1 /*
2 * kmp_lock.h -- lock header file
3 */
4
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12
13 #ifndef KMP_LOCK_H
14 #define KMP_LOCK_H
15
16 #include <limits.h> // CHAR_BIT
17 #include <stddef.h> // offsetof
18
19 #include "kmp_debug.h"
20 #include "kmp_os.h"
21
22 #ifdef __cplusplus
23 #include <atomic>
24
25 extern "C" {
26 #endif // __cplusplus
27
28 // ----------------------------------------------------------------------------
29 // Have to copy these definitions from kmp.h because kmp.h cannot be included
30 // due to circular dependencies. Will undef these at end of file.
31
32 #define KMP_PAD(type, sz) \
33 (sizeof(type) + (sz - ((sizeof(type) - 1) % (sz)) - 1))
34 #define KMP_GTID_DNE (-2)
35
36 // Forward declaration of ident and ident_t
37
38 struct ident;
39 typedef struct ident ident_t;
40
41 // End of copied code.
42 // ----------------------------------------------------------------------------
43
44 // We need to know the size of the area we can assume that the compiler(s)
45 // allocated for objects of type omp_lock_t and omp_nest_lock_t. The Intel
46 // compiler always allocates a pointer-sized area, as does visual studio.
47 //
48 // gcc however, only allocates 4 bytes for regular locks, even on 64-bit
49 // intel archs. It allocates at least 8 bytes for nested lock (more on
50 // recent versions), but we are bounded by the pointer-sized chunks that
51 // the Intel compiler allocates.
52
53 #if KMP_OS_LINUX && defined(KMP_GOMP_COMPAT)
54 #define OMP_LOCK_T_SIZE sizeof(int)
55 #define OMP_NEST_LOCK_T_SIZE sizeof(void *)
56 #else
57 #define OMP_LOCK_T_SIZE sizeof(void *)
58 #define OMP_NEST_LOCK_T_SIZE sizeof(void *)
59 #endif
60
61 // The Intel compiler allocates a 32-byte chunk for a critical section.
62 // Both gcc and visual studio only allocate enough space for a pointer.
63 // Sometimes we know that the space was allocated by the Intel compiler.
64 #define OMP_CRITICAL_SIZE sizeof(void *)
65 #define INTEL_CRITICAL_SIZE 32
66
67 // lock flags
68 typedef kmp_uint32 kmp_lock_flags_t;
69
70 #define kmp_lf_critical_section 1
71
72 // When a lock table is used, the indices are of kmp_lock_index_t
73 typedef kmp_uint32 kmp_lock_index_t;
74
75 // When memory allocated for locks are on the lock pool (free list),
76 // it is treated as structs of this type.
77 struct kmp_lock_pool {
78 union kmp_user_lock *next;
79 kmp_lock_index_t index;
80 };
81
82 typedef struct kmp_lock_pool kmp_lock_pool_t;
83
84 extern void __kmp_validate_locks(void);
85
86 // ----------------------------------------------------------------------------
87 // There are 5 lock implementations:
88 // 1. Test and set locks.
89 // 2. futex locks (Linux* OS on x86 and
90 // Intel(R) Many Integrated Core Architecture)
91 // 3. Ticket (Lamport bakery) locks.
92 // 4. Queuing locks (with separate spin fields).
93 // 5. DRPA (Dynamically Reconfigurable Distributed Polling Area) locks
94 //
95 // and 3 lock purposes:
96 // 1. Bootstrap locks -- Used for a few locks available at library
97 // startup-shutdown time.
98 // These do not require non-negative global thread ID's.
99 // 2. Internal RTL locks -- Used everywhere else in the RTL
100 // 3. User locks (includes critical sections)
101 // ----------------------------------------------------------------------------
102
103 // ============================================================================
104 // Lock implementations.
105 //
106 // Test and set locks.
107 //
108 // Non-nested test and set locks differ from the other lock kinds (except
109 // futex) in that we use the memory allocated by the compiler for the lock,
110 // rather than a pointer to it.
111 //
112 // On lin32, lin_32e, and win_32, the space allocated may be as small as 4
113 // bytes, so we have to use a lock table for nested locks, and avoid accessing
114 // the depth_locked field for non-nested locks.
115 //
116 // Information normally available to the tools, such as lock location, lock
117 // usage (normal lock vs. critical section), etc. is not available with test and
118 // set locks.
119 // ----------------------------------------------------------------------------
120
121 struct kmp_base_tas_lock {
122 // KMP_LOCK_FREE(tas) => unlocked; locked: (gtid+1) of owning thread
123 std::atomic<kmp_int32> poll;
124 kmp_int32 depth_locked; // depth locked, for nested locks only
125 };
126
127 typedef struct kmp_base_tas_lock kmp_base_tas_lock_t;
128
129 union kmp_tas_lock {
130 kmp_base_tas_lock_t lk;
131 kmp_lock_pool_t pool; // make certain struct is large enough
132 double lk_align; // use worst case alignment; no cache line padding
133 };
134
135 typedef union kmp_tas_lock kmp_tas_lock_t;
136
137 // Static initializer for test and set lock variables. Usage:
138 // kmp_tas_lock_t xlock = KMP_TAS_LOCK_INITIALIZER( xlock );
139 #define KMP_TAS_LOCK_INITIALIZER(lock) \
140 { \
141 { ATOMIC_VAR_INIT(KMP_LOCK_FREE(tas)), 0 } \
142 }
143
144 extern int __kmp_acquire_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid);
145 extern int __kmp_test_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid);
146 extern int __kmp_release_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid);
147 extern void __kmp_init_tas_lock(kmp_tas_lock_t *lck);
148 extern void __kmp_destroy_tas_lock(kmp_tas_lock_t *lck);
149
150 extern int __kmp_acquire_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid);
151 extern int __kmp_test_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid);
152 extern int __kmp_release_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid);
153 extern void __kmp_init_nested_tas_lock(kmp_tas_lock_t *lck);
154 extern void __kmp_destroy_nested_tas_lock(kmp_tas_lock_t *lck);
155
156 #define KMP_LOCK_RELEASED 1
157 #define KMP_LOCK_STILL_HELD 0
158 #define KMP_LOCK_ACQUIRED_FIRST 1
159 #define KMP_LOCK_ACQUIRED_NEXT 0
160 #ifndef KMP_USE_FUTEX
161 #define KMP_USE_FUTEX \
162 (KMP_OS_LINUX && \
163 (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64))
164 #endif
165 #if KMP_USE_FUTEX
166
167 // ----------------------------------------------------------------------------
168 // futex locks. futex locks are only available on Linux* OS.
169 //
170 // Like non-nested test and set lock, non-nested futex locks use the memory
171 // allocated by the compiler for the lock, rather than a pointer to it.
172 //
173 // Information normally available to the tools, such as lock location, lock
174 // usage (normal lock vs. critical section), etc. is not available with test and
175 // set locks. With non-nested futex locks, the lock owner is not even available.
176 // ----------------------------------------------------------------------------
177
178 struct kmp_base_futex_lock {
179 volatile kmp_int32 poll; // KMP_LOCK_FREE(futex) => unlocked
180 // 2*(gtid+1) of owning thread, 0 if unlocked
181 // locked: (gtid+1) of owning thread
182 kmp_int32 depth_locked; // depth locked, for nested locks only
183 };
184
185 typedef struct kmp_base_futex_lock kmp_base_futex_lock_t;
186
187 union kmp_futex_lock {
188 kmp_base_futex_lock_t lk;
189 kmp_lock_pool_t pool; // make certain struct is large enough
190 double lk_align; // use worst case alignment
191 // no cache line padding
192 };
193
194 typedef union kmp_futex_lock kmp_futex_lock_t;
195
196 // Static initializer for futex lock variables. Usage:
197 // kmp_futex_lock_t xlock = KMP_FUTEX_LOCK_INITIALIZER( xlock );
198 #define KMP_FUTEX_LOCK_INITIALIZER(lock) \
199 { \
200 { KMP_LOCK_FREE(futex), 0 } \
201 }
202
203 extern int __kmp_acquire_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid);
204 extern int __kmp_test_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid);
205 extern int __kmp_release_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid);
206 extern void __kmp_init_futex_lock(kmp_futex_lock_t *lck);
207 extern void __kmp_destroy_futex_lock(kmp_futex_lock_t *lck);
208
209 extern int __kmp_acquire_nested_futex_lock(kmp_futex_lock_t *lck,
210 kmp_int32 gtid);
211 extern int __kmp_test_nested_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid);
212 extern int __kmp_release_nested_futex_lock(kmp_futex_lock_t *lck,
213 kmp_int32 gtid);
214 extern void __kmp_init_nested_futex_lock(kmp_futex_lock_t *lck);
215 extern void __kmp_destroy_nested_futex_lock(kmp_futex_lock_t *lck);
216
217 #endif // KMP_USE_FUTEX
218
219 // ----------------------------------------------------------------------------
220 // Ticket locks.
