+10, limit, rr);
1825 if (!endofrdata) { verbosedebugf("Ran out of space in PutResourceRecord for %##s (%s)", rr->name->c, DNSTypeName(rr->rrtype)); return(mDNSNULL); }
1826
1827 // Go back and fill in the actual number of data bytes we wrote
1828 // (actualLength can be less than rdlength when domain name compression is used)
1829 actualLength = (mDNSu16)(endofrdata - ptr - 10);
1830 ptr[8] = (mDNSu8)(actualLength >> 8);
1831 ptr[9] = (mDNSu8)(actualLength & 0xFF);
1832
1833 if (count) (*count)++;
1834 else LogMsg("PutResourceRecordTTL: ERROR: No target count to update for %##s (%s)", rr->name->c, DNSTypeName(rr->rrtype));
1835 return(endofrdata);
1836 }
1837
putEmptyResourceRecord(DNSMessage * const msg,mDNSu8 * ptr,const mDNSu8 * const limit,mDNSu16 * count,const AuthRecord * rr)1838 mDNSlocal mDNSu8 *putEmptyResourceRecord(DNSMessage *const msg, mDNSu8 *ptr, const mDNSu8 *const limit, mDNSu16 *count, const AuthRecord *rr)
1839 {
1840 ptr = putDomainNameAsLabels(msg, ptr, limit, rr->resrec.name);
1841 if (!ptr || ptr + 10 > limit) return(mDNSNULL); // If we're out-of-space, return mDNSNULL
1842 ptr[0] = (mDNSu8)(rr->resrec.rrtype >> 8); // Put type
1843 ptr[1] = (mDNSu8)(rr->resrec.rrtype & 0xFF);
1844 ptr[2] = (mDNSu8)(rr->resrec.rrclass >> 8); // Put class
1845 ptr[3] = (mDNSu8)(rr->resrec.rrclass & 0xFF);
1846 ptr[4] = ptr[5] = ptr[6] = ptr[7] = 0; // TTL is zero
1847 ptr[8] = ptr[9] = 0; // RDATA length is zero
1848 (*count)++;
1849 return(ptr + 10);
1850 }
1851
putQuestion(DNSMessage * const msg,mDNSu8 * ptr,const mDNSu8 * const limit,const domainname * const name,mDNSu16 rrtype,mDNSu16 rrclass)1852 mDNSexport mDNSu8 *putQuestion(DNSMessage *const msg, mDNSu8 *ptr, const mDNSu8 *const limit, const domainname *const name, mDNSu16 rrtype, mDNSu16 rrclass)
1853 {
1854 ptr = putDomainNameAsLabels(msg, ptr, limit, name);
1855 if (!ptr || ptr+4 >= limit) return(mDNSNULL); // If we're out-of-space, return mDNSNULL
1856 ptr[0] = (mDNSu8)(rrtype >> 8);
1857 ptr[1] = (mDNSu8)(rrtype & 0xFF);
1858 ptr[2] = (mDNSu8)(rrclass >> 8);
1859 ptr[3] = (mDNSu8)(rrclass & 0xFF);
1860 msg->h.numQuestions++;
1861 return(ptr+4);
1862 }
1863
1864 // for dynamic updates
putZone(DNSMessage * const msg,mDNSu8 * ptr,mDNSu8 * limit,const domainname * zone,mDNSOpaque16 zoneClass)1865 mDNSexport mDNSu8 *putZone(DNSMessage *const msg, mDNSu8 *ptr, mDNSu8 *limit, const domainname *zone, mDNSOpaque16 zoneClass)
1866 {
1867 ptr = putDomainNameAsLabels(msg, ptr, limit, zone);
1868 if (!ptr || ptr + 4 > limit) return mDNSNULL; // If we're out-of-space, return NULL
1869 *ptr++ = (mDNSu8)(kDNSType_SOA >> 8);
1870 *ptr++ = (mDNSu8)(kDNSType_SOA & 0xFF);
1871 *ptr++ = zoneClass.b[0];
1872 *ptr++ = zoneClass.b[1];
1873 msg->h.mDNS_numZones++;
1874 return ptr;
1875 }
1876
1877 // for dynamic updates
putPrereqNameNotInUse(const domainname * const name,DNSMessage * const msg,mDNSu8 * const ptr,mDNSu8 * const end)1878 mDNSexport mDNSu8 *putPrereqNameNotInUse(const domainname *const name, DNSMessage *const msg, mDNSu8 *const ptr, mDNSu8 *const end)
1879 {
1880 AuthRecord prereq;
1881 mDNS_SetupResourceRecord(&prereq, mDNSNULL, mDNSInterface_Any, kDNSQType_ANY, kStandardTTL, 0, AuthRecordAny, mDNSNULL, mDNSNULL);
1882 AssignDomainName(&prereq.namestorage, name);
1883 prereq.resrec.rrtype = kDNSQType_ANY;
1884 prereq.resrec.rrclass = kDNSClass_NONE;
1885 return putEmptyResourceRecord(msg, ptr, end, &msg->h.mDNS_numPrereqs, &prereq);
1886 }
1887
1888 // for dynamic updates
putDeletionRecord(DNSMessage * msg,mDNSu8 * ptr,ResourceRecord * rr)1889 mDNSexport mDNSu8 *putDeletionRecord(DNSMessage *msg, mDNSu8 *ptr, ResourceRecord *rr)
1890 {
1891 // deletion: specify record w/ TTL 0, class NONE
1892 const mDNSu16 origclass = rr->rrclass;
1893 rr->rrclass = kDNSClass_NONE;
1894 ptr = PutResourceRecordTTLJumbo(msg, ptr, &msg->h.mDNS_numUpdates, rr, 0);
1895 rr->rrclass = origclass;
1896 return ptr;
1897 }
1898
1899 // for dynamic updates
putDeletionRecordWithLimit(DNSMessage * msg,mDNSu8 * ptr,ResourceRecord * rr,mDNSu8 * limit)1900 mDNSexport mDNSu8 *putDeletionRecordWithLimit(DNSMessage *msg, mDNSu8 *ptr, ResourceRecord *rr, mDNSu8 *limit)
1901 {
1902 // deletion: specify record w/ TTL 0, class NONE
1903 const mDNSu16 origclass = rr->rrclass;
1904 rr->rrclass = kDNSClass_NONE;
1905 ptr = PutResourceRecordTTLWithLimit(msg, ptr, &msg->h.mDNS_numUpdates, rr, 0, limit);
1906 rr->rrclass = origclass;
1907 return ptr;
1908 }
1909
putDeleteRRSetWithLimit(DNSMessage * msg,mDNSu8 * ptr,const domainname * name,mDNSu16 rrtype,mDNSu8 * limit)1910 mDNSexport mDNSu8 *putDeleteRRSetWithLimit(DNSMessage *msg, mDNSu8 *ptr, const domainname *name, mDNSu16 rrtype, mDNSu8 *limit)
1911 {
1912 mDNSu16 class = kDNSQClass_ANY;
1913
1914 ptr = putDomainNameAsLabels(msg, ptr, limit, name);
1915 if (!ptr || ptr + 10 >= limit) return mDNSNULL; // If we're out-of-space, return mDNSNULL
1916 ptr[0] = (mDNSu8)(rrtype >> 8);
1917 ptr[1] = (mDNSu8)(rrtype & 0xFF);
1918 ptr[2] = (mDNSu8)(class >> 8);
1919 ptr[3] = (mDNSu8)(class & 0xFF);
1920 ptr[4] = ptr[5] = ptr[6] = ptr[7] = 0; // zero ttl
1921 ptr[8] = ptr[9] = 0; // zero rdlength/rdata
1922
1923 msg->h.mDNS_numUpdates++;
1924 return ptr + 10;
1925 }
1926
1927 // for dynamic updates
putDeleteAllRRSets(DNSMessage * msg,mDNSu8 * ptr,const domainname * name)1928 mDNSexport mDNSu8 *putDeleteAllRRSets(DNSMessage *msg, mDNSu8 *ptr, const domainname *name)
1929 {
1930 const mDNSu8 *limit = msg->data + AbsoluteMaxDNSMessageData;
1931 mDNSu16 class = kDNSQClass_ANY;
1932 mDNSu16 rrtype = kDNSQType_ANY;
1933
1934 ptr = putDomainNameAsLabels(msg, ptr, limit, name);
1935 if (!ptr || ptr + 10 >= limit) return mDNSNULL; // If we're out-of-space, return mDNSNULL
1936 ptr[0] = (mDNSu8)(rrtype >> 8);
1937 ptr[1] = (mDNSu8)(rrtype & 0xFF);
1938 ptr[2] = (mDNSu8)(class >> 8);
1939 ptr[3] = (mDNSu8)(class & 0xFF);
1940 ptr[4] = ptr[5] = ptr[6] = ptr[7] = 0; // zero ttl
1941 ptr[8] = ptr[9] = 0; // zero rdlength/rdata
1942
1943 msg->h.mDNS_numUpdates++;
1944 return ptr + 10;
1945 }
1946
1947 // for dynamic updates
putUpdateLease(DNSMessage * msg,mDNSu8 * end,mDNSu32 lease)1948 mDNSexport mDNSu8 *putUpdateLease(DNSMessage *msg, mDNSu8 *end, mDNSu32 lease)
1949 {
1950 AuthRecord rr;
1951 mDNS_SetupResourceRecord(&rr, mDNSNULL, mDNSInterface_Any, kDNSType_OPT, kStandardTTL, kDNSRecordTypeKnownUnique, AuthRecordAny, mDNSNULL, mDNSNULL);
1952 rr.resrec.rrclass = NormalMaxDNSMessageData;
1953 rr.resrec.rdlength = sizeof(rdataOPT); // One option in this OPT record
1954 rr.resrec.rdestimate = sizeof(rdataOPT);
1955 rr.resrec.rdata->u.opt[0].opt = kDNSOpt_Lease;
1956 rr.resrec.rdata->u.opt[0].u.updatelease = lease;
1957 end = PutResourceRecordTTLJumbo(msg, end, &msg->h.numAdditionals, &rr.resrec, 0);
1958 if (!end) { LogMsg("ERROR: putUpdateLease - PutResourceRecordTTL"); return mDNSNULL; }
1959 return end;
1960 }
1961
1962 // for dynamic updates
putUpdateLeaseWithLimit(DNSMessage * msg,mDNSu8 * end,mDNSu32 lease,mDNSu8 * limit)1963 mDNSexport mDNSu8 *putUpdateLeaseWithLimit(DNSMessage *msg, mDNSu8 *end, mDNSu32 lease, mDNSu8 *limit)
1964 {
1965 AuthRecord rr;
1966 mDNS_SetupResourceRecord(&rr, mDNSNULL, mDNSInterface_Any, kDNSType_OPT, kStandardTTL, kDNSRecordTypeKnownUnique, AuthRecordAny, mDNSNULL, mDNSNULL);
1967 rr.resrec.rrclass = NormalMaxDNSMessageData;
1968 rr.resrec.rdlength = sizeof(rdataOPT); // One option in this OPT record
1969 rr.resrec.rdestimate = sizeof(rdataOPT);
1970 rr.resrec.rdata->u.opt[0].opt = kDNSOpt_Lease;
1971 rr.resrec.rdata->u.opt[0].u.updatelease = lease;
1972 end = PutResourceRecordTTLWithLimit(msg, end, &msg->h.numAdditionals, &rr.resrec, 0, limit);
1973 if (!end) { LogMsg("ERROR: putUpdateLease - PutResourceRecordTTLWithLimit"); return mDNSNULL; }
1974 return end;
1975 }
1976
