• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2010 Marek Olšák <maraeo@gmail.com>
3  * Copyright 2016 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * on the rights to use, copy, modify, merge, publish, distribute, sub
9  * license, and/or sell copies of the Software, and to permit persons to whom
10  * the Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22  * USE OR OTHER DEALINGS IN THE SOFTWARE. */
23 
24 #include "slab.h"
25 #include "macros.h"
26 #include "u_atomic.h"
27 #include <stdint.h>
28 #include <stdbool.h>
29 #include <string.h>
30 
31 #define SLAB_MAGIC_ALLOCATED 0xcafe4321
32 #define SLAB_MAGIC_FREE 0x7ee01234
33 
34 #ifndef NDEBUG
35 #define SET_MAGIC(element, value)   (element)->magic = (value)
36 #define CHECK_MAGIC(element, value) assert((element)->magic == (value))
37 #else
38 #define SET_MAGIC(element, value)
39 #define CHECK_MAGIC(element, value)
40 #endif
41 
42 /* One array element within a big buffer. */
43 struct slab_element_header {
44    /* The next element in the free or migrated list. */
45    struct slab_element_header *next;
46 
47    /* This is either
48     * - a pointer to the child pool to which this element belongs, or
49     * - a pointer to the orphaned page of the element, with the least
50     *   significant bit set to 1.
51     */
52    intptr_t owner;
53 
54 #ifndef NDEBUG
55    intptr_t magic;
56 #endif
57 };
58 
59 /* The page is an array of allocations in one block. */
60 struct slab_page_header {
61    union {
62       /* Next page in the same child pool. */
63       struct slab_page_header *next;
64 
65       /* Number of remaining, non-freed elements (for orphaned pages). */
66       unsigned num_remaining;
67    } u;
68    /* Memory after the last member is dedicated to the page itself.
69     * The allocated size is always larger than this structure.
70     */
71 };
72 
73 
74 static struct slab_element_header *
slab_get_element(struct slab_parent_pool * parent,struct slab_page_header * page,unsigned index)75 slab_get_element(struct slab_parent_pool *parent,
76                  struct slab_page_header *page, unsigned index)
77 {
78    return (struct slab_element_header*)
79           ((uint8_t*)&page[1] + (parent->element_size * index));
80 }
81 
82 /* The given object/element belongs to an orphaned page (i.e. the owning child
83  * pool has been destroyed). Mark the element as freed and free the whole page
84  * when no elements are left in it.
85  */
86 static void
slab_free_orphaned(struct slab_element_header * elt)87 slab_free_orphaned(struct slab_element_header *elt)
88 {
89    struct slab_page_header *page;
90 
91    assert(elt->owner & 1);
92 
93    page = (struct slab_page_header *)(elt->owner & ~(intptr_t)1);
94    if (!p_atomic_dec_return(&page->u.num_remaining))
95       free(page);
96 }
97 
98 /**
99  * Create a parent pool for the allocation of same-sized objects.
100  *
101  * \param item_size     Size of one object.
102  * \param num_items     Number of objects to allocate at once.
103  */
104 void
slab_create_parent(struct slab_parent_pool * parent,unsigned item_size,unsigned num_items)105 slab_create_parent(struct slab_parent_pool *parent,
106                    unsigned item_size,
107                    unsigned num_items)
108 {
109    mtx_init(&parent->mutex, mtx_plain);
110    parent->element_size = ALIGN_POT(sizeof(struct slab_element_header) + item_size,
111                                     sizeof(intptr_t));
112    parent->num_elements = num_items;
113 }
114 
115 void
slab_destroy_parent(struct slab_parent_pool * parent)116 slab_destroy_parent(struct slab_parent_pool *parent)
117 {
118    mtx_destroy(&parent->mutex);
119 }
120 
121 /**
122  * Create a child pool linked to the given parent.
123  */
slab_create_child(struct slab_child_pool * pool,struct slab_parent_pool * parent)124 void slab_create_child(struct slab_child_pool *pool,
125                        struct slab_parent_pool *parent)
126 {
127    pool->parent = parent;
128    pool->pages = NULL;
129    pool->free = NULL;
130    pool->migrated = NULL;
131 }
132 
133 /**
134  * Destroy the child pool.
135  *
136  * Pages associated to the pool will be orphaned. They are eventually freed
137  * when all objects in them are freed.