221
222 #ifdef __cplusplus
223
224 #ifdef _MSC_VER
225 // MSVC won't allow use of std::atomic<> in a union since it has non-trivial
226 // copy constructor.
227
228 struct kmp_base_ticket_lock {
229 // `initialized' must be the first entry in the lock data structure!
230 std::atomic_bool initialized;
231 volatile union kmp_ticket_lock *self; // points to the lock union
232 ident_t const *location; // Source code location of omp_init_lock().
233 std::atomic_uint
234 next_ticket; // ticket number to give to next thread which acquires
235 std::atomic_uint now_serving; // ticket number for thread which holds the lock
236 std::atomic_int owner_id; // (gtid+1) of owning thread, 0 if unlocked
237 std::atomic_int depth_locked; // depth locked, for nested locks only
238 kmp_lock_flags_t flags; // lock specifics, e.g. critical section lock
239 };
240 #else
241 struct kmp_base_ticket_lock {
242 // `initialized' must be the first entry in the lock data structure!
243 std::atomic<bool> initialized;
244 volatile union kmp_ticket_lock *self; // points to the lock union
245 ident_t const *location; // Source code location of omp_init_lock().
246 std::atomic<unsigned>
247 next_ticket; // ticket number to give to next thread which acquires
248 std::atomic<unsigned>
249 now_serving; // ticket number for thread which holds the lock
250 std::atomic<int> owner_id; // (gtid+1) of owning thread, 0 if unlocked
251 std::atomic<int> depth_locked; // depth locked, for nested locks only
252 kmp_lock_flags_t flags; // lock specifics, e.g. critical section lock
253 };
254 #endif
255
256 #else // __cplusplus
257
258 struct kmp_base_ticket_lock;
259
260 #endif // !__cplusplus
261
262 typedef struct kmp_base_ticket_lock kmp_base_ticket_lock_t;
263
264 union KMP_ALIGN_CACHE kmp_ticket_lock {
265 kmp_base_ticket_lock_t
266 lk; // This field must be first to allow static initializing.
267 kmp_lock_pool_t pool;
268 double lk_align; // use worst case alignment
269 char lk_pad[KMP_PAD(kmp_base_ticket_lock_t, CACHE_LINE)];
270 };
271
272 typedef union kmp_ticket_lock kmp_ticket_lock_t;
273
274 // Static initializer for simple ticket lock variables. Usage:
275 // kmp_ticket_lock_t xlock = KMP_TICKET_LOCK_INITIALIZER( xlock );
276 // Note the macro argument. It is important to make var properly initialized.
277 #define KMP_TICKET_LOCK_INITIALIZER(lock) \
278 { \
279 { \
280 ATOMIC_VAR_INIT(true) \
281 , &(lock), NULL, ATOMIC_VAR_INIT(0U), ATOMIC_VAR_INIT(0U), \
282 ATOMIC_VAR_INIT(0), ATOMIC_VAR_INIT(-1) \
283 } \
284 }
285
286 extern int __kmp_acquire_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid);
287 extern int __kmp_test_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid);
288 extern int __kmp_test_ticket_lock_with_cheks(kmp_ticket_lock_t *lck,
289 kmp_int32 gtid);
290 extern int __kmp_release_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid);
291 extern void __kmp_init_ticket_lock(kmp_ticket_lock_t *lck);
292 extern void __kmp_destroy_ticket_lock(kmp_ticket_lock_t *lck);
293
294 extern int __kmp_acquire_nested_ticket_lock(kmp_ticket_lock_t *lck,
295 kmp_int32 gtid);
296 extern int __kmp_test_nested_ticket_lock(kmp_ticket_lock_t *lck,
297 kmp_int32 gtid);
298 extern int __kmp_release_nested_ticket_lock(kmp_ticket_lock_t *lck,
299 kmp_int32 gtid);
300 extern void __kmp_init_nested_ticket_lock(kmp_ticket_lock_t *lck);
301 extern void __kmp_destroy_nested_ticket_lock(kmp_ticket_lock_t *lck);
302
303 // ----------------------------------------------------------------------------
304 // Queuing locks.
305
306 #if KMP_USE_ADAPTIVE_LOCKS
307
308 struct kmp_adaptive_lock_info;
309
310 typedef struct kmp_adaptive_lock_info kmp_adaptive_lock_info_t;
311
312 #if KMP_DEBUG_ADAPTIVE_LOCKS
313
314 struct kmp_adaptive_lock_statistics {
315 /* So we can get stats from locks that haven't been destroyed. */
316 kmp_adaptive_lock_info_t *next;
317 kmp_adaptive_lock_info_t *prev;
318
319 /* Other statistics */
320 kmp_uint32 successfulSpeculations;
321 kmp_uint32 hardFailedSpeculations;
322 kmp_uint32 softFailedSpeculations;
323 kmp_uint32 nonSpeculativeAcquires;
324 kmp_uint32 nonSpeculativeAcquireAttempts;
325 kmp_uint32 lemmingYields;
326 };
327
328 typedef struct kmp_adaptive_lock_statistics kmp_adaptive_lock_statistics_t;
329
330 extern void __kmp_print_speculative_stats();
331 extern void __kmp_init_speculative_stats();
332
333 #endif // KMP_DEBUG_ADAPTIVE_LOCKS
334
335 struct kmp_adaptive_lock_info {
336 /* Values used for adaptivity.
337 Although these are accessed from multiple threads we don't access them
338 atomically, because if we miss updates it probably doesn't matter much. (It
339 just affects our decision about whether to try speculation on the lock). */
340 kmp_uint32 volatile badness;
341 kmp_uint32 volatile acquire_attempts;
342 /* Parameters of the lock. */
343 kmp_uint32 max_badness;
344 kmp_uint32 max_soft_retries;
345
346 #if KMP_DEBUG_ADAPTIVE_LOCKS
347 kmp_adaptive_lock_statistics_t volatile stats;
348 #endif
349 };
350
351 #endif // KMP_USE_ADAPTIVE_LOCKS
352
353 struct kmp_base_queuing_lock {
354
355 // `initialized' must be the first entry in the lock data structure!
356 volatile union kmp_queuing_lock
357 *initialized; // Points to the lock union if in initialized state.
358
359 ident_t const *location; // Source code location of omp_init_lock().
360
361 KMP_ALIGN(8) // tail_id must be 8-byte aligned!
362
363 volatile kmp_int32
364 tail_id; // (gtid+1) of thread at tail of wait queue, 0 if empty
365 // Must be no padding here since head/tail used in 8-byte CAS
366 volatile kmp_int32
367 head_id; // (gtid+1) of thread at head of wait queue, 0 if empty
368 // Decl order assumes little endian
369 // bakery-style lock
370 volatile kmp_uint32
371 next_ticket; // ticket number to give to next thread which acquires
372 volatile kmp_uint32
373 now_serving; // ticket number for thread which holds the lock
374 volatile kmp_int32 owner_id; // (gtid+1) of owning thread, 0 if unlocked
375 kmp_int32 depth_locked; // depth locked, for nested locks only
376
377 kmp_lock_flags_t flags; // lock specifics, e.g. critical section lock
378 };
379
380 typedef struct kmp_base_queuing_lock kmp_base_queuing_lock_t;
381
382 KMP_BUILD_ASSERT(offsetof(kmp_base_queuing_lock_t, tail_id) % 8 == 0);
383
384 union KMP_ALIGN_CACHE kmp_queuing_lock {
385 kmp_base_queuing_lock_t
386 lk; // This field must be first to allow static initializing.