putHINFO(const mDNS * const m,DNSMessage * const msg,mDNSu8 * end,DomainAuthInfo * authInfo,mDNSu8 * limit)1977 mDNSexport mDNSu8 *putHINFO(const mDNS *const m, DNSMessage *const msg, mDNSu8 *end, DomainAuthInfo *authInfo, mDNSu8 *limit)
1978 {
1979 if (authInfo && authInfo->AutoTunnel)
1980 {
1981 AuthRecord hinfo;
1982 mDNSu8 *h = hinfo.rdatastorage.u.data;
1983 mDNSu16 len = 2 + m->HIHardware.c[0] + m->HISoftware.c[0];
1984 mDNSu8 *newptr;
1985 mDNS_SetupResourceRecord(&hinfo, mDNSNULL, mDNSInterface_Any, kDNSType_HINFO, 0, kDNSRecordTypeUnique, AuthRecordAny, mDNSNULL, mDNSNULL);
1986 AppendDomainLabel(&hinfo.namestorage, &m->hostlabel);
1987 AppendDomainName (&hinfo.namestorage, &authInfo->domain);
1988 hinfo.resrec.rroriginalttl = 0;
1989 mDNSPlatformMemCopy(h, &m->HIHardware, 1 + (mDNSu32)m->HIHardware.c[0]);
1990 h += 1 + (int)h[0];
1991 mDNSPlatformMemCopy(h, &m->HISoftware, 1 + (mDNSu32)m->HISoftware.c[0]);
1992 hinfo.resrec.rdlength = len;
1993 hinfo.resrec.rdestimate = len;
1994 newptr = PutResourceRecordTTLWithLimit(msg, end, &msg->h.numAdditionals, &hinfo.resrec, 0, limit);
1995 return newptr;
1996 }
1997 else
1998 return end;
1999 }
2000
2001 // ***************************************************************************
2002 #if COMPILER_LIKES_PRAGMA_MARK
2003 #pragma mark -
2004 #pragma mark - DNS Message Parsing Functions
2005 #endif
2006
DomainNameHashValue(const domainname * const name)2007 mDNSexport mDNSu32 DomainNameHashValue(const domainname *const name)
2008 {
2009 mDNSu32 sum = 0;
2010 const mDNSu8 *c;
2011
2012 for (c = name->c; c[0] != 0 && c[1] != 0; c += 2)
2013 {
2014 sum += ((mDNSIsUpperCase(c[0]) ? c[0] + 'a' - 'A' : c[0]) << 8) |
2015 (mDNSIsUpperCase(c[1]) ? c[1] + 'a' - 'A' : c[1]);
2016 sum = (sum<<3) | (sum>>29);
2017 }
2018 if (c[0]) sum += ((mDNSIsUpperCase(c[0]) ? c[0] + 'a' - 'A' : c[0]) << 8);
2019 return(sum);
2020 }
2021
SetNewRData(ResourceRecord * const rr,RData * NewRData,mDNSu16 rdlength)2022 mDNSexport void SetNewRData(ResourceRecord *const rr, RData *NewRData, mDNSu16 rdlength)
2023 {
2024 domainname *target;
2025 if (NewRData)
2026 {
2027 rr->rdata = NewRData;
2028 rr->rdlength = rdlength;
2029 }
2030 // Must not try to get target pointer until after updating rr->rdata
2031 target = GetRRDomainNameTarget(rr);
2032 rr->rdlength = GetRDLength(rr, mDNSfalse);
2033 rr->rdestimate = GetRDLength(rr, mDNStrue);
2034 rr->rdatahash = target ? DomainNameHashValue(target) : RDataHashValue(rr);
2035 }
2036
skipDomainName(const DNSMessage * const msg,const mDNSu8 * ptr,const mDNSu8 * const end)2037 mDNSexport const mDNSu8 *skipDomainName(const DNSMessage *const msg, const mDNSu8 *ptr, const mDNSu8 *const end)
2038 {
2039 mDNSu16 total = 0;
2040
2041 if (ptr < (mDNSu8*)msg || ptr >= end)
2042 { debugf("skipDomainName: Illegal ptr not within packet boundaries"); return(mDNSNULL); }
2043
2044 while (1) // Read sequence of labels
2045 {
2046 const mDNSu8 len = *ptr++; // Read length of this label
2047 if (len == 0) return(ptr); // If length is zero, that means this name is complete
2048 switch (len & 0xC0)
2049 {
2050 case 0x00: if (ptr + len >= end) // Remember: expect at least one more byte for the root label
2051 { debugf("skipDomainName: Malformed domain name (overruns packet end)"); return(mDNSNULL); }
2052 if (total + 1 + len >= MAX_DOMAIN_NAME) // Remember: expect at least one more byte for the root label
2053 { debugf("skipDomainName: Malformed domain name (more than 256 characters)"); return(mDNSNULL); }
2054 ptr += len;
2055 total += 1 + len;
2056 break;
2057
2058 case 0x40: debugf("skipDomainName: Extended EDNS0 label types 0x%X not supported", len); return(mDNSNULL);
2059 case 0x80: debugf("skipDomainName: Illegal label length 0x%X", len); return(mDNSNULL);
2060 case 0xC0: return(ptr+1);
2061 }
2062 }
2063 }
2064
2065 // Routine to fetch an FQDN from the DNS message, following compression pointers if necessary.
getDomainName(const DNSMessage * const msg,const mDNSu8 * ptr,const mDNSu8 * const end,domainname * const name)2066 mDNSexport const mDNSu8 *getDomainName(const DNSMessage *const msg, const mDNSu8 *ptr, const mDNSu8 *const end,
2067 domainname *const name)
2068 {
2069 const mDNSu8 *nextbyte = mDNSNULL; // Record where we got to before we started following pointers
2070 mDNSu8 *np = name->c; // Name pointer
2071 const mDNSu8 *const limit = np + MAX_DOMAIN_NAME; // Limit so we don't overrun buffer
2072
2073 if (ptr < (mDNSu8*)msg || ptr >= end)
2074 { debugf("getDomainName: Illegal ptr not within packet boundaries"); return(mDNSNULL); }
2075
2076 *np = 0; // Tentatively place the root label here (may be overwritten if we have more labels)
2077
2078 while (1) // Read sequence of labels
2079 {
2080 const mDNSu8 len = *ptr++; // Read length of this label
2081 if (len == 0) break; // If length is zero, that means this name is complete
2082 switch (len & 0xC0)
2083 {
2084 int i;
2085 mDNSu16 offset;
2086
2087 case 0x00: if (ptr + len >= end) // Remember: expect at least one more byte for the root label
2088 { debugf("getDomainName: Malformed domain name (overruns packet end)"); return(mDNSNULL); }
2089 if (np + 1 + len >= limit) // Remember: expect at least one more byte for the root label
2090 { debugf("getDomainName: Malformed domain name (more than 256 characters)"); return(mDNSNULL); }
2091 *np++ = len;
2092 for (i=0; i<len; i++) *np++ = *ptr++;
2093 *np = 0; // Tentatively place the root label here (may be overwritten if we have more labels)
2094 break;
2095
2096 case 0x40: debugf("getDomainName: Extended EDNS0 label types 0x%X not supported in name %##s", len, name->c);
2097 return(mDNSNULL);
2098
2099 case 0x80: debugf("getDomainName: Illegal label length 0x%X in domain name %##s", len, name->c); return(mDNSNULL);
2100
2101 case 0xC0: offset = (mDNSu16)((((mDNSu16)(len & 0x3F)) << 8) | *ptr++);
2102 if (!nextbyte) nextbyte = ptr; // Record where we got to before we started following pointers
2103 ptr = (mDNSu8 *)msg + offset;
2104 if (ptr < (mDNSu8*)msg || ptr >= end)
2105 { debugf("getDomainName: Illegal compression pointer not within packet boundaries"); return(mDNSNULL); }
2106 if (*ptr & 0xC0)
2107 { debugf("getDomainName: Compression pointer must point to real label"); return(mDNSNULL); }
2108 break;
2109 }
2110 }
2111
2112 if (nextbyte) return(nextbyte);
2113 else return(ptr);
2114 }
2115
skipResourceRecord(const DNSMessage * msg,const mDNSu8 * ptr,const mDNSu8 * end)2116 mDNSexport const mDNSu8 *skipResourceRecord(const DNSMessage *msg, const mDNSu8 *ptr, const mDNSu8 *end)
2117 {
2118 mDNSu16 pktrdlength;
2119
2120 ptr = skipDomainName(msg, ptr, end);
2121 if (!ptr) { debugf("skipResourceRecord: Malformed RR name"); return(mDNSNULL); }
2122
2123 if (ptr + 10 > end) { debugf("skipResourceRecord: Malformed RR -- no type/class/ttl/len!"); return(mDNSNULL); }
2124 pktrdlength = (mDNSu16)((mDNSu16)ptr[8] << 8 | ptr[9]);
2125 ptr += 10;
2126 if (ptr + pktrdlength > end) { debugf("skipResourceRecord: RDATA exceeds end of packet"); return(mDNSNULL); }
2127
2128 return(ptr + pktrdlength);
2129 }
2130
GetLargeResourceRecord(mDNS * const m,const DNSMessage * const msg,const mDNSu8 * ptr,const mDNSu8 * end,const mDNSInterfaceID InterfaceID,mDNSu8 RecordType,LargeCacheRecord * const largecr)2131 mDNSexport const mDNSu8 *GetLargeResourceRecord(mDNS *const m, const DNSMessage *const msg, const mDNSu8 *ptr,
2132 const mDNSu8 *end, const mDNSInterfaceID InterfaceID, mDNSu8 RecordType, LargeCacheRecord *const largecr)
2133 {
2134 CacheRecord *const rr = &largecr->r;
2135 RDataBody2 *const rdb = (RDataBody2 *)rr->smallrdatastorage.data;
2136 mDNSu16 pktrdlength;
2137
2138 if (largecr == &m->rec && m->rec.r.resrec.RecordType)
2139 {
2140 LogMsg("GetLargeResourceRecord: m->rec appears to be already in use for %s", CRDisplayString(m, &m->rec.r));
2141 #if ForceAlerts
2142 *(long*)0 = 0;