138  */
slab_destroy_child(struct slab_child_pool * pool)139 void slab_destroy_child(struct slab_child_pool *pool)
140 {
141    if (!pool->parent)
142       return; /* the slab probably wasn't even created */
143 
144    mtx_lock(&pool->parent->mutex);
145 
146    while (pool->pages) {
147       struct slab_page_header *page = pool->pages;
148       pool->pages = page->u.next;
149       p_atomic_set(&page->u.num_remaining, pool->parent->num_elements);
150 
151       for (unsigned i = 0; i < pool->parent->num_elements; ++i) {
152          struct slab_element_header *elt = slab_get_element(pool->parent, page, i);
153          p_atomic_set(&elt->owner, (intptr_t)page | 1);
154       }
155    }
156 
157    while (pool->migrated) {
158       struct slab_element_header *elt = pool->migrated;
159       pool->migrated = elt->next;
160       slab_free_orphaned(elt);
161    }
162 
163    mtx_unlock(&pool->parent->mutex);
164 
165    while (pool->free) {
166       struct slab_element_header *elt = pool->free;
167       pool->free = elt->next;
168       slab_free_orphaned(elt);
169    }
170 
171    /* Guard against use-after-free. */
172    pool->parent = NULL;
173 }
174 
175 static bool
slab_add_new_page(struct slab_child_pool * pool)176 slab_add_new_page(struct slab_child_pool *pool)
177 {
178    struct slab_page_header *page = malloc(sizeof(struct slab_page_header) +
179       pool->parent->num_elements * pool->parent->element_size);
180 
181    if (!page)
182       return false;
183 
184    for (unsigned i = 0; i < pool->parent->num_elements; ++i) {
185       struct slab_element_header *elt = slab_get_element(pool->parent, page, i);
186       elt->owner = (intptr_t)pool;
187       assert(!(elt->owner & 1));
188 
189       elt->next = pool->free;
190       pool->free = elt;
191       SET_MAGIC(elt, SLAB_MAGIC_FREE);
192    }
193 
194    page->u.next = pool->pages;
195    pool->pages = page;
196 
197    return true;
198 }
199 
200 /**
201  * Allocate an object from the child pool. Single-threaded (i.e. the caller
202  * must ensure that no operation happens on the same child pool in another
203  * thread).
204  */
205 void *
slab_alloc(struct slab_child_pool * pool)206 slab_alloc(struct slab_child_pool *pool)
207 {
208    struct slab_element_header *elt;
209 
210    if (!pool->free) {
211       /* First, collect elements that belong to us but were freed from a
212        * different child pool.
213        */
214       mtx_lock(&pool->parent->mutex);
215       pool->free = pool->migrated;
216       pool->migrated = NULL;
217       mtx_unlock(&pool->parent->mutex);
218 
219       /* Now allocate a new page. */
220       if (!pool->free && !slab_add_new_page(pool))
221          return NULL;
222    }
223 
224    elt = pool->free;
225    pool->free = elt->next;
226 
227    CHECK_MAGIC(elt, SLAB_MAGIC_FREE);
228    SET_MAGIC(elt, SLAB_MAGIC_ALLOCATED);
229 
230    return &elt[1];
231 }
232 
233 /**
234  * Free an object allocated from the slab. Single-threaded (i.e. the caller
235  * must ensure that no operation happens on the same child pool in another
236  * thread).
237  *
238  * Freeing an object in a different child pool from the one where it was
239  * allocated is allowed, as long the pool belong to the same parent. No
240  * additional locking is required in this case.
241  */
slab_free(struct slab_child_pool * pool,void * ptr)242 void slab_free(struct slab_child_pool *pool, void *ptr)
243 {
244    struct slab_element_header *elt = ((struct slab_element_header*)ptr - 1);
245    intptr_t owner_int;
246 
247    CHECK_MAGIC(elt, SLAB_MAGIC_ALLOCATED);
248    SET_MAGIC(elt, SLAB_MAGIC_FREE);
249 
250    if (p_atomic_read(&elt->owner) == (intptr_t)pool) {
251       /* This is the simple case: The caller guarantees that we can safely
252        * access the free list.
253        */
254       elt->next = pool->free;
255       pool->free = elt;
256       return;
257    }
258 
259    /* The slow case: migration or an orphaned page. */
260    mtx_lock(&pool->parent->mutex);
261 
262    /* Note: we _must_ re-read elt->owner here because the owning child pool
263     * may have been destroyed by another thread in the meantime.
264     */
265    owner_int = p_atomic_read(&elt->owner);
266 
267    if (!(owner_int & 1)) {
268       struct slab_child_pool *owner = (struct slab_child_pool *)owner_int;
269       elt->next = owner->migrated;
270       owner->migrated = elt;
271       mtx_unlock(&pool->parent->mutex);
272    } else {
273       mtx_unlock(&pool->parent->mutex);
274 
275       slab_free_orphaned(elt);
276    }
277 }
278 
279 /**
280  * Allocate an object from the slab. Single-threaded (no mutex).
281  */
282 void *
slab_alloc_st(struct slab_mempool * mempool)283 slab_alloc_st(struct slab_mempool *mempool)
284 {
285    return slab_alloc(&mempool->child);
286 }
287 
288 /**
289  * Free an object allocated from the slab. Single-threaded (no mutex).
290  */
291 void
slab_free_st(struct slab_mempool * mempool,void * ptr)292 slab_free_st(struct slab_mempool *mempool, void *ptr)
293 {
294    slab_free(&mempool->child, ptr);
295 }
296 
297 void
slab_destroy(struct slab_mempool * mempool)298 slab_destroy(struct slab_mempool *mempool)
299 {
300    slab_destroy_child(&mempool->child);
301    slab_destroy_parent(&mempool->parent);
302 }
303 
304 /**
305  * Create an allocator for same-sized objects.
306  *
307  * \param item_size     Size of one object.
308  * \param num_items     Number of objects to allocate at once.
309  */
310 void
slab_create(struct slab_mempool * mempool,unsigned item_size,unsigned num_items)311 slab_create(struct slab_mempool *mempool,
312             unsigned item_size,
313             unsigned num_items)
314 {
315    slab_create_parent(&mempool->parent, item_size, num_items);
316    slab_create_child(&mempool->child, &mempool->parent);
317 }
318