387 kmp_lock_pool_t pool;
388 double lk_align; // use worst case alignment
389 char lk_pad[KMP_PAD(kmp_base_queuing_lock_t, CACHE_LINE)];
390 };
391
392 typedef union kmp_queuing_lock kmp_queuing_lock_t;
393
394 extern int __kmp_acquire_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid);
395 extern int __kmp_test_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid);
396 extern int __kmp_release_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid);
397 extern void __kmp_init_queuing_lock(kmp_queuing_lock_t *lck);
398 extern void __kmp_destroy_queuing_lock(kmp_queuing_lock_t *lck);
399
400 extern int __kmp_acquire_nested_queuing_lock(kmp_queuing_lock_t *lck,
401 kmp_int32 gtid);
402 extern int __kmp_test_nested_queuing_lock(kmp_queuing_lock_t *lck,
403 kmp_int32 gtid);
404 extern int __kmp_release_nested_queuing_lock(kmp_queuing_lock_t *lck,
405 kmp_int32 gtid);
406 extern void __kmp_init_nested_queuing_lock(kmp_queuing_lock_t *lck);
407 extern void __kmp_destroy_nested_queuing_lock(kmp_queuing_lock_t *lck);
408
409 #if KMP_USE_ADAPTIVE_LOCKS
410
411 // ----------------------------------------------------------------------------
412 // Adaptive locks.
413 struct kmp_base_adaptive_lock {
414 kmp_base_queuing_lock qlk;
415 KMP_ALIGN(CACHE_LINE)
416 kmp_adaptive_lock_info_t
417 adaptive; // Information for the speculative adaptive lock
418 };
419
420 typedef struct kmp_base_adaptive_lock kmp_base_adaptive_lock_t;
421
422 union KMP_ALIGN_CACHE kmp_adaptive_lock {
423 kmp_base_adaptive_lock_t lk;
424 kmp_lock_pool_t pool;
425 double lk_align;
426 char lk_pad[KMP_PAD(kmp_base_adaptive_lock_t, CACHE_LINE)];
427 };
428 typedef union kmp_adaptive_lock kmp_adaptive_lock_t;
429
430 #define GET_QLK_PTR(l) ((kmp_queuing_lock_t *)&(l)->lk.qlk)
431
432 #endif // KMP_USE_ADAPTIVE_LOCKS
433
434 // ----------------------------------------------------------------------------
435 // DRDPA ticket locks.
436 struct kmp_base_drdpa_lock {
437 // All of the fields on the first cache line are only written when
438 // initializing or reconfiguring the lock. These are relatively rare
439 // operations, so data from the first cache line will usually stay resident in
440 // the cache of each thread trying to acquire the lock.
441 //
442 // initialized must be the first entry in the lock data structure!
443 KMP_ALIGN_CACHE
444
445 volatile union kmp_drdpa_lock
446 *initialized; // points to the lock union if in initialized state
447 ident_t const *location; // Source code location of omp_init_lock().
448 std::atomic<std::atomic<kmp_uint64> *> polls;
449 std::atomic<kmp_uint64> mask; // is 2**num_polls-1 for mod op
450 kmp_uint64 cleanup_ticket; // thread with cleanup ticket
451 std::atomic<kmp_uint64> *old_polls; // will deallocate old_polls
452 kmp_uint32 num_polls; // must be power of 2
453
454 // next_ticket it needs to exist in a separate cache line, as it is
455 // invalidated every time a thread takes a new ticket.
456 KMP_ALIGN_CACHE
457
458 std::atomic<kmp_uint64> next_ticket;
459
460 // now_serving is used to store our ticket value while we hold the lock. It
461 // has a slightly different meaning in the DRDPA ticket locks (where it is
462 // written by the acquiring thread) than it does in the simple ticket locks
463 // (where it is written by the releasing thread).
464 //
465 // Since now_serving is only read and written in the critical section,
466 // it is non-volatile, but it needs to exist on a separate cache line,
467 // as it is invalidated at every lock acquire.
468 //
469 // Likewise, the vars used for nested locks (owner_id and depth_locked) are
470 // only written by the thread owning the lock, so they are put in this cache
471 // line. owner_id is read by other threads, so it must be declared volatile.
472 KMP_ALIGN_CACHE
473 kmp_uint64 now_serving; // doesn't have to be volatile
474 volatile kmp_uint32 owner_id; // (gtid+1) of owning thread, 0 if unlocked
475 kmp_int32 depth_locked; // depth locked
476 kmp_lock_flags_t flags; // lock specifics, e.g. critical section lock
477 };
478
479 typedef struct kmp_base_drdpa_lock kmp_base_drdpa_lock_t;
480
481 union KMP_ALIGN_CACHE kmp_drdpa_lock {
482 kmp_base_drdpa_lock_t
483 lk; // This field must be first to allow static initializing. */
484 kmp_lock_pool_t pool;
485 double lk_align; // use worst case alignment
486 char lk_pad[KMP_PAD(kmp_base_drdpa_lock_t, CACHE_LINE)];
487 };
488
489 typedef union kmp_drdpa_lock kmp_drdpa_lock_t;
490
491 extern int __kmp_acquire_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid);
492 extern int __kmp_test_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid);
493 extern int __kmp_release_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid);
494 extern void __kmp_init_drdpa_lock(kmp_drdpa_lock_t *lck);
495 extern void __kmp_destroy_drdpa_lock(kmp_drdpa_lock_t *lck);
496
497 extern int __kmp_acquire_nested_drdpa_lock(kmp_drdpa_lock_t *lck,
498 kmp_int32 gtid);
499 extern int __kmp_test_nested_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid);
500 extern int __kmp_release_nested_drdpa_lock(kmp_drdpa_lock_t *lck,
501 kmp_int32 gtid);
502 extern void __kmp_init_nested_drdpa_lock(kmp_drdpa_lock_t *lck);
503 extern void __kmp_destroy_nested_drdpa_lock(kmp_drdpa_lock_t *lck);
504
505 // ============================================================================
506 // Lock purposes.
507 // ============================================================================
508
509 // Bootstrap locks.
510 //
511 // Bootstrap locks -- very few locks used at library initialization time.
512 // Bootstrap locks are currently implemented as ticket locks.
513 // They could also be implemented as test and set lock, but cannot be
514 // implemented with other lock kinds as they require gtids which are not
515 // available at initialization time.
516
517 typedef kmp_ticket_lock_t kmp_bootstrap_lock_t;
518
519 #define KMP_BOOTSTRAP_LOCK_INITIALIZER(lock) KMP_TICKET_LOCK_INITIALIZER((lock))
520 #define KMP_BOOTSTRAP_LOCK_INIT(lock) \
521 kmp_bootstrap_lock_t lock = KMP_TICKET_LOCK_INITIALIZER(lock)
522
__kmp_acquire_bootstrap_lock(kmp_bootstrap_lock_t * lck)523 static inline int __kmp_acquire_bootstrap_lock(kmp_bootstrap_lock_t *lck) {
524 return __kmp_acquire_ticket_lock(lck, KMP_GTID_DNE);
525 }
526
__kmp_test_bootstrap_lock(kmp_bootstrap_lock_t * lck)527 static inline int __kmp_test_bootstrap_lock(kmp_bootstrap_lock_t *lck) {
528 return __kmp_test_ticket_lock(lck, KMP_GTID_DNE);
529 }
530
__kmp_release_bootstrap_lock(kmp_bootstrap_lock_t * lck)531 static inline void __kmp_release_bootstrap_lock(kmp_bootstrap_lock_t *lck) {
532 __kmp_release_ticket_lock(lck, KMP_GTID_DNE);
533 }
534
__kmp_init_bootstrap_lock(kmp_bootstrap_lock_t * lck)535 static inline void __kmp_init_bootstrap_lock(kmp_bootstrap_lock_t *lck) {
536 __kmp_init_ticket_lock(lck);
537 }
538
__kmp_destroy_bootstrap_lock(kmp_bootstrap_lock_t * lck)539 static inline void __kmp_destroy_bootstrap_lock(kmp_bootstrap_lock_t *lck) {
540 __kmp_destroy_ticket_lock(lck);
541 }
542
543 // Internal RTL locks.