2143 #endif
2144 }
2145
2146 rr->next = mDNSNULL;
2147 rr->resrec.name = &largecr->namestorage;
2148
2149 rr->NextInKAList = mDNSNULL;
2150 rr->TimeRcvd = m ? m->timenow : 0;
2151 rr->DelayDelivery = 0;
2152 rr->NextRequiredQuery = m ? m->timenow : 0; // Will be updated to the real value when we call SetNextCacheCheckTimeForRecord()
2153 rr->LastUsed = m ? m->timenow : 0;
2154 rr->CRActiveQuestion = mDNSNULL;
2155 rr->UnansweredQueries = 0;
2156 rr->LastUnansweredTime= 0;
2157 #if ENABLE_MULTI_PACKET_QUERY_SNOOPING
2158 rr->MPUnansweredQ = 0;
2159 rr->MPLastUnansweredQT= 0;
2160 rr->MPUnansweredKA = 0;
2161 rr->MPExpectingKA = mDNSfalse;
2162 #endif
2163 rr->NextInCFList = mDNSNULL;
2164
2165 rr->resrec.InterfaceID = InterfaceID;
2166 rr->resrec.rDNSServer = mDNSNULL;
2167
2168 ptr = getDomainName(msg, ptr, end, &largecr->namestorage); // Will bail out correctly if ptr is NULL
2169 if (!ptr) { debugf("GetLargeResourceRecord: Malformed RR name"); return(mDNSNULL); }
2170 rr->resrec.namehash = DomainNameHashValue(rr->resrec.name);
2171
2172 if (ptr + 10 > end) { debugf("GetLargeResourceRecord: Malformed RR -- no type/class/ttl/len!"); return(mDNSNULL); }
2173
2174 rr->resrec.rrtype = (mDNSu16) ((mDNSu16)ptr[0] << 8 | ptr[1]);
2175 rr->resrec.rrclass = (mDNSu16)(((mDNSu16)ptr[2] << 8 | ptr[3]) & kDNSClass_Mask);
2176 rr->resrec.rroriginalttl = (mDNSu32) ((mDNSu32)ptr[4] << 24 | (mDNSu32)ptr[5] << 16 | (mDNSu32)ptr[6] << 8 | ptr[7]);
2177 if (rr->resrec.rroriginalttl > 0x70000000UL / mDNSPlatformOneSecond && (mDNSs32)rr->resrec.rroriginalttl != -1)
2178 rr->resrec.rroriginalttl = 0x70000000UL / mDNSPlatformOneSecond;
2179 // Note: We don't have to adjust m->NextCacheCheck here -- this is just getting a record into memory for
2180 // us to look at. If we decide to copy it into the cache, then we'll update m->NextCacheCheck accordingly.
2181 pktrdlength = (mDNSu16)((mDNSu16)ptr[8] << 8 | ptr[9]);
2182
2183 // If mDNS record has cache-flush bit set, we mark it unique
2184 // For uDNS records, all are implicitly deemed unique (a single DNS server is always
2185 // authoritative for the entire RRSet), unless this is a truncated response
2186 if (ptr[2] & (kDNSClass_UniqueRRSet >> 8) || (!InterfaceID && !(msg->h.flags.b[0] & kDNSFlag0_TC)))
2187 RecordType |= kDNSRecordTypePacketUniqueMask;
2188 ptr += 10;
2189 if (ptr + pktrdlength > end) { debugf("GetLargeResourceRecord: RDATA exceeds end of packet"); return(mDNSNULL); }
2190 end = ptr + pktrdlength; // Adjust end to indicate the end of the rdata for this resource record
2191
2192 rr->resrec.rdata = (RData*)&rr->smallrdatastorage;
2193 rr->resrec.rdata->MaxRDLength = MaximumRDSize;
2194
2195 if (!RecordType) LogMsg("GetLargeResourceRecord: No RecordType for %##s", rr->resrec.name->c);
2196
2197 // IMPORTANT: Any record type we understand and unpack into a structure containing domainnames needs to have corresponding
2198 // cases in SameRDataBody() and RDataHashValue() to do a semantic comparison (or checksum) of the structure instead of a blind
2199 // bitwise memory compare (or sum). This is because a domainname is a fixed size structure holding variable-length data.
2200 // Any bytes past the logical end of the name are undefined, and a blind bitwise memory compare may indicate that
2201 // two domainnames are different when semantically they are the same name and it's only the unused bytes that differ.
2202 if (rr->resrec.rrclass == kDNSQClass_ANY && pktrdlength == 0) // Used in update packets to mean "Delete An RRset" (RFC 2136)
2203 rr->resrec.rdlength = 0;
2204 else switch (rr->resrec.rrtype)
2205 {
2206 case kDNSType_A: if (pktrdlength != sizeof(mDNSv4Addr)) goto fail;
2207 rdb->ipv4.b[0] = ptr[0];
2208 rdb->ipv4.b[1] = ptr[1];
2209 rdb->ipv4.b[2] = ptr[2];
2210 rdb->ipv4.b[3] = ptr[3];
2211 break;
2212
2213 case kDNSType_NS:
2214 case kDNSType_CNAME:
2215 case kDNSType_PTR:
2216 case kDNSType_DNAME:ptr = getDomainName(msg, ptr, end, &rdb->name);
2217 if (ptr != end) { debugf("GetLargeResourceRecord: Malformed CNAME/PTR RDATA name"); goto fail; }
2218 //debugf("%##s PTR %##s rdlen %d", rr->resrec.name.c, rdb->name.c, pktrdlength);
2219 break;
2220
2221 case kDNSType_SOA: ptr = getDomainName(msg, ptr, end, &rdb->soa.mname);
2222 if (!ptr) { debugf("GetLargeResourceRecord: Malformed SOA RDATA mname"); goto fail; }
2223 ptr = getDomainName(msg, ptr, end, &rdb->soa.rname);
2224 if (!ptr) { debugf("GetLargeResourceRecord: Malformed SOA RDATA rname"); goto fail; }
2225 if (ptr + 0x14 != end) { debugf("GetLargeResourceRecord: Malformed SOA RDATA"); goto fail; }
2226 rdb->soa.serial = (mDNSs32) ((mDNSs32)ptr[0x00] << 24 | (mDNSs32)ptr[0x01] << 16 | (mDNSs32)ptr[0x02] << 8 | ptr[0x03]);
2227 rdb->soa.refresh = (mDNSu32) ((mDNSu32)ptr[0x04] << 24 | (mDNSu32)ptr[0x05] << 16 | (mDNSu32)ptr[0x06] << 8 | ptr[0x07]);
2228 rdb->soa.retry = (mDNSu32) ((mDNSu32)ptr[0x08] << 24 | (mDNSu32)ptr[0x09] << 16 | (mDNSu32)ptr[0x0A] << 8 | ptr[0x0B]);
2229 rdb->soa.expire = (mDNSu32) ((mDNSu32)ptr[0x0C] << 24 | (mDNSu32)ptr[0x0D] << 16 | (mDNSu32)ptr[0x0E] << 8 | ptr[0x0F]);
2230 rdb->soa.min = (mDNSu32) ((mDNSu32)ptr[0x10] << 24 | (mDNSu32)ptr[0x11] << 16 | (mDNSu32)ptr[0x12] << 8 | ptr[0x13]);
2231 break;
2232
2233 case kDNSType_NULL:
2234 case kDNSType_HINFO:
2235 case kDNSType_TSIG:
2236 case kDNSType_TXT:
2237 case kDNSType_X25:
2238 case kDNSType_ISDN:
2239 case kDNSType_LOC:
2240 case kDNSType_DHCID:if (pktrdlength > rr->resrec.rdata->MaxRDLength)
2241 {
2242 debugf("GetLargeResourceRecord: %s rdata size (%d) exceeds storage (%d)",
2243 DNSTypeName(rr->resrec.rrtype), pktrdlength, rr->resrec.rdata->MaxRDLength);
2244 goto fail;
2245 }
2246 rr->resrec.rdlength = pktrdlength;
2247 mDNSPlatformMemCopy(rdb->data, ptr, pktrdlength);
2248 break;
2249
2250 case kDNSType_MX:
2251 case kDNSType_AFSDB:
2252 case kDNSType_RT:
2253 case kDNSType_KX: if (pktrdlength < 3) goto fail; // Preference + domainname
2254 rdb->mx.preference = (mDNSu16)((mDNSu16)ptr[0] << 8 | ptr[1]);
2255 ptr = getDomainName(msg, ptr+2, end, &rdb->mx.exchange);
2256 if (ptr != end) { debugf("GetLargeResourceRecord: Malformed MX name"); goto fail; }
2257 //debugf("%##s SRV %##s rdlen %d", rr->resrec.name.c, rdb->srv.target.c, pktrdlength);
2258 break;
2259
2260 case kDNSType_RP: ptr = getDomainName(msg, ptr, end, &rdb->rp.mbox); // Domainname + domainname
2261 if (!ptr) { debugf("GetLargeResourceRecord: Malformed RP mbox"); goto fail; }
2262 ptr = getDomainName(msg, ptr, end, &rdb->rp.txt);
2263 if (ptr != end) { debugf("GetLargeResourceRecord: Malformed RP txt"); goto fail; }
2264 break;
2265
2266 case kDNSType_PX: if (pktrdlength < 4) goto fail; // Preference + domainname + domainname
2267 rdb->px.preference = (mDNSu16)((mDNSu16)ptr[0] << 8 | ptr[1]);
2268 ptr = getDomainName(msg, ptr, end, &rdb->px.map822);
2269 if (!ptr) { debugf("GetLargeResourceRecord: Malformed PX map822"); goto fail; }
2270 ptr = getDomainName(msg, ptr, end, &rdb->px.mapx400);
2271 if (ptr != end) { debugf("GetLargeResourceRecord: Malformed PX mapx400"); goto fail; }
2272 break;
2273
2274 case kDNSType_AAAA: if (pktrdlength != sizeof(mDNSv6Addr)) goto fail;
2275 mDNSPlatformMemCopy(&rdb->ipv6, ptr, sizeof(rdb->ipv6));
2276 break;
2277
2278 case kDNSType_SRV: if (pktrdlength < 7) goto fail; // Priority + weight + port + domainname
2279 rdb->srv.priority = (mDNSu16)((mDNSu16)ptr[0] << 8 | ptr[1]);
2280 rdb->srv.weight = (mDNSu16)((mDNSu16)ptr[2] << 8 | ptr[3]);
2281 rdb->srv.port.b[0] = ptr[4];
2282 rdb->srv.port.b[1] = ptr[5];
2283 ptr = getDomainName(msg, ptr+6, end, &rdb->srv.target);
2284 if (ptr != end) { debugf("GetLargeResourceRecord: Malformed SRV RDATA name"); goto fail; }
2285 //debugf("%##s SRV %##s rdlen %d", rr->resrec.name.c, rdb->srv.target.c, pktrdlength);
2286 break;
2287
2288 case kDNSType_OPT: {