544 //
545 // Internal RTL locks are also implemented as ticket locks, for now.
546 //
547 // FIXME - We should go through and figure out which lock kind works best for
548 // each internal lock, and use the type declaration and function calls for
549 // that explicit lock kind (and get rid of this section).
550
551 typedef kmp_ticket_lock_t kmp_lock_t;
552
553 #define KMP_LOCK_INIT(lock) kmp_lock_t lock = KMP_TICKET_LOCK_INITIALIZER(lock)
554
__kmp_acquire_lock(kmp_lock_t * lck,kmp_int32 gtid)555 static inline int __kmp_acquire_lock(kmp_lock_t *lck, kmp_int32 gtid) {
556 return __kmp_acquire_ticket_lock(lck, gtid);
557 }
558
__kmp_test_lock(kmp_lock_t * lck,kmp_int32 gtid)559 static inline int __kmp_test_lock(kmp_lock_t *lck, kmp_int32 gtid) {
560 return __kmp_test_ticket_lock(lck, gtid);
561 }
562
__kmp_release_lock(kmp_lock_t * lck,kmp_int32 gtid)563 static inline void __kmp_release_lock(kmp_lock_t *lck, kmp_int32 gtid) {
564 __kmp_release_ticket_lock(lck, gtid);
565 }
566
__kmp_init_lock(kmp_lock_t * lck)567 static inline void __kmp_init_lock(kmp_lock_t *lck) {
568 __kmp_init_ticket_lock(lck);
569 }
570
__kmp_destroy_lock(kmp_lock_t * lck)571 static inline void __kmp_destroy_lock(kmp_lock_t *lck) {
572 __kmp_destroy_ticket_lock(lck);
573 }
574
575 // User locks.
576 //
577 // Do not allocate objects of type union kmp_user_lock!!! This will waste space
578 // unless __kmp_user_lock_kind == lk_drdpa. Instead, check the value of
579 // __kmp_user_lock_kind and allocate objects of the type of the appropriate
580 // union member, and cast their addresses to kmp_user_lock_p.
581
582 enum kmp_lock_kind {
583 lk_default = 0,
584 lk_tas,
585 #if KMP_USE_FUTEX
586 lk_futex,
587 #endif
588 #if KMP_USE_DYNAMIC_LOCK && KMP_USE_TSX
589 lk_hle,
590 lk_rtm,
591 #endif
592 lk_ticket,
593 lk_queuing,
594 lk_drdpa,
595 #if KMP_USE_ADAPTIVE_LOCKS
596 lk_adaptive
597 #endif // KMP_USE_ADAPTIVE_LOCKS
598 };
599
600 typedef enum kmp_lock_kind kmp_lock_kind_t;
601
602 extern kmp_lock_kind_t __kmp_user_lock_kind;
603
604 union kmp_user_lock {
605 kmp_tas_lock_t tas;
606 #if KMP_USE_FUTEX
607 kmp_futex_lock_t futex;
608 #endif
609 kmp_ticket_lock_t ticket;
610 kmp_queuing_lock_t queuing;
611 kmp_drdpa_lock_t drdpa;
612 #if KMP_USE_ADAPTIVE_LOCKS
613 kmp_adaptive_lock_t adaptive;
614 #endif // KMP_USE_ADAPTIVE_LOCKS
615 kmp_lock_pool_t pool;
616 };
617
618 typedef union kmp_user_lock *kmp_user_lock_p;
619
620 #if !KMP_USE_DYNAMIC_LOCK
621
622 extern size_t __kmp_base_user_lock_size;
623 extern size_t __kmp_user_lock_size;
624
625 extern kmp_int32 (*__kmp_get_user_lock_owner_)(kmp_user_lock_p lck);
626
__kmp_get_user_lock_owner(kmp_user_lock_p lck)627 static inline kmp_int32 __kmp_get_user_lock_owner(kmp_user_lock_p lck) {
628 KMP_DEBUG_ASSERT(__kmp_get_user_lock_owner_ != NULL);
629 return (*__kmp_get_user_lock_owner_)(lck);
630 }
631
632 extern int (*__kmp_acquire_user_lock_with_checks_)(kmp_user_lock_p lck,
633 kmp_int32 gtid);
634
635 #if KMP_OS_LINUX && \
636 (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64)
637
638 #define __kmp_acquire_user_lock_with_checks(lck, gtid) \
639 if (__kmp_user_lock_kind == lk_tas) { \
640 if (__kmp_env_consistency_check) { \
641 char const *const func = "omp_set_lock"; \
642 if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) && \
643 lck->tas.lk.depth_locked != -1) { \
644 KMP_FATAL(LockNestableUsedAsSimple, func); \
645 } \
646 if ((gtid >= 0) && (lck->tas.lk.poll - 1 == gtid)) { \
647 KMP_FATAL(LockIsAlreadyOwned, func); \
648 } \
649 } \
650 if (lck->tas.lk.poll != 0 || \
651 !__kmp_atomic_compare_store_acq(&lck->tas.lk.poll, 0, gtid + 1)) { \
652 kmp_uint32 spins; \
653 KMP_FSYNC_PREPARE(lck); \
654 KMP_INIT_YIELD(spins); \
655 do { \
656 KMP_YIELD_OVERSUB_ELSE_SPIN(spins); \
657 } while ( \
658 lck->tas.lk.poll != 0 || \
659 !__kmp_atomic_compare_store_acq(&lck->tas.lk.poll, 0, gtid + 1)); \
660 } \
661 KMP_FSYNC_ACQUIRED(lck); \
662 } else { \
663 KMP_DEBUG_ASSERT(__kmp_acquire_user_lock_with_checks_ != NULL); \
664 (*__kmp_acquire_user_lock_with_checks_)(lck, gtid); \
665 }
666
667 #else
__kmp_acquire_user_lock_with_checks(kmp_user_lock_p lck,kmp_int32 gtid)668 static inline int __kmp_acquire_user_lock_with_checks(kmp_user_lock_p lck,
669 kmp_int32 gtid) {
670 KMP_DEBUG_ASSERT(__kmp_acquire_user_lock_with_checks_ != NULL);
671 return (*__kmp_acquire_user_lock_with_checks_)(lck, gtid);
672 }
673 #endif
674
675 extern int (*__kmp_test_user_lock_with_checks_)(kmp_user_lock_p lck,
676 kmp_int32 gtid);
677
678 #if KMP_OS_LINUX && \
679 (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64)
680
681 #include "kmp_i18n.h" /* AC: KMP_FATAL definition */
682 extern int __kmp_env_consistency_check; /* AC: copy from kmp.h here */
__kmp_test_user_lock_with_checks(kmp_user_lock_p lck,kmp_int32 gtid)683 static inline int __kmp_test_user_lock_with_checks(kmp_user_lock_p lck,
684 kmp_int32 gtid) {
685 if (__kmp_user_lock_kind == lk_tas) {
686 if (__kmp_env_consistency_check) {
687 char const *const func = "omp_test_lock";
688 if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) &&
689 lck->tas.lk.depth_locked != -1) {
690 KMP_FATAL(LockNestableUsedAsSimple, func);
691 }
692 }
693 return ((lck->tas.lk.poll == 0) &&
694 __kmp_atomic_compare_store_acq(&lck->tas.lk.poll, 0, gtid + 1));
695 } else {
696 KMP_DEBUG_ASSERT(__kmp_test_user_lock_with_checks_ != NULL);
697 return (*__kmp_test_user_lock_with_checks_)(lck, gtid);
698 }
699 }
700 #else
__kmp_test_user_lock_with_checks(kmp_user_lock_p lck,kmp_int32 gtid)701 static inline int __kmp_test_user_lock_with_checks(kmp_user_lock_p lck,
702 kmp_int32 gtid) {
703 KMP_DEBUG_ASSERT(__kmp_test_user_lock_with_checks_ != NULL);
704 return (*__kmp_test_user_lock_with_checks_)(lck, gtid);
705 }
706 #endif
707
708 extern int (*__kmp_release_user_lock_with_checks_)(kmp_user_lock_p lck,
709 kmp_int32 gtid);
710
__kmp_release_user_lock_with_checks(kmp_user_lock_p lck,kmp_int32 gtid)711 static inline void __kmp_release_user_lock_with_checks(kmp_user_lock_p lck,
712 kmp_int32 gtid) {
713 KMP_DEBUG_ASSERT(__kmp_release_user_lock_with_checks_ != NULL);
714 (*__kmp_release_user_lock_with_checks_)(lck, gtid);
715 }
716
717 extern void (*__kmp_init_user_lock_with_checks_)(kmp_user_lock_p lck);
718
__kmp_init_user_lock_with_checks(kmp_user_lock_p lck)719 static inline void __kmp_init_user_lock_with_checks(kmp_user_lock_p lck) {
720 KMP_DEBUG_ASSERT(__kmp_init_user_lock_with_checks_ != NULL);
721 (*__kmp_init_user_lock_with_checks_)(lck);
722 }
723
724 // We need a non-checking version of destroy lock for when the RTL is
725 // doing the cleanup as it can't always tell if the lock is nested or not.