2289 rdataOPT *opt = rr->resrec.rdata->u.opt;
2290 rr->resrec.rdlength = 0;
2291 while (ptr < end && (mDNSu8 *)(opt+1) < &rr->resrec.rdata->u.data[MaximumRDSize])
2292 {
2293 const rdataOPT *const currentopt = opt;
2294 if (ptr + 4 > end) { LogInfo("GetLargeResourceRecord: OPT RDATA ptr + 4 > end"); goto fail; }
2295 opt->opt = (mDNSu16)((mDNSu16)ptr[0] << 8 | ptr[1]);
2296 opt->optlen = (mDNSu16)((mDNSu16)ptr[2] << 8 | ptr[3]);
2297 ptr += 4;
2298 if (ptr + opt->optlen > end) { LogInfo("GetLargeResourceRecord: ptr + opt->optlen > end"); goto fail; }
2299 switch (opt->opt)
2300 {
2301 case kDNSOpt_LLQ:
2302 if (opt->optlen == DNSOpt_LLQData_Space - 4)
2303 {
2304 opt->u.llq.vers = (mDNSu16)((mDNSu16)ptr[0] << 8 | ptr[1]);
2305 opt->u.llq.llqOp = (mDNSu16)((mDNSu16)ptr[2] << 8 | ptr[3]);
2306 opt->u.llq.err = (mDNSu16)((mDNSu16)ptr[4] << 8 | ptr[5]);
2307 mDNSPlatformMemCopy(opt->u.llq.id.b, ptr+6, 8);
2308 opt->u.llq.llqlease = (mDNSu32) ((mDNSu32)ptr[14] << 24 | (mDNSu32)ptr[15] << 16 | (mDNSu32)ptr[16] << 8 | ptr[17]);
2309 if (opt->u.llq.llqlease > 0x70000000UL / mDNSPlatformOneSecond)
2310 opt->u.llq.llqlease = 0x70000000UL / mDNSPlatformOneSecond;
2311 opt++;
2312 }
2313 break;
2314 case kDNSOpt_Lease:
2315 if (opt->optlen == DNSOpt_LeaseData_Space - 4)
2316 {
2317 opt->u.updatelease = (mDNSu32) ((mDNSu32)ptr[0] << 24 | (mDNSu32)ptr[1] << 16 | (mDNSu32)ptr[2] << 8 | ptr[3]);
2318 if (opt->u.updatelease > 0x70000000UL / mDNSPlatformOneSecond)
2319 opt->u.updatelease = 0x70000000UL / mDNSPlatformOneSecond;
2320 opt++;
2321 }
2322 break;
2323 case kDNSOpt_Owner:
2324 if (ValidOwnerLength(opt->optlen))
2325 {
2326 opt->u.owner.vers = ptr[0];
2327 opt->u.owner.seq = ptr[1];
2328 mDNSPlatformMemCopy(opt->u.owner.HMAC.b, ptr+2, 6); // 6-byte MAC address
2329 mDNSPlatformMemCopy(opt->u.owner.IMAC.b, ptr+2, 6); // 6-byte MAC address
2330 opt->u.owner.password = zeroEthAddr;
2331 if (opt->optlen >= DNSOpt_OwnerData_ID_Wake_Space-4)
2332 {
2333 mDNSPlatformMemCopy(opt->u.owner.IMAC.b, ptr+8, 6); // 6-byte MAC address
2334 // This mDNSPlatformMemCopy is safe because the ValidOwnerLength(opt->optlen) check above
2335 // ensures that opt->optlen is no more than DNSOpt_OwnerData_ID_Wake_PW6_Space - 4
2336 if (opt->optlen > DNSOpt_OwnerData_ID_Wake_Space-4)
2337 mDNSPlatformMemCopy(opt->u.owner.password.b, ptr+14, opt->optlen - (DNSOpt_OwnerData_ID_Wake_Space-4));
2338 }
2339 opt++;
2340 }
2341 break;
2342 }
2343 ptr += currentopt->optlen;
2344 }
2345 rr->resrec.rdlength = (mDNSu16)((mDNSu8*)opt - rr->resrec.rdata->u.data);
2346 if (ptr != end) { LogInfo("GetLargeResourceRecord: Malformed OptRdata"); goto fail; }
2347 break;
2348 }
2349
2350 case kDNSType_NSEC: {
2351 unsigned int i, j;
2352 domainname d;
2353 ptr = getDomainName(msg, ptr, end, &d); // Ignored for our simplified use of NSEC synthetic records
2354 if (!ptr) { LogInfo("GetLargeResourceRecord: Malformed NSEC nextname"); goto fail; }
2355 mDNSPlatformMemZero(rdb->nsec.bitmap, sizeof(rdb->nsec.bitmap));
2356 if (ptr < end)
2357 {
2358 if (*ptr++ != 0) { debugf("GetLargeResourceRecord: We only handle block zero NSECs"); goto fail; }
2359 i = *ptr++;
2360 if (i > sizeof(rdataNSEC)) { debugf("GetLargeResourceRecord: invalid block length %d", i); goto fail; }
2361 for (j=0; j<i; j++) rdb->nsec.bitmap[j] = *ptr++;
2362 }
2363 if (ptr != end) { debugf("GetLargeResourceRecord: Malformed NSEC"); goto fail; }
2364 break;
2365 }
2366
2367 default: if (pktrdlength > rr->resrec.rdata->MaxRDLength)
2368 {
2369 debugf("GetLargeResourceRecord: rdata %d (%s) size (%d) exceeds storage (%d)",
2370 rr->resrec.rrtype, DNSTypeName(rr->resrec.rrtype), pktrdlength, rr->resrec.rdata->MaxRDLength);
2371 goto fail;
2372 }
2373 debugf("GetLargeResourceRecord: Warning! Reading resource type %d (%s) as opaque data",
2374 rr->resrec.rrtype, DNSTypeName(rr->resrec.rrtype));
2375 // Note: Just because we don't understand the record type, that doesn't
2376 // mean we fail. The DNS protocol specifies rdlength, so we can
2377 // safely skip over unknown records and ignore them.
2378 // We also grab a binary copy of the rdata anyway, since the caller
2379 // might know how to interpret it even if we don't.
2380 rr->resrec.rdlength = pktrdlength;
2381 mDNSPlatformMemCopy(rdb->data, ptr, pktrdlength);
2382 break;
2383 }
2384
2385 SetNewRData(&rr->resrec, mDNSNULL, 0); // Sets rdlength, rdestimate, rdatahash for us
2386
2387 // Success! Now fill in RecordType to show this record contains valid data
2388 rr->resrec.RecordType = RecordType;
2389 return(end);
2390
2391 fail:
2392 // If we were unable to parse the rdata in this record, we indicate that by
2393 // returing a 'kDNSRecordTypePacketNegative' record with rdlength set to zero
2394 rr->resrec.RecordType = kDNSRecordTypePacketNegative;
2395 rr->resrec.rdlength = 0;
2396 rr->resrec.rdestimate = 0;
2397 rr->resrec.rdatahash = 0;
2398 return(end);
2399 }
2400
skipQuestion(const DNSMessage * msg,const mDNSu8 * ptr,const mDNSu8 * end)2401 mDNSexport const mDNSu8 *skipQuestion(const DNSMessage *msg, const mDNSu8 *ptr, const mDNSu8 *end)
2402 {
2403 ptr = skipDomainName(msg, ptr, end);
2404 if (!ptr) { debugf("skipQuestion: Malformed domain name in DNS question section"); return(mDNSNULL); }
2405 if (ptr+4 > end) { debugf("skipQuestion: Malformed DNS question section -- no query type and class!"); return(mDNSNULL); }
2406 return(ptr+4);
2407 }
2408
getQuestion(const DNSMessage * msg,const mDNSu8 * ptr,const mDNSu8 * end,const mDNSInterfaceID InterfaceID,DNSQuestion * question)2409 mDNSexport const mDNSu8 *getQuestion(const DNSMessage *msg, const mDNSu8 *ptr, const mDNSu8 *end, const mDNSInterfaceID InterfaceID,
2410 DNSQuestion *question)
2411 {
2412 mDNSPlatformMemZero(question, sizeof(*question));
2413 question->InterfaceID = InterfaceID;
2414 if (!InterfaceID) question->TargetQID = onesID; // In DNSQuestions we use TargetQID as the indicator of whether it's unicast or multicast
2415 ptr = getDomainName(msg, ptr, end, &question->qname);
2416 if (!ptr) { debugf("Malformed domain name in DNS question section"); return(mDNSNULL); }
2417 if (ptr+4 > end) { debugf("Malformed DNS question section -- no query type and class!"); return(mDNSNULL); }
2418
2419 question->qnamehash = DomainNameHashValue(&question->qname);
2420 question->qtype = (mDNSu16)((mDNSu16)ptr[0] << 8 | ptr[1]); // Get type
2421 question->qclass = (mDNSu16)((mDNSu16)ptr[2] << 8 | ptr[3]); // and class
2422 return(ptr+4);
2423 }
2424
LocateAnswers(const DNSMessage * const msg,const mDNSu8 * const end)2425 mDNSexport const mDNSu8 *LocateAnswers(const DNSMessage *const msg, const mDNSu8 *const end)
2426 {
2427 int i;
2428 const mDNSu8 *ptr = msg->data;
2429 for (i = 0; i < msg->h.numQuestions && ptr; i++) ptr = skipQuestion(msg, ptr, end);
2430 return(ptr);
2431 }
2432
LocateAuthorities(const DNSMessage * const msg,const mDNSu8 * const end)2433 mDNSexport const mDNSu8 *LocateAuthorities(const DNSMessage *const msg, const mDNSu8 *const end)
2434 {
2435 int i;
2436 const mDNSu8 *ptr = LocateAnswers(msg, end);
2437 for (i = 0; i < msg->h.numAnswers && ptr; i++) ptr = skipResourceRecord(msg, ptr, end);
2438 return(ptr);
2439 }
2440
LocateAdditionals(const DNSMessage * const msg,const mDNSu8 * const end)2441 mDNSexport const mDNSu8 *LocateAdditionals(const DNSMessage *const msg, const mDNSu8 *const end)
2442 {
2443 int i;
2444 const mDNSu8 *ptr = LocateAuthorities(msg, end);
2445 for (i = 0; i < msg->h.numAuthorities; i++) ptr = skipResourceRecord(msg, ptr, end);
2446 return (ptr);
2447 }
2448
LocateOptRR(const DNSMessage * const msg,const mDNSu8 * const end,int minsize)2449 mDNSexport const mDNSu8 *LocateOptRR(const DNSMessage *const msg, const mDNSu8 *const end, int minsize)
2450 {
2451 int i;
2452 const mDNSu8 *ptr = LocateAdditionals(msg, end);
2453
2454 // Locate the OPT record.
2455 // According to RFC 2671, "One OPT pseudo-RR can be added to the additional data section of either a request or a response."
2456 // This implies that there may be *at most* one OPT record per DNS message, in the Additional Section,
2457 // but not necessarily the *last* entry in the Additional Section.
2458 for (i = 0; ptr && i < msg->h.numAdditionals; i++)
2459 {
2460 if (ptr + DNSOpt_Header_Space + minsize <= end && // Make sure we have 11+minsize bytes of data
2461 ptr[0] == 0 && // Name must be root label
2462 ptr[1] == (kDNSType_OPT >> 8 ) && // rrtype OPT
2463 ptr[2] == (kDNSType_OPT & 0xFF) &&
2464 ((mDNSu16)ptr[9] << 8 | (mDNSu16)ptr[10]) >= (mDNSu16)minsize)
2465 return(ptr);
2466 else
2467 ptr = skipResourceRecord(msg, ptr, end);
2468 }
2469 return(mDNSNULL);
2470 }
2471
2472 // On success, GetLLQOptData returns pointer to storage within shared "m->rec";
2473 // it is caller's responsibilty to clear m->rec.r.resrec.RecordType after use
2474 // Note: An OPT RDataBody actually contains one or more variable-length rdataOPT objects packed together
2475 // The code that currently calls this assumes there's only one, instead of iterating through the set
GetLLQOptData(mDNS * const m,const DNSMessage * const msg,const mDNSu8 * const end)2476 mDNSexport const rdataOPT *GetLLQOptData(mDNS *const m, const DNSMessage *const msg, const mDNSu8 *const end)
2477 {
2478 const mDNSu8 *ptr = LocateOptRR(msg, end, DNSOpt_LLQData_Space);
2479 if (ptr)
2480 {
2481 ptr = GetLargeResourceRecord(m, msg, ptr, end, 0, kDNSRecordTypePacketAdd, &m->rec);
2482 if (ptr && m->rec.r.resrec.RecordType != kDNSRecordTypePacketNegative) return(&m->rec.r.resrec.rdata->u.opt[0]);
2483 }
2484 return(mDNSNULL);
2485 }
2486
2487 // Get the lease life of records in a dynamic update
2488 // returns 0 on error or if no lease present
GetPktLease(mDNS * m,DNSMessage * msg,const mDNSu8 * end)2489 mDNSexport mDNSu32 GetPktLease(mDNS *m, DNSMessage *msg, const mDNSu8 *end)
2490 {
2491 mDNSu32 result = 0;
2492 const mDNSu8 *ptr = LocateOptRR(msg, end, DNSOpt_LeaseData_Space);
2493 if (ptr) ptr = GetLargeResourceRecord(m, msg, ptr, end, 0, kDNSRecordTypePacketAdd, &m->rec);
2494 if (ptr && m->rec.r.resrec.rdlength >= DNSOpt_LeaseData_Space && m->rec.r.resrec.rdata->u.opt[0].opt == kDNSOpt_Lease)
2495 result = m->rec.r.resrec.rdata->u.opt[0].u.updatelease;
2496 m->rec.r.resrec.RecordType = 0; // Clear RecordType to show we're not still using it
2497 return(result);
2498 }
2499
DumpRecords(mDNS * const m,const DNSMessage * const msg,const mDNSu8 * ptr,const mDNSu8 * const end,int count,char * label)2500 mDNSlocal const mDNSu8 *DumpRecords(mDNS *const m, const DNSMessage *const msg, const mDNSu8 *ptr, const mDNSu8 *const end, int count, char *label)
2501 {
2502 int i;
2503 LogMsg("%2d %s", count, label);
2504 for (i = 0; i < count && ptr; i++)
2505 {
2506 // This puts a LargeCacheRecord on the stack instead of using the shared m->rec storage,
2507 // but since it's only used for debugging (and probably only on OS X, not on
2508 // embedded systems) putting a 9kB object on the stack isn't a big problem.
2509 LargeCacheRecord largecr;
2510 ptr = GetLargeResourceRecord(m, msg, ptr, end, mDNSInterface_Any, kDNSRecordTypePacketAns, &largecr);
2511 if (ptr) LogMsg("%2d TTL%8d %s", i, largecr.r.resrec.rroriginalttl, CRDisplayString(m, &largecr.r));
2512 }
2513 if (!ptr) LogMsg("ERROR: Premature end of packet data");
2514 return(ptr);
2515 }
2516
2517 #define DNS_OP_Name(X) ( \
2518 (X) == kDNSFlag0_OP_StdQuery ? "" : \
2519 (X) == kDNSFlag0_OP_Iquery ? "Iquery " : \
2520 (X) == kDNSFlag0_OP_Status ? "Status " : \
2521 (X) == kDNSFlag0_OP_Unused3 ? "Unused3 " : \
2522 (X) == kDNSFlag0_OP_Notify ? "Notify " : \
2523 (X) == kDNSFlag0_OP_Update ? "Update " : "?? " )
2524
2525 #define DNS_RC_Name(X) ( \
2526 (X) == kDNSFlag1_RC_NoErr ? "NoErr" : \
2527 (X) == kDNSFlag1_RC_FormErr ? "FormErr" : \
2528 (X) == kDNSFlag1_RC_ServFail ? "ServFail" : \
2529 (X) == kDNSFlag1_RC_NXDomain ? "NXDomain" : \
2530 (X) == kDNSFlag1_RC_NotImpl ? "NotImpl" : \
2531 (X) == kDNSFlag1_RC_Refused ? "Refused" : \
2532 (X) == kDNSFlag1_RC_YXDomain ? "YXDomain" : \
2533 (X) == kDNSFlag1_RC_YXRRSet ? "YXRRSet" : \
2534 (X) == kDNSFlag1_RC_NXRRSet ? "NXRRSet" : \
2535 (X) == kDNSFlag1_RC_NotAuth ? "NotAuth" : \
2536 (X) == kDNSFlag1_RC_NotZone ? "NotZone" : "??" )
2537
2538 // Note: DumpPacket expects the packet header fields in host byte order, not network byte order
DumpPacket(mDNS * const m,mStatus status,mDNSBool sent,char * transport,const mDNSAddr * srcaddr,mDNSIPPort srcport,const mDNSAddr * dstaddr,mDNSIPPort dstport,const DNSMessage * const msg,const mDNSu8 * const end)2539 mDNSexport void DumpPacket(mDNS *const m, mStatus status, mDNSBool sent, char *transport,
2540 const mDNSAddr *srcaddr, mDNSIPPort srcport,
2541 const mDNSAddr *dstaddr, mDNSIPPort dstport, const DNSMessage *const msg, const mDNSu8 *const end)
2542 {
2543 mDNSBool IsUpdate = ((msg->h.flags.b[0] & kDNSFlag0_OP_Mask) == kDNSFlag0_OP_Update);
2544 const mDNSu8 *ptr = msg->data;
2545 int i;
2546 DNSQuestion q;
2547 char tbuffer[64], sbuffer[64], dbuffer[64] = "";
2548 if (!status) tbuffer[mDNS_snprintf(tbuffer, sizeof(tbuffer), sent ? "Sent" : "Received" )] = 0;
2549 else tbuffer[mDNS_snprintf(tbuffer, sizeof(tbuffer), "ERROR %d %sing", status, sent ? "Send" : "Receiv")] = 0;
2550 if (sent) sbuffer[mDNS_snprintf(sbuffer, sizeof(sbuffer), "port " )] = 0;
2551 else sbuffer[mDNS_snprintf(sbuffer, sizeof(sbuffer), "%#a:", srcaddr)] = 0;
2552 if (dstaddr || !mDNSIPPortIsZero(dstport))
2553 dbuffer[mDNS_snprintf(dbuffer, sizeof(dbuffer), " to %#a:%d", dstaddr, mDNSVal16(dstport))] = 0;
2554
2555 LogMsg("-- %s %s DNS %s%s (flags %02X%02X) RCODE: %s (%d) %s%s%s%s%s%sID: %d %d bytes from %s%d%s%s --",
2556 tbuffer, transport,
2557 DNS_OP_Name(msg->h.flags.b[0] & kDNSFlag0_OP_Mask),
2558 msg->h.flags.b[0] & kDNSFlag0_QR_Response ? "Response" : "Query",
2559 msg->h.flags.b[0], msg->h.flags.b[1],
2560 DNS_RC_Name(msg->h.flags.b[1] & kDNSFlag1_RC_Mask),
2561 msg->h.flags.b[1] & kDNSFlag1_RC_Mask,
2562 msg->h.flags.b[0] & kDNSFlag0_AA ? "AA " : "",
2563 msg->h.flags.b[0] & kDNSFlag0_TC ? "TC " : "",
2564 msg->h.flags.b[0] & kDNSFlag0_RD ? "RD " : "",
2565 msg->h.flags.b[1] & kDNSFlag1_RA ? "RA " : "",
2566 msg->h.flags.b[1] & kDNSFlag1_AD ? "AD " : "",
2567 msg->h.flags.b[1] & kDNSFlag1_CD ? "CD " : "",
2568 mDNSVal16(msg->h.id),
2569 end - msg->data,
2570 sbuffer, mDNSVal16(srcport), dbuffer,
2571 (msg->h.flags.b[0] & kDNSFlag0_TC) ? " (truncated)" : ""
2572 );
2573
2574 LogMsg("%2d %s", msg->h.numQuestions, IsUpdate ? "Zone" : "Questions");
2575 for (i = 0; i < msg->h.numQuestions && ptr; i++)
2576 {
2577 ptr = getQuestion(msg, ptr, end, mDNSInterface_Any, &q);
2578 if (ptr) LogMsg("%2d %##s %s", i, q.qname.c, DNSTypeName(q.qtype));
2579 }
2580 ptr = DumpRecords(m, msg, ptr, end, msg->h.numAnswers, IsUpdate ? "Prerequisites" : "Answers");
2581 ptr = DumpRecords(m, msg, ptr, end, msg->h.numAuthorities, IsUpdate ? "Updates" : "Authorities");
2582 ptr = DumpRecords(m, msg, ptr, end, msg->h.numAdditionals, "Additionals");
2583 LogMsg("--------------");
2584 }
2585
2586 // ***************************************************************************
2587 #if COMPILER_LIKES_PRAGMA_MARK
2588 #pragma mark -
2589 #pragma mark - Packet Sending Functions
2590 #endif
2591
2592 // Stub definition of TCPSocket_struct so we can access flags field. (Rest of TCPSocket_struct is platform-dependent.)