726 extern void (*__kmp_destroy_user_lock_)(kmp_user_lock_p lck);
727
__kmp_destroy_user_lock(kmp_user_lock_p lck)728 static inline void __kmp_destroy_user_lock(kmp_user_lock_p lck) {
729 KMP_DEBUG_ASSERT(__kmp_destroy_user_lock_ != NULL);
730 (*__kmp_destroy_user_lock_)(lck);
731 }
732
733 extern void (*__kmp_destroy_user_lock_with_checks_)(kmp_user_lock_p lck);
734
__kmp_destroy_user_lock_with_checks(kmp_user_lock_p lck)735 static inline void __kmp_destroy_user_lock_with_checks(kmp_user_lock_p lck) {
736 KMP_DEBUG_ASSERT(__kmp_destroy_user_lock_with_checks_ != NULL);
737 (*__kmp_destroy_user_lock_with_checks_)(lck);
738 }
739
740 extern int (*__kmp_acquire_nested_user_lock_with_checks_)(kmp_user_lock_p lck,
741 kmp_int32 gtid);
742
743 #if KMP_OS_LINUX && (KMP_ARCH_X86 || KMP_ARCH_X86_64)
744
745 #define __kmp_acquire_nested_user_lock_with_checks(lck, gtid, depth) \
746 if (__kmp_user_lock_kind == lk_tas) { \
747 if (__kmp_env_consistency_check) { \
748 char const *const func = "omp_set_nest_lock"; \
749 if ((sizeof(kmp_tas_lock_t) <= OMP_NEST_LOCK_T_SIZE) && \
750 lck->tas.lk.depth_locked == -1) { \
751 KMP_FATAL(LockSimpleUsedAsNestable, func); \
752 } \
753 } \
754 if (lck->tas.lk.poll - 1 == gtid) { \
755 lck->tas.lk.depth_locked += 1; \
756 *depth = KMP_LOCK_ACQUIRED_NEXT; \
757 } else { \
758 if ((lck->tas.lk.poll != 0) || \
759 !__kmp_atomic_compare_store_acq(&lck->tas.lk.poll, 0, gtid + 1)) { \
760 kmp_uint32 spins; \
761 KMP_FSYNC_PREPARE(lck); \
762 KMP_INIT_YIELD(spins); \
763 do { \
764 KMP_YIELD_OVERSUB_ELSE_SPIN(spins); \
765 } while ( \
766 (lck->tas.lk.poll != 0) || \
767 !__kmp_atomic_compare_store_acq(&lck->tas.lk.poll, 0, gtid + 1)); \
768 } \
769 lck->tas.lk.depth_locked = 1; \
770 *depth = KMP_LOCK_ACQUIRED_FIRST; \
771 } \
772 KMP_FSYNC_ACQUIRED(lck); \
773 } else { \
774 KMP_DEBUG_ASSERT(__kmp_acquire_nested_user_lock_with_checks_ != NULL); \
775 *depth = (*__kmp_acquire_nested_user_lock_with_checks_)(lck, gtid); \
776 }
777
778 #else
779 static inline void
__kmp_acquire_nested_user_lock_with_checks(kmp_user_lock_p lck,kmp_int32 gtid,int * depth)780 __kmp_acquire_nested_user_lock_with_checks(kmp_user_lock_p lck, kmp_int32 gtid,
781 int *depth) {
782 KMP_DEBUG_ASSERT(__kmp_acquire_nested_user_lock_with_checks_ != NULL);
783 *depth = (*__kmp_acquire_nested_user_lock_with_checks_)(lck, gtid);
784 }
785 #endif
786
787 extern int (*__kmp_test_nested_user_lock_with_checks_)(kmp_user_lock_p lck,
788 kmp_int32 gtid);
789
790 #if KMP_OS_LINUX && (KMP_ARCH_X86 || KMP_ARCH_X86_64)
__kmp_test_nested_user_lock_with_checks(kmp_user_lock_p lck,kmp_int32 gtid)791 static inline int __kmp_test_nested_user_lock_with_checks(kmp_user_lock_p lck,
792 kmp_int32 gtid) {
793 if (__kmp_user_lock_kind == lk_tas) {
794 int retval;
795 if (__kmp_env_consistency_check) {
796 char const *const func = "omp_test_nest_lock";
797 if ((sizeof(kmp_tas_lock_t) <= OMP_NEST_LOCK_T_SIZE) &&
798 lck->tas.lk.depth_locked == -1) {
799 KMP_FATAL(LockSimpleUsedAsNestable, func);
800 }
801 }
802 KMP_DEBUG_ASSERT(gtid >= 0);
803 if (lck->tas.lk.poll - 1 ==
804 gtid) { /* __kmp_get_tas_lock_owner( lck ) == gtid */
805 return ++lck->tas.lk.depth_locked; /* same owner, depth increased */
806 }
807 retval = ((lck->tas.lk.poll == 0) &&
808 __kmp_atomic_compare_store_acq(&lck->tas.lk.poll, 0, gtid + 1));
809 if (retval) {
810 KMP_MB();
811 lck->tas.lk.depth_locked = 1;
812 }
813 return retval;
814 } else {
815 KMP_DEBUG_ASSERT(__kmp_test_nested_user_lock_with_checks_ != NULL);
816 return (*__kmp_test_nested_user_lock_with_checks_)(lck, gtid);
817 }
818 }
819 #else
__kmp_test_nested_user_lock_with_checks(kmp_user_lock_p lck,kmp_int32 gtid)820 static inline int __kmp_test_nested_user_lock_with_checks(kmp_user_lock_p lck,
821 kmp_int32 gtid) {
822 KMP_DEBUG_ASSERT(__kmp_test_nested_user_lock_with_checks_ != NULL);
823 return (*__kmp_test_nested_user_lock_with_checks_)(lck, gtid);
824 }
825 #endif
826
827 extern int (*__kmp_release_nested_user_lock_with_checks_)(kmp_user_lock_p lck,
828 kmp_int32 gtid);
829
830 static inline int
__kmp_release_nested_user_lock_with_checks(kmp_user_lock_p lck,kmp_int32 gtid)831 __kmp_release_nested_user_lock_with_checks(kmp_user_lock_p lck,
832 kmp_int32 gtid) {
833 KMP_DEBUG_ASSERT(__kmp_release_nested_user_lock_with_checks_ != NULL);
834 return (*__kmp_release_nested_user_lock_with_checks_)(lck, gtid);
835 }
836
837 extern void (*__kmp_init_nested_user_lock_with_checks_)(kmp_user_lock_p lck);
838
839 static inline void
__kmp_init_nested_user_lock_with_checks(kmp_user_lock_p lck)840 __kmp_init_nested_user_lock_with_checks(kmp_user_lock_p lck) {
841 KMP_DEBUG_ASSERT(__kmp_init_nested_user_lock_with_checks_ != NULL);
842 (*__kmp_init_nested_user_lock_with_checks_)(lck);
843 }
844
845 extern void (*__kmp_destroy_nested_user_lock_with_checks_)(kmp_user_lock_p lck);
846
847 static inline void
__kmp_destroy_nested_user_lock_with_checks(kmp_user_lock_p lck)848 __kmp_destroy_nested_user_lock_with_checks(kmp_user_lock_p lck) {
849 KMP_DEBUG_ASSERT(__kmp_destroy_nested_user_lock_with_checks_ != NULL);
850 (*__kmp_destroy_nested_user_lock_with_checks_)(lck);
851 }
852
853 // user lock functions which do not necessarily exist for all lock kinds.
854 //
855 // The "set" functions usually have wrapper routines that check for a NULL set
856 // function pointer and call it if non-NULL.
857 //
858 // In some cases, it makes sense to have a "get" wrapper function check for a
859 // NULL get function pointer and return NULL / invalid value / error code if
860 // the function pointer is NULL.
861 //
862 // In other cases, the calling code really should differentiate between an
863 // unimplemented function and one that is implemented but returning NULL /
864 // invalid value. If this is the case, no get function wrapper exists.
865
866 extern int (*__kmp_is_user_lock_initialized_)(kmp_user_lock_p lck);
867
868 // no set function; fields set during local allocation
869
870 extern const ident_t *(*__kmp_get_user_lock_location_)(kmp_user_lock_p lck);
871
__kmp_get_user_lock_location(kmp_user_lock_p lck)872 static inline const ident_t *__kmp_get_user_lock_location(kmp_user_lock_p lck) {
873 if (__kmp_get_user_lock_location_ != NULL) {
874 return (*__kmp_get_user_lock_location_)(lck);
875 } else {
876 return NULL;
877 }
878 }
879
880 extern void (*__kmp_set_user_lock_location_)(kmp_user_lock_p lck,
881 const ident_t *loc);
882
__kmp_set_user_lock_location(kmp_user_lock_p lck,const ident_t * loc)883 static inline void __kmp_set_user_lock_location(kmp_user_lock_p lck,
884 const ident_t *loc) {
885 if (__kmp_set_user_lock_location_ != NULL) {
886 (*__kmp_set_user_lock_location_)(lck, loc);
887 }
888 }
889
890 extern kmp_lock_flags_t (*__kmp_get_user_lock_flags_)(kmp_user_lock_p lck);
891
892 extern void (*__kmp_set_user_lock_flags_)(kmp_user_lock_p lck,
893 kmp_lock_flags_t flags);
894
__kmp_set_user_lock_flags(kmp_user_lock_p lck,kmp_lock_flags_t flags)895 static inline void __kmp_set_user_lock_flags(kmp_user_lock_p lck,
896 kmp_lock_flags_t flags) {
897 if (__kmp_set_user_lock_flags_ != NULL) {
898 (*__kmp_set_user_lock_flags_)(lck, flags);
899 }
900 }
901
902 // The function which sets up all of the vtbl pointers for kmp_user_lock_t.
903 extern void __kmp_set_user_lock_vptrs(kmp_lock_kind_t user_lock_kind);
904
905 // Macros for binding user lock functions.
906 #define KMP_BIND_USER_LOCK_TEMPLATE(nest, kind, suffix) \
907 { \
908 __kmp_acquire##nest##user_lock_with_checks_ = (int (*)( \
909 kmp_user_lock_p, kmp_int32))__kmp_acquire##nest##kind##_##suffix; \
910 __kmp_release##nest##user_lock_with_checks_ = (int (*)( \
911 kmp_user_lock_p, kmp_int32))__kmp_release##nest##kind##_##suffix; \
912 __kmp_test##nest##user_lock_with_checks_ = (int (*)( \
913 kmp_user_lock_p, kmp_int32))__kmp_test##nest##kind##_##suffix; \
914 __kmp_init##nest##user_lock_with_checks_ = \
915 (void (*)(kmp_user_lock_p))__kmp_init##nest##kind##_##suffix; \
916 __kmp_destroy##nest##user_lock_with_checks_ = \
917 (void (*)(kmp_user_lock_p))__kmp_destroy##nest##kind##_##suffix; \
918 }
919
920 #define KMP_BIND_USER_LOCK(kind) KMP_BIND_USER_LOCK_TEMPLATE(_, kind, lock)
921 #define KMP_BIND_USER_LOCK_WITH_CHECKS(kind) \
922 KMP_BIND_USER_LOCK_TEMPLATE(_, kind, lock_with_checks)
923 #define KMP_BIND_NESTED_USER_LOCK(kind) \
924 KMP_BIND_USER_LOCK_TEMPLATE(_nested_, kind, lock)
925 #define KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(kind) \
926 KMP_BIND_USER_LOCK_TEMPLATE(_nested_, kind, lock_with_checks)
927
928 // User lock table & lock allocation
929 /* On 64-bit Linux* OS (and OS X*) GNU compiler allocates only 4 bytems memory
930 for lock variable, which is not enough to store a pointer, so we have to use
931 lock indexes instead of pointers and maintain lock table to map indexes to
932 pointers.
933
934
935 Note: The first element of the table is not a pointer to lock! It is a
936 pointer to previously allocated table (or NULL if it is the first table).
937
938 Usage:
939
940 if ( OMP_LOCK_T_SIZE < sizeof( <lock> ) ) { // or OMP_NEST_LOCK_T_SIZE
941 Lock table is fully utilized. User locks are indexes, so table is used on
942 user lock operation.
943 Note: it may be the case (lin_32) that we don't need to use a lock
944 table for regular locks, but do need the table for nested locks.
945 }
946 else {
947 Lock table initialized but not actually used.
948 }
949 */
950
951 struct kmp_lock_table {
952 kmp_lock_index_t used; // Number of used elements
953 kmp_lock_index_t allocated; // Number of allocated elements
954 kmp_user_lock_p *table; // Lock table.
955 };
956
957 typedef struct kmp_lock_table kmp_lock_table_t;
958
959 extern kmp_lock_table_t __kmp_user_lock_table;
960 extern kmp_user_lock_p __kmp_lock_pool;
961
962 struct kmp_block_of_locks {
963 struct kmp_block_of_locks *next_block;
964 void *locks;
965 };
966
967 typedef struct kmp_block_of_locks kmp_block_of_locks_t;
968
969 extern kmp_block_of_locks_t *__kmp_lock_blocks;
970 extern int __kmp_num_locks_in_block;
971
972 extern kmp_user_lock_p __kmp_user_lock_allocate(void **user_lock,
973 kmp_int32 gtid,
974 kmp_lock_flags_t flags);
975 extern void __kmp_user_lock_free(void **user_lock, kmp_int32 gtid,
976 kmp_user_lock_p lck);
977 extern kmp_user_lock_p __kmp_lookup_user_lock(void **user_lock,
978 char const *func);
979 extern void __kmp_cleanup_user_locks();
980
981 #define KMP_CHECK_USER_LOCK_INIT() \
982 { \
983 if (!TCR_4(__kmp_init_user_locks)) { \
984 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); \
985 if (!TCR_4(__kmp_init_user_locks)) { \
986 TCW_4(__kmp_init_user_locks, TRUE); \
987 } \
988 __kmp_release_bootstrap_lock(&__kmp_initz_lock); \
989 } \
990 }
991
992 #endif // KMP_USE_DYNAMIC_LOCK
993
994 #undef KMP_PAD
995 #undef KMP_GTID_DNE
996
997 #if KMP_USE_DYNAMIC_LOCK
998 // KMP_USE_DYNAMIC_LOCK enables dynamic dispatch of lock functions without
999 // breaking the current compatibility. Essential functionality of this new code
1000 // is dynamic dispatch, but it also implements (or enables implementation of)
1001 // hinted user lock and critical section which will be part of OMP 4.5 soon.