2593 struct TCPSocket_struct { TCPSocketFlags flags; /* ... */ };
2594
2595 struct UDPSocket_struct
2596 {
2597 mDNSIPPort port; // MUST BE FIRST FIELD -- mDNSCoreReceive expects every UDPSocket_struct to begin with mDNSIPPort port
2598 };
2599
2600 // Note: When we sign a DNS message using DNSDigest_SignMessage(), the current real-time clock value is used, which
2601 // is why we generally defer signing until we send the message, to ensure the signature is as fresh as possible.
mDNSSendDNSMessage(mDNS * const m,DNSMessage * const msg,mDNSu8 * end,mDNSInterfaceID InterfaceID,UDPSocket * src,const mDNSAddr * dst,mDNSIPPort dstport,TCPSocket * sock,DomainAuthInfo * authInfo)2602 mDNSexport mStatus mDNSSendDNSMessage(mDNS *const m, DNSMessage *const msg, mDNSu8 *end,
2603 mDNSInterfaceID InterfaceID, UDPSocket *src, const mDNSAddr *dst, mDNSIPPort dstport, TCPSocket *sock, DomainAuthInfo *authInfo)
2604 {
2605 mStatus status = mStatus_NoError;
2606 const mDNSu16 numAdditionals = msg->h.numAdditionals;
2607 mDNSu8 *newend;
2608 mDNSu8 *limit = msg->data + AbsoluteMaxDNSMessageData;
2609
2610 // Zero-length message data is okay (e.g. for a DNS Update ack, where all we need is an ID and an error code
2611 if (end < msg->data || end - msg->data > AbsoluteMaxDNSMessageData)
2612 {
2613 LogMsg("mDNSSendDNSMessage: invalid message %p %p %d", msg->data, end, end - msg->data);
2614 return mStatus_BadParamErr;
2615 }
2616
2617 newend = putHINFO(m, msg, end, authInfo, limit);
2618 if (!newend) LogMsg("mDNSSendDNSMessage: putHINFO failed msg %p end %p, limit %p", msg->data, end, limit); // Not fatal
2619 else end = newend;
2620
2621 // Put all the integer values in IETF byte-order (MSB first, LSB second)
2622 SwapDNSHeaderBytes(msg);
2623
2624 if (authInfo) DNSDigest_SignMessage(msg, &end, authInfo, 0); // DNSDigest_SignMessage operates on message in network byte order
2625 if (!end) { LogMsg("mDNSSendDNSMessage: DNSDigest_SignMessage failed"); status = mStatus_NoMemoryErr; }
2626 else
2627 {
2628 // Send the packet on the wire
2629 if (!sock)
2630 status = mDNSPlatformSendUDP(m, msg, end, InterfaceID, src, dst, dstport);
2631 else
2632 {
2633 mDNSu16 msglen = (mDNSu16)(end - (mDNSu8 *)msg);
2634 mDNSu8 lenbuf[2] = { (mDNSu8)(msglen >> 8), (mDNSu8)(msglen & 0xFF) };
2635 long nsent = mDNSPlatformWriteTCP(sock, (char*)lenbuf, 2); // Should do scatter/gather here -- this is probably going out as two packets
2636 if (nsent != 2) { LogMsg("mDNSSendDNSMessage: write msg length failed %d/%d", nsent, 2); status = mStatus_ConnFailed; }
2637 else
2638 {
2639 nsent = mDNSPlatformWriteTCP(sock, (char *)msg, msglen);
2640 if (nsent != msglen) { LogMsg("mDNSSendDNSMessage: write msg body failed %d/%d", nsent, msglen); status = mStatus_ConnFailed; }
2641 }
2642 }
2643 }
2644
2645 // Swap the integer values back the way they were (remember that numAdditionals may have been changed by putHINFO and/or SignMessage)
2646 SwapDNSHeaderBytes(msg);
2647
2648 // Dump the packet with the HINFO and TSIG
2649 if (mDNS_PacketLoggingEnabled && !mDNSOpaque16IsZero(msg->h.id))
2650 DumpPacket(m, status, mDNStrue, sock && (sock->flags & kTCPSocketFlags_UseTLS) ? "TLS" : sock ? "TCP" : "UDP", mDNSNULL, src ? src->port : MulticastDNSPort, dst, dstport, msg, end);
2651
2652 // put the number of additionals back the way it was
2653 msg->h.numAdditionals = numAdditionals;
2654
2655 return(status);
2656 }
2657
2658 // ***************************************************************************
2659 #if COMPILER_LIKES_PRAGMA_MARK
2660 #pragma mark -
2661 #pragma mark - RR List Management & Task Management
2662 #endif
2663
mDNS_Lock_(mDNS * const m,const char * const functionname)2664 mDNSexport void mDNS_Lock_(mDNS *const m, const char * const functionname)
2665 {
2666 // MUST grab the platform lock FIRST!
2667 mDNSPlatformLock(m);
2668
2669 // Normally, mDNS_reentrancy is zero and so is mDNS_busy
2670 // However, when we call a client callback mDNS_busy is one, and we increment mDNS_reentrancy too
2671 // If that client callback does mDNS API calls, mDNS_reentrancy and mDNS_busy will both be one
2672 // If mDNS_busy != mDNS_reentrancy that's a bad sign
2673 if (m->mDNS_busy != m->mDNS_reentrancy)
2674 {
2675 LogMsg("%s: mDNS_Lock: Locking failure! mDNS_busy (%ld) != mDNS_reentrancy (%ld)", functionname, m->mDNS_busy, m->mDNS_reentrancy);
2676 #if ForceAlerts
2677 *(long*)0 = 0;
2678 #endif
2679 }
2680
2681 // If this is an initial entry into the mDNSCore code, set m->timenow
2682 // else, if this is a re-entrant entry into the mDNSCore code, m->timenow should already be set
2683 if (m->mDNS_busy == 0)
2684 {
2685 if (m->timenow)
2686 LogMsg("%s: mDNS_Lock: m->timenow already set (%ld/%ld)", functionname, m->timenow, mDNS_TimeNow_NoLock(m));
2687 m->timenow = mDNS_TimeNow_NoLock(m);
2688 if (m->timenow == 0) m->timenow = 1;
2689 }
2690 else if (m->timenow == 0)
2691 {
2692 LogMsg("%s: mDNS_Lock: m->mDNS_busy is %ld but m->timenow not set", functionname, m->mDNS_busy);
2693 m->timenow = mDNS_TimeNow_NoLock(m);
2694 if (m->timenow == 0) m->timenow = 1;
2695 }
2696
2697 if (m->timenow_last - m->timenow > 0)
2698 {
2699 m->timenow_adjust += m->timenow_last - m->timenow;
2700 LogMsg("%s: mDNSPlatformRawTime went backwards by %ld ticks; setting correction factor to %ld", functionname, m->timenow_last - m->timenow, m->timenow_adjust);
2701 m->timenow = m->timenow_last;
2702 }
2703 m->timenow_last = m->timenow;
2704
2705 // Increment mDNS_busy so we'll recognise re-entrant calls
2706 m->mDNS_busy++;
2707 }
2708
AnyLocalRecordReady(const mDNS * const m)2709 mDNSlocal AuthRecord *AnyLocalRecordReady(const mDNS *const m)
2710 {
2711 AuthRecord *rr;
2712 for (rr = m->NewLocalRecords; rr; rr = rr->next)
2713 if (LocalRecordReady(rr)) return rr;
2714 return mDNSNULL;
2715 }
2716
GetNextScheduledEvent(const mDNS * const m)2717 mDNSlocal mDNSs32 GetNextScheduledEvent(const mDNS *const m)
2718 {
2719 mDNSs32 e = m->timenow + 0x78000000;
2720 if (m->mDNSPlatformStatus != mStatus_NoError) return(e);
2721 if (m->NewQuestions)
2722 {
2723 if (m->NewQuestions->DelayAnswering) e = m->NewQuestions->DelayAnswering;
2724 else return(m->timenow);
2725 }
2726 if (m->NewLocalOnlyQuestions) return(m->timenow);
2727 if (m->NewLocalRecords && AnyLocalRecordReady(m)) return(m->timenow);
2728 if (m->NewLocalOnlyRecords) return(m->timenow);
2729 if (m->SPSProxyListChanged) return(m->timenow);
2730 if (m->LocalRemoveEvents) return(m->timenow);
2731
2732 #ifndef UNICAST_DISABLED
2733 if (e - m->NextuDNSEvent > 0) e = m->NextuDNSEvent;
2734 if (e - m->NextScheduledNATOp > 0) e = m->NextScheduledNATOp;
2735 if (m->NextSRVUpdate && e - m->NextSRVUpdate > 0) e = m->NextSRVUpdate;
2736 #endif
2737
2738 if (e - m->NextCacheCheck > 0) e = m->NextCacheCheck;
2739 if (e - m->NextScheduledSPS > 0) e = m->NextScheduledSPS;
2740 // NextScheduledSPRetry only valid when DelaySleep not set
2741 if (!m->DelaySleep && m->SleepLimit && e - m->NextScheduledSPRetry > 0) e = m->NextScheduledSPRetry;
2742 if (m->DelaySleep && e - m->DelaySleep > 0) e = m->DelaySleep;
2743
2744 if (m->SuppressSending)
2745 {
2746 if (e - m->SuppressSending > 0) e = m->SuppressSending;
2747 }
2748 else
2749 {
2750 if (e - m->NextScheduledQuery > 0) e = m->NextScheduledQuery;
2751 if (e - m->NextScheduledProbe > 0) e = m->NextScheduledProbe;
2752 if (e - m->NextScheduledResponse > 0) e = m->NextScheduledResponse;
2753 }
2754 if (e - m->NextScheduledStopTime > 0) e = m->NextScheduledStopTime;
2755 return(e);
2756 }
2757
ShowTaskSchedulingError(mDNS * const m)2758 mDNSexport void ShowTaskSchedulingError(mDNS *const m)
2759 {
2760 AuthRecord *rr;
2761 mDNS_Lock(m);
2762
2763 LogMsg("Task Scheduling Error: Continuously busy for more than a second");
2764
2765 // Note: To accurately diagnose *why* we're busy, the debugging code here needs to mirror the logic in GetNextScheduledEvent above
2766
2767 if (m->NewQuestions && (!m->NewQuestions->DelayAnswering || m->timenow - m->NewQuestions->DelayAnswering >= 0))
2768 LogMsg("Task Scheduling Error: NewQuestion %##s (%s)",
2769 m->NewQuestions->qname.c, DNSTypeName(m->NewQuestions->qtype));
2770
2771 if (m->NewLocalOnlyQuestions)
2772 LogMsg("Task Scheduling Error: NewLocalOnlyQuestions %##s (%s)",
2773 m->NewLocalOnlyQuestions->qname.c, DNSTypeName(m->NewLocalOnlyQuestions->qtype));
2774
2775 if (m->NewLocalRecords)
2776 {
2777 rr = AnyLocalRecordReady(m);
2778 if (rr) LogMsg("Task Scheduling Error: NewLocalRecords %s", ARDisplayString(m, rr));
2779 }
2780
2781 if (m->NewLocalOnlyRecords) LogMsg("Task Scheduling Error: NewLocalOnlyRecords");
2782
2783 if (m->SPSProxyListChanged) LogMsg("Task Scheduling Error: SPSProxyListChanged");
2784 if (m->LocalRemoveEvents) LogMsg("Task Scheduling Error: LocalRemoveEvents");
2785
2786 if (m->timenow - m->NextScheduledEvent >= 0)
2787 LogMsg("Task Scheduling Error: m->NextScheduledEvent %d", m->timenow - m->NextScheduledEvent);
2788
2789 #ifndef UNICAST_DISABLED
2790 if (m->timenow - m->NextuDNSEvent >= 0)
2791 LogMsg("Task Scheduling Error: m->NextuDNSEvent %d", m->timenow - m->NextuDNSEvent);
2792 if (m->timenow - m->NextScheduledNATOp >= 0)
2793 LogMsg("Task Scheduling Error: m->NextScheduledNATOp %d", m->timenow - m->NextScheduledNATOp);
2794 if (m->NextSRVUpdate && m->timenow - m->NextSRVUpdate >= 0)
2795 LogMsg("Task Scheduling Error: m->NextSRVUpdate %d", m->timenow - m->NextSRVUpdate);
2796 #endif
2797
2798 if (m->timenow - m->NextCacheCheck >= 0)
2799 LogMsg("Task Scheduling Error: m->NextCacheCheck %d", m->timenow - m->NextCacheCheck);
2800 if (m->timenow - m->NextScheduledSPS >= 0)
2801 LogMsg("Task Scheduling Error: m->NextScheduledSPS %d", m->timenow - m->NextScheduledSPS);
2802 if (!m->DelaySleep && m->SleepLimit && m->timenow - m->NextScheduledSPRetry >= 0)
2803 LogMsg("Task Scheduling Error: m->NextScheduledSPRetry %d", m->timenow - m->NextScheduledSPRetry);
2804 if (m->DelaySleep && m->timenow - m->DelaySleep >= 0)
2805 LogMsg("Task Scheduling Error: m->DelaySleep %d", m->timenow - m->DelaySleep);
2806
2807 if (m->SuppressSending && m->timenow - m->SuppressSending >= 0)
2808 LogMsg("Task Scheduling Error: m->SuppressSending %d", m->timenow - m->SuppressSending);
2809 if (m->timenow - m->NextScheduledQuery >= 0)
2810 LogMsg("Task Scheduling Error: m->NextScheduledQuery %d", m->timenow - m->NextScheduledQuery);
2811 if (m->timenow - m->NextScheduledProbe >= 0)
2812 LogMsg("Task Scheduling Error: m->NextScheduledProbe %d", m->timenow - m->NextScheduledProbe);
2813 if (m->timenow - m->NextScheduledResponse >= 0)
2814 LogMsg("Task Scheduling Error: m->NextScheduledResponse %d", m->timenow - m->NextScheduledResponse);
2815
2816 mDNS_Unlock(m);
2817 }
2818
mDNS_Unlock_(mDNS * const m,const char * const functionname)2819 mDNSexport void mDNS_Unlock_(mDNS *const m, const char * const functionname)
2820 {
2821 // Decrement mDNS_busy
2822 m->mDNS_busy--;
2823
2824 // Check for locking failures
2825 if (m->mDNS_busy != m->mDNS_reentrancy)
2826 {
2827 LogMsg("%s: mDNS_Unlock: Locking failure! mDNS_busy (%ld) != mDNS_reentrancy (%ld)", functionname, m->mDNS_busy, m->mDNS_reentrancy);
2828 #if ForceAlerts
2829 *(long*)0 = 0;
2830 #endif
2831 }
2832
2833 // If this is a final exit from the mDNSCore code, set m->NextScheduledEvent and clear m->timenow
2834 if (m->mDNS_busy == 0)
2835 {
2836 m->NextScheduledEvent = GetNextScheduledEvent(m);
2837 if (m->timenow == 0) LogMsg("%s: mDNS_Unlock: ERROR! m->timenow aready zero", functionname);
2838 m->timenow = 0;
2839 }
2840
2841 // MUST release the platform lock LAST!
2842 mDNSPlatformUnlock(m);
2843 }
2844
2845 // ***************************************************************************
2846 #if COMPILER_LIKES_PRAGMA_MARK
2847 #pragma mark -
2848 #pragma mark - Specialized mDNS version of vsnprintf
2849 #endif
2850
2851 static const struct mDNSprintf_format
2852 {
2853 unsigned leftJustify : 1;
2854 unsigned forceSign : 1;
2855 unsigned zeroPad : 1;
2856 unsigned havePrecision : 1;
2857 unsigned hSize : 1;
2858 unsigned lSize : 1;
2859 char altForm;
2860 char sign; // +, - or space
2861 unsigned int fieldWidth;
2862 unsigned int precision;
2863 } mDNSprintf_format_default = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
2864
mDNS_vsnprintf(char * sbuffer,mDNSu32 buflen,const char * fmt,va_list arg)2865 mDNSexport mDNSu32 mDNS_vsnprintf(char *sbuffer, mDNSu32 buflen, const char *fmt, va_list arg)
2866 {
2867 mDNSu32 nwritten = 0;
2868 int c;
2869 if (buflen == 0) return(0);
2870 buflen--; // Pre-reserve one space in the buffer for the terminating null
2871 if (buflen == 0) goto exit;
2872
2873 for (c = *fmt; c != 0; c = *++fmt)
2874 {
2875 if (c != '%')
2876 {
2877 *sbuffer++ = (char)c;
2878 if (++nwritten >= buflen) goto exit;
2879 }
2880 else
2881 {
2882 unsigned int i=0, j;
2883 // The mDNS Vsprintf Argument Conversion Buffer is used as a temporary holding area for
2884 // generating decimal numbers, hexdecimal numbers, IP addresses, domain name strings, etc.
2885 // The size needs to be enough for a 256-byte domain name plus some error text.