1002 //
1003 // Lock type can be decided at creation time (i.e., lock initialization), and
1004 // subsequent lock function call on the created lock object requires type
1005 // extraction and call through jump table using the extracted type. This type
1006 // information is stored in two different ways depending on the size of the lock
1007 // object, and we differentiate lock types by this size requirement - direct and
1008 // indirect locks.
1009 //
1010 // Direct locks:
1011 // A direct lock object fits into the space created by the compiler for an
1012 // omp_lock_t object, and TAS/Futex lock falls into this category. We use low
1013 // one byte of the lock object as the storage for the lock type, and appropriate
1014 // bit operation is required to access the data meaningful to the lock
1015 // algorithms. Also, to differentiate direct lock from indirect lock, 1 is
1016 // written to LSB of the lock object. The newly introduced "hle" lock is also a
1017 // direct lock.
1018 //
1019 // Indirect locks:
1020 // An indirect lock object requires more space than the compiler-generated
1021 // space, and it should be allocated from heap. Depending on the size of the
1022 // compiler-generated space for the lock (i.e., size of omp_lock_t), this
1023 // omp_lock_t object stores either the address of the heap-allocated indirect
1024 // lock (void * fits in the object) or an index to the indirect lock table entry
1025 // that holds the address. Ticket/Queuing/DRDPA/Adaptive lock falls into this
1026 // category, and the newly introduced "rtm" lock is also an indirect lock which
1027 // was implemented on top of the Queuing lock. When the omp_lock_t object holds
1028 // an index (not lock address), 0 is written to LSB to differentiate the lock
1029 // from a direct lock, and the remaining part is the actual index to the
1030 // indirect lock table.
1031
1032 #include <stdint.h> // for uintptr_t
1033
1034 // Shortcuts
1035 #define KMP_USE_INLINED_TAS \
1036 (KMP_OS_LINUX && (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM)) && 1
1037 #define KMP_USE_INLINED_FUTEX KMP_USE_FUTEX && 0
1038
1039 // List of lock definitions; all nested locks are indirect locks.
1040 // hle lock is xchg lock prefixed with XACQUIRE/XRELEASE.
1041 // All nested locks are indirect lock types.
1042 #if KMP_USE_TSX
1043 #if KMP_USE_FUTEX
1044 #define KMP_FOREACH_D_LOCK(m, a) m(tas, a) m(futex, a) m(hle, a)
1045 #define KMP_FOREACH_I_LOCK(m, a) \
1046 m(ticket, a) m(queuing, a) m(adaptive, a) m(drdpa, a) m(rtm, a) \
1047 m(nested_tas, a) m(nested_futex, a) m(nested_ticket, a) \
1048 m(nested_queuing, a) m(nested_drdpa, a)
1049 #else
1050 #define KMP_FOREACH_D_LOCK(m, a) m(tas, a) m(hle, a)
1051 #define KMP_FOREACH_I_LOCK(m, a) \
1052 m(ticket, a) m(queuing, a) m(adaptive, a) m(drdpa, a) m(rtm, a) \
1053 m(nested_tas, a) m(nested_ticket, a) m(nested_queuing, a) \
1054 m(nested_drdpa, a)
1055 #endif // KMP_USE_FUTEX
1056 #define KMP_LAST_D_LOCK lockseq_hle
1057 #else
1058 #if KMP_USE_FUTEX
1059 #define KMP_FOREACH_D_LOCK(m, a) m(tas, a) m(futex, a)
1060 #define KMP_FOREACH_I_LOCK(m, a) \
1061 m(ticket, a) m(queuing, a) m(drdpa, a) m(nested_tas, a) m(nested_futex, a) \
1062 m(nested_ticket, a) m(nested_queuing, a) m(nested_drdpa, a)
1063 #define KMP_LAST_D_LOCK lockseq_futex
1064 #else
1065 #define KMP_FOREACH_D_LOCK(m, a) m(tas, a)
1066 #define KMP_FOREACH_I_LOCK(m, a) \
1067 m(ticket, a) m(queuing, a) m(drdpa, a) m(nested_tas, a) m(nested_ticket, a) \
1068 m(nested_queuing, a) m(nested_drdpa, a)
1069 #define KMP_LAST_D_LOCK lockseq_tas
1070 #endif // KMP_USE_FUTEX
1071 #endif // KMP_USE_TSX
1072
1073 // Information used in dynamic dispatch
1074 #define KMP_LOCK_SHIFT \
1075 8 // number of low bits to be used as tag for direct locks
1076 #define KMP_FIRST_D_LOCK lockseq_tas
1077 #define KMP_FIRST_I_LOCK lockseq_ticket
1078 #define KMP_LAST_I_LOCK lockseq_nested_drdpa
1079 #define KMP_NUM_I_LOCKS \
1080 (locktag_nested_drdpa + 1) // number of indirect lock types
1081
1082 // Base type for dynamic locks.
1083 typedef kmp_uint32 kmp_dyna_lock_t;
1084
1085 // Lock sequence that enumerates all lock kinds. Always make this enumeration
1086 // consistent with kmp_lockseq_t in the include directory.
1087 typedef enum {
1088 lockseq_indirect = 0,
1089 #define expand_seq(l, a) lockseq_##l,
1090 KMP_FOREACH_D_LOCK(expand_seq, 0) KMP_FOREACH_I_LOCK(expand_seq, 0)
1091 #undef expand_seq
1092 } kmp_dyna_lockseq_t;
1093
1094 // Enumerates indirect lock tags.
1095 typedef enum {
1096 #define expand_tag(l, a) locktag_##l,
1097 KMP_FOREACH_I_LOCK(expand_tag, 0)
1098 #undef expand_tag
1099 } kmp_indirect_locktag_t;
1100
1101 // Utility macros that extract information from lock sequences.
1102 #define KMP_IS_D_LOCK(seq) \
1103 ((seq) >= KMP_FIRST_D_LOCK && (seq) <= KMP_LAST_D_LOCK)
1104 #define KMP_IS_I_LOCK(seq) \
1105 ((seq) >= KMP_FIRST_I_LOCK && (seq) <= KMP_LAST_I_LOCK)
1106 #define KMP_GET_I_TAG(seq) (kmp_indirect_locktag_t)((seq)-KMP_FIRST_I_LOCK)
1107 #define KMP_GET_D_TAG(seq) ((seq) << 1 | 1)
1108
1109 // Enumerates direct lock tags starting from indirect tag.
1110 typedef enum {
1111 #define expand_tag(l, a) locktag_##l = KMP_GET_D_TAG(lockseq_##l),
1112 KMP_FOREACH_D_LOCK(expand_tag, 0)
1113 #undef expand_tag
1114 } kmp_direct_locktag_t;
1115
1116 // Indirect lock type
1117 typedef struct {
1118 kmp_user_lock_p lock;
1119 kmp_indirect_locktag_t type;
1120 } kmp_indirect_lock_t;
1121
1122 // Function tables for direct locks. Set/unset/test differentiate functions
1123 // with/without consistency checking.
1124 extern void (*__kmp_direct_init[])(kmp_dyna_lock_t *, kmp_dyna_lockseq_t);
1125 extern void (**__kmp_direct_destroy)(kmp_dyna_lock_t *);
1126 extern int (**__kmp_direct_set)(kmp_dyna_lock_t *, kmp_int32);
1127 extern int (**__kmp_direct_unset)(kmp_dyna_lock_t *, kmp_int32);
1128 extern int (**__kmp_direct_test)(kmp_dyna_lock_t *, kmp_int32);
1129
1130 // Function tables for indirect locks. Set/unset/test differentiate functions
1131 // with/without consistency checking.