2886 #define mDNS_VACB_Size 300
2887 char mDNS_VACB[mDNS_VACB_Size];
2888 #define mDNS_VACB_Lim (&mDNS_VACB[mDNS_VACB_Size])
2889 #define mDNS_VACB_Remain(s) ((mDNSu32)(mDNS_VACB_Lim - s))
2890 char *s = mDNS_VACB_Lim, *digits;
2891 struct mDNSprintf_format F = mDNSprintf_format_default;
2892
2893 while (1) // decode flags
2894 {
2895 c = *++fmt;
2896 if (c == '-') F.leftJustify = 1;
2897 else if (c == '+') F.forceSign = 1;
2898 else if (c == ' ') F.sign = ' ';
2899 else if (c == '#') F.altForm++;
2900 else if (c == '0') F.zeroPad = 1;
2901 else break;
2902 }
2903
2904 if (c == '*') // decode field width
2905 {
2906 int f = va_arg(arg, int);
2907 if (f < 0) { f = -f; F.leftJustify = 1; }
2908 F.fieldWidth = (unsigned int)f;
2909 c = *++fmt;
2910 }
2911 else
2912 {
2913 for (; c >= '0' && c <= '9'; c = *++fmt)
2914 F.fieldWidth = (10 * F.fieldWidth) + (c - '0');
2915 }
2916
2917 if (c == '.') // decode precision
2918 {
2919 if ((c = *++fmt) == '*')
2920 { F.precision = va_arg(arg, unsigned int); c = *++fmt; }
2921 else for (; c >= '0' && c <= '9'; c = *++fmt)
2922 F.precision = (10 * F.precision) + (c - '0');
2923 F.havePrecision = 1;
2924 }
2925
2926 if (F.leftJustify) F.zeroPad = 0;
2927
2928 conv:
2929 switch (c) // perform appropriate conversion
2930 {
2931 unsigned long n;
2932 case 'h' : F.hSize = 1; c = *++fmt; goto conv;
2933 case 'l' : // fall through
2934 case 'L' : F.lSize = 1; c = *++fmt; goto conv;
2935 case 'd' :
2936 case 'i' : if (F.lSize) n = (unsigned long)va_arg(arg, long);
2937 else n = (unsigned long)va_arg(arg, int);
2938 if (F.hSize) n = (short) n;
2939 if ((long) n < 0) { n = (unsigned long)-(long)n; F.sign = '-'; }
2940 else if (F.forceSign) F.sign = '+';
2941 goto decimal;
2942 case 'u' : if (F.lSize) n = va_arg(arg, unsigned long);
2943 else n = va_arg(arg, unsigned int);
2944 if (F.hSize) n = (unsigned short) n;
2945 F.sign = 0;
2946 goto decimal;
2947 decimal: if (!F.havePrecision)
2948 {
2949 if (F.zeroPad)
2950 {
2951 F.precision = F.fieldWidth;
2952 if (F.sign) --F.precision;
2953 }
2954 if (F.precision < 1) F.precision = 1;
2955 }
2956 if (F.precision > mDNS_VACB_Size - 1)
2957 F.precision = mDNS_VACB_Size - 1;
2958 for (i = 0; n; n /= 10, i++) *--s = (char)(n % 10 + '0');
2959 for (; i < F.precision; i++) *--s = '0';
2960 if (F.sign) { *--s = F.sign; i++; }
2961 break;
2962
2963 case 'o' : if (F.lSize) n = va_arg(arg, unsigned long);
2964 else n = va_arg(arg, unsigned int);
2965 if (F.hSize) n = (unsigned short) n;
2966 if (!F.havePrecision)
2967 {
2968 if (F.zeroPad) F.precision = F.fieldWidth;
2969 if (F.precision < 1) F.precision = 1;
2970 }
2971 if (F.precision > mDNS_VACB_Size - 1)
2972 F.precision = mDNS_VACB_Size - 1;
2973 for (i = 0; n; n /= 8, i++) *--s = (char)(n % 8 + '0');
2974 if (F.altForm && i && *s != '0') { *--s = '0'; i++; }
2975 for (; i < F.precision; i++) *--s = '0';
2976 break;
2977
2978 case 'a' : {
2979 unsigned char *a = va_arg(arg, unsigned char *);
2980 if (!a) { static char emsg[] = "<<NULL>>"; s = emsg; i = sizeof(emsg)-1; }
2981 else
2982 {
2983 s = mDNS_VACB; // Adjust s to point to the start of the buffer, not the end
2984 if (F.altForm)
2985 {
2986 mDNSAddr *ip = (mDNSAddr*)a;
2987 switch (ip->type)
2988 {
2989 case mDNSAddrType_IPv4: F.precision = 4; a = (unsigned char *)&ip->ip.v4; break;
2990 case mDNSAddrType_IPv6: F.precision = 16; a = (unsigned char *)&ip->ip.v6; break;
2991 default: F.precision = 0; break;
2992 }
2993 }
2994 if (F.altForm && !F.precision)
2995 i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB), "«ZERO ADDRESS»");
2996 else switch (F.precision)
2997 {
2998 case 4: i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB), "%d.%d.%d.%d",
2999 a[0], a[1], a[2], a[3]); break;
3000 case 6: i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB), "%02X:%02X:%02X:%02X:%02X:%02X",
3001 a[0], a[1], a[2], a[3], a[4], a[5]); break;
3002 case 16: i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB),
3003 "%02X%02X:%02X%02X:%02X%02X:%02X%02X:%02X%02X:%02X%02X:%02X%02X:%02X%02X",
3004 a[0x0], a[0x1], a[0x2], a[0x3], a[0x4], a[0x5], a[0x6], a[0x7],
3005 a[0x8], a[0x9], a[0xA], a[0xB], a[0xC], a[0xD], a[0xE], a[0xF]); break;
3006 default: i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB), "%s", "<< ERROR: Must specify"
3007 " address size (i.e. %.4a=IPv4, %.6a=Ethernet, %.16a=IPv6) >>"); break;
3008 }
3009 }
3010 }
3011 break;
3012
3013 case 'p' : F.havePrecision = F.lSize = 1;
3014 F.precision = sizeof(void*) * 2; // 8 characters on 32-bit; 16 characters on 64-bit
3015 case 'X' : digits = "0123456789ABCDEF";
3016 goto hexadecimal;
3017 case 'x' : digits = "0123456789abcdef";
3018 hexadecimal:if (F.lSize) n = va_arg(arg, unsigned long);
3019 else n = va_arg(arg, unsigned int);
3020 if (F.hSize) n = (unsigned short) n;
3021 if (!F.havePrecision)
3022 {
3023 if (F.zeroPad)
3024 {
3025 F.precision = F.fieldWidth;
3026 if (F.altForm) F.precision -= 2;
3027 }
3028 if (F.precision < 1) F.precision = 1;
3029 }
3030 if (F.precision > mDNS_VACB_Size - 1)
3031 F.precision = mDNS_VACB_Size - 1;
3032 for (i = 0; n; n /= 16, i++) *--s = digits[n % 16];
3033 for (; i < F.precision; i++) *--s = '0';
3034 if (F.altForm) { *--s = (char)c; *--s = '0'; i += 2; }
3035 break;
3036
3037 case 'c' : *--s = (char)va_arg(arg, int); i = 1; break;
3038
3039 case 's' : s = va_arg(arg, char *);
3040 if (!s) { static char emsg[] = "<<NULL>>"; s = emsg; i = sizeof(emsg)-1; }
3041 else switch (F.altForm)
3042 {
3043 case 0: i=0;
3044 if (!F.havePrecision) // C string
3045 while (s[i]) i++;
3046 else
3047 {
3048 while ((i < F.precision) && s[i]) i++;
3049 // Make sure we don't truncate in the middle of a UTF-8 character
3050 // If last character we got was any kind of UTF-8 multi-byte character,
3051 // then see if we have to back up.
3052 // This is not as easy as the similar checks below, because
3053 // here we can't assume it's safe to examine the *next* byte, so we
3054 // have to confine ourselves to working only backwards in the string.
3055 j = i; // Record where we got to
3056 // Now, back up until we find first non-continuation-char
3057 while (i>0 && (s[i-1] & 0xC0) == 0x80) i--;
3058 // Now s[i-1] is the first non-continuation-char
3059 // and (j-i) is the number of continuation-chars we found
3060 if (i>0 && (s[i-1] & 0xC0) == 0xC0) // If we found a start-char
3061 {
3062 i--; // Tentatively eliminate this start-char as well
3063 // Now (j-i) is the number of characters we're considering eliminating.
3064 // To be legal UTF-8, the start-char must contain (j-i) one-bits,
3065 // followed by a zero bit. If we shift it right by (7-(j-i)) bits
3066 // (with sign extension) then the result has to be 0xFE.
3067 // If this is right, then we reinstate the tentatively eliminated bytes.
3068 if (((j-i) < 7) && (((s[i] >> (7-(j-i))) & 0xFF) == 0xFE)) i = j;
3069 }
3070 }
3071 break;
3072 case 1: i = (unsigned char) *s++; break; // Pascal string
3073 case 2: { // DNS label-sequence name
3074 unsigned char *a = (unsigned char *)s;
3075 s = mDNS_VACB; // Adjust s to point to the start of the buffer, not the end
3076 if (*a == 0) *s++ = '.'; // Special case for root DNS name
3077 while (*a)
3078 {
3079 char buf[63*4+1];
3080 if (*a > 63)
3081 { s += mDNS_snprintf(s, mDNS_VACB_Remain(s), "<<INVALID LABEL LENGTH %u>>", *a); break; }
3082 if (s + *a >= &mDNS_VACB[254])
3083 { s += mDNS_snprintf(s, mDNS_VACB_Remain(s), "<<NAME TOO LONG>>"); break; }
3084 // Need to use ConvertDomainLabelToCString to do proper escaping here,
3085 // so it's clear what's a literal dot and what's a label separator
3086 ConvertDomainLabelToCString((domainlabel*)a, buf);
3087 s += mDNS_snprintf(s, mDNS_VACB_Remain(s), "%s.", buf);
3088 a += 1 + *a;
3089 }
3090 i = (mDNSu32)(s - mDNS_VACB);
3091 s = mDNS_VACB; // Reset s back to the start of the buffer
3092 break;
3093 }
3094 }
3095 // Make sure we don't truncate in the middle of a UTF-8 character (see similar comment below)
3096 if (F.havePrecision && i > F.precision)
3097 { i = F.precision; while (i>0 && (s[i] & 0xC0) == 0x80) i--; }
3098 break;
3099
3100 case 'n' : s = va_arg(arg, char *);
3101 if (F.hSize) * (short *) s = (short)nwritten;
3102 else if (F.lSize) * (long *) s = (long)nwritten;
3103 else * (int *) s = (int)nwritten;
3104 continue;
3105
3106 default: s = mDNS_VACB;
3107 i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB), "<<UNKNOWN FORMAT CONVERSION CODE %%%c>>", c);
3108
3109 case '%' : *sbuffer++ = (char)c;
3110 if (++nwritten >= buflen) goto exit;
3111 break;
3112 }
3113
3114 if (i < F.fieldWidth && !F.leftJustify) // Pad on the left
3115 do {
3116 *sbuffer++ = ' ';
3117 if (++nwritten >= buflen) goto exit;
3118 } while (i < --F.fieldWidth);
3119
3120 // Make sure we don't truncate in the middle of a UTF-8 character.
3121 // Note: s[i] is the first eliminated character; i.e. the next character *after* the last character of the
3122 // allowed output. If s[i] is a UTF-8 continuation character, then we've cut a unicode character in half,
3123 // so back up 'i' until s[i] is no longer a UTF-8 continuation character. (if the input was proprly
3124 // formed, s[i] will now be the UTF-8 start character of the multi-byte character we just eliminated).
3125 if (i > buflen - nwritten)
3126 { i = buflen - nwritten; while (i>0 && (s[i] & 0xC0) == 0x80) i--; }
3127 for (j=0; j<i; j++) *sbuffer++ = *s++; // Write the converted result
3128 nwritten += i;
3129 if (nwritten >= buflen) goto exit;
3130
3131 for (; i < F.fieldWidth; i++) // Pad on the right
3132 {
3133 *sbuffer++ = ' ';
3134 if (++nwritten >= buflen) goto exit;
3135 }
3136 }
3137 }
3138 exit:
3139 *sbuffer++ = 0;
3140 return(nwritten);
3141 }
3142
mDNS_snprintf(char * sbuffer,mDNSu32 buflen,const char * fmt,...)3143 mDNSexport mDNSu32 mDNS_snprintf(char *sbuffer, mDNSu32 buflen, const char *fmt, ...)
3144 {
3145 mDNSu32 length;
3146
3147 va_list ptr;
3148 va_start(ptr,fmt);
3149 length = mDNS_vsnprintf(sbuffer, buflen, fmt, ptr);
3150 va_end(ptr);
3151
3152 return(length);
3153 }
3154