1132 extern void (*__kmp_indirect_init[])(kmp_user_lock_p);
1133 extern void (**__kmp_indirect_destroy)(kmp_user_lock_p);
1134 extern int (**__kmp_indirect_set)(kmp_user_lock_p, kmp_int32);
1135 extern int (**__kmp_indirect_unset)(kmp_user_lock_p, kmp_int32);
1136 extern int (**__kmp_indirect_test)(kmp_user_lock_p, kmp_int32);
1137
1138 // Extracts direct lock tag from a user lock pointer
1139 #define KMP_EXTRACT_D_TAG(l) \
1140 (*((kmp_dyna_lock_t *)(l)) & ((1 << KMP_LOCK_SHIFT) - 1) & \
1141 -(*((kmp_dyna_lock_t *)(l)) & 1))
1142
1143 // Extracts indirect lock index from a user lock pointer
1144 #define KMP_EXTRACT_I_INDEX(l) (*(kmp_lock_index_t *)(l) >> 1)
1145
1146 // Returns function pointer to the direct lock function with l (kmp_dyna_lock_t
1147 // *) and op (operation type).
1148 #define KMP_D_LOCK_FUNC(l, op) __kmp_direct_##op[KMP_EXTRACT_D_TAG(l)]
1149
1150 // Returns function pointer to the indirect lock function with l
1151 // (kmp_indirect_lock_t *) and op (operation type).
1152 #define KMP_I_LOCK_FUNC(l, op) \
1153 __kmp_indirect_##op[((kmp_indirect_lock_t *)(l))->type]
1154
1155 // Initializes a direct lock with the given lock pointer and lock sequence.
1156 #define KMP_INIT_D_LOCK(l, seq) \
1157 __kmp_direct_init[KMP_GET_D_TAG(seq)]((kmp_dyna_lock_t *)l, seq)
1158
1159 // Initializes an indirect lock with the given lock pointer and lock sequence.
1160 #define KMP_INIT_I_LOCK(l, seq) \
1161 __kmp_direct_init[0]((kmp_dyna_lock_t *)(l), seq)
1162
1163 // Returns "free" lock value for the given lock type.
1164 #define KMP_LOCK_FREE(type) (locktag_##type)
1165
1166 // Returns "busy" lock value for the given lock teyp.
1167 #define KMP_LOCK_BUSY(v, type) ((v) << KMP_LOCK_SHIFT | locktag_##type)
1168
1169 // Returns lock value after removing (shifting) lock tag.
1170 #define KMP_LOCK_STRIP(v) ((v) >> KMP_LOCK_SHIFT)
1171
1172 // Initializes global states and data structures for managing dynamic user
1173 // locks.
1174 extern void __kmp_init_dynamic_user_locks();
1175
1176 // Allocates and returns an indirect lock with the given indirect lock tag.
1177 extern kmp_indirect_lock_t *
1178 __kmp_allocate_indirect_lock(void **, kmp_int32, kmp_indirect_locktag_t);
1179
1180 // Cleans up global states and data structures for managing dynamic user locks.
1181 extern void __kmp_cleanup_indirect_user_locks();
1182
1183 // Default user lock sequence when not using hinted locks.
1184 extern kmp_dyna_lockseq_t __kmp_user_lock_seq;
1185
1186 // Jump table for "set lock location", available only for indirect locks.
1187 extern void (*__kmp_indirect_set_location[KMP_NUM_I_LOCKS])(kmp_user_lock_p,
1188 const ident_t *);
1189 #define KMP_SET_I_LOCK_LOCATION(lck, loc) \
1190 { \
1191 if (__kmp_indirect_set_location[(lck)->type] != NULL) \
1192 __kmp_indirect_set_location[(lck)->type]((lck)->lock, loc); \
1193 }
1194
1195 // Jump table for "set lock flags", available only for indirect locks.
1196 extern void (*__kmp_indirect_set_flags[KMP_NUM_I_LOCKS])(kmp_user_lock_p,
1197 kmp_lock_flags_t);
1198 #define KMP_SET_I_LOCK_FLAGS(lck, flag) \
1199 { \
1200 if (__kmp_indirect_set_flags[(lck)->type] != NULL) \
1201 __kmp_indirect_set_flags[(lck)->type]((lck)->lock, flag); \
1202 }
1203
1204 // Jump table for "get lock location", available only for indirect locks.
1205 extern const ident_t *(*__kmp_indirect_get_location[KMP_NUM_I_LOCKS])(
1206 kmp_user_lock_p);
1207 #define KMP_GET_I_LOCK_LOCATION(lck) \
1208 (__kmp_indirect_get_location[(lck)->type] != NULL \
1209 ? __kmp_indirect_get_location[(lck)->type]((lck)->lock) \
1210 : NULL)
1211
1212 // Jump table for "get lock flags", available only for indirect locks.
1213 extern kmp_lock_flags_t (*__kmp_indirect_get_flags[KMP_NUM_I_LOCKS])(
1214 kmp_user_lock_p);
1215 #define KMP_GET_I_LOCK_FLAGS(lck) \
1216 (__kmp_indirect_get_flags[(lck)->type] != NULL \
1217 ? __kmp_indirect_get_flags[(lck)->type]((lck)->lock) \
1218 : NULL)
1219
1220 #define KMP_I_LOCK_CHUNK \
1221 1024 // number of kmp_indirect_lock_t objects to be allocated together
1222
1223 // Lock table for indirect locks.
1224 typedef struct kmp_indirect_lock_table {
1225 kmp_indirect_lock_t **table; // blocks of indirect locks allocated
1226 kmp_lock_index_t size; // size of the indirect lock table
1227 kmp_lock_index_t next; // index to the next lock to be allocated
1228 } kmp_indirect_lock_table_t;
1229
1230 extern kmp_indirect_lock_table_t __kmp_i_lock_table;
1231
1232 // Returns the indirect lock associated with the given index.
1233 #define KMP_GET_I_LOCK(index) \
1234 (*(__kmp_i_lock_table.table + (index) / KMP_I_LOCK_CHUNK) + \
1235 (index) % KMP_I_LOCK_CHUNK)
1236
1237 // Number of locks in a lock block, which is fixed to "1" now.
1238 // TODO: No lock block implementation now. If we do support, we need to manage
1239 // lock block data structure for each indirect lock type.
1240 extern int __kmp_num_locks_in_block;
1241
1242 // Fast lock table lookup without consistency checking
1243 #define KMP_LOOKUP_I_LOCK(l) \
1244 ((OMP_LOCK_T_SIZE < sizeof(void *)) ? KMP_GET_I_LOCK(KMP_EXTRACT_I_INDEX(l)) \
1245 : *((kmp_indirect_lock_t **)(l)))
1246
1247 // Used once in kmp_error.cpp
1248 extern kmp_int32 __kmp_get_user_lock_owner(kmp_user_lock_p, kmp_uint32);
1249
1250 #else // KMP_USE_DYNAMIC_LOCK
1251
1252 #define KMP_LOCK_BUSY(v, type) (v)
1253 #define KMP_LOCK_FREE(type) 0
1254 #define KMP_LOCK_STRIP(v) (v)
1255
1256 #endif // KMP_USE_DYNAMIC_LOCK
1257
1258 // data structure for using backoff within spin locks.
1259 typedef struct {
1260 kmp_uint32 step; // current step
1261 kmp_uint32 max_backoff; // upper bound of outer delay loop
1262 kmp_uint32 min_tick; // size of inner delay loop in ticks (machine-dependent)
1263 } kmp_backoff_t;
1264
1265 // Runtime's default backoff parameters
1266 extern kmp_backoff_t __kmp_spin_backoff_params;
1267
1268 // Backoff function
1269 extern void __kmp_spin_backoff(kmp_backoff_t *);
1270
1271 #ifdef __cplusplus
1272 } // extern "C"
1273 #endif // __cplusplus
1274
1275 #endif /* KMP_LOCK_H */
1276