• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**************************************************************************
2  *
3  * Copyright 2007 VMware, Inc.
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 /**
29  * \brief  Primitive rasterization/rendering (points, lines, triangles)
30  *
31  * \author  Keith Whitwell <keithw@vmware.com>
32  * \author  Brian Paul
33  */
34 
35 #include "sp_context.h"
36 #include "sp_screen.h"
37 #include "sp_quad.h"
38 #include "sp_quad_pipe.h"
39 #include "sp_setup.h"
40 #include "sp_state.h"
41 #include "draw/draw_context.h"
42 #include "pipe/p_shader_tokens.h"
43 #include "util/u_math.h"
44 #include "util/u_memory.h"
45 
46 
47 #define DEBUG_VERTS 0
48 #define DEBUG_FRAGS 0
49 
50 
51 /**
52  * Triangle edge info
53  */
54 struct edge {
55    float dx;		/**< X(v1) - X(v0), used only during setup */
56    float dy;		/**< Y(v1) - Y(v0), used only during setup */
57    float dxdy;		/**< dx/dy */
58    float sx, sy;	/**< first sample point coord */
59    int lines;		/**< number of lines on this edge */
60 };
61 
62 
63 /**
64  * Max number of quads (2x2 pixel blocks) to process per batch.
65  * This can't be arbitrarily increased since we depend on some 32-bit
66  * bitmasks (two bits per quad).
67  */
68 #define MAX_QUADS 16
69 
70 
71 /**
72  * Triangle setup info.
73  * Also used for line drawing (taking some liberties).
74  */
75 struct setup_context {
76    struct softpipe_context *softpipe;
77 
78    /* Vertices are just an array of floats making up each attribute in
79     * turn.  Currently fixed at 4 floats, but should change in time.
80     * Codegen will help cope with this.
81     */
82    const float (*vmax)[4];
83    const float (*vmid)[4];
84    const float (*vmin)[4];
85    const float (*vprovoke)[4];
86 
87    struct edge ebot;
88    struct edge etop;
89    struct edge emaj;
90 
91    float oneoverarea;
92    int facing;
93 
94    float pixel_offset;
95    unsigned max_layer;
96 
97    struct quad_header quad[MAX_QUADS];
98    struct quad_header *quad_ptrs[MAX_QUADS];
99    unsigned count;
100 
101    struct tgsi_interp_coef coef[PIPE_MAX_SHADER_INPUTS];
102    struct tgsi_interp_coef posCoef;  /* For Z, W */
103 
104    struct {
105       int left[2];   /**< [0] = row0, [1] = row1 */
106       int right[2];
107       int y;
108    } span;
109 
110 #if DEBUG_FRAGS
111    uint numFragsEmitted;  /**< per primitive */
112    uint numFragsWritten;  /**< per primitive */
113 #endif
114 
115    unsigned cull_face;		/* which faces cull */
116    unsigned nr_vertex_attrs;
117 };
118 
119 
120 
121 
122 
123 
124 
125 /**
126  * Clip setup->quad against the scissor/surface bounds.
127  */
128 static inline void
quad_clip(struct setup_context * setup,struct quad_header * quad)129 quad_clip(struct setup_context *setup, struct quad_header *quad)
130 {
131    unsigned viewport_index = quad[0].input.viewport_index;
132    const struct pipe_scissor_state *cliprect = &setup->softpipe->cliprect[viewport_index];
133    const int minx = (int) cliprect->minx;
134    const int maxx = (int) cliprect->maxx;
135    const int miny = (int) cliprect->miny;
136    const int maxy = (int) cliprect->maxy;
137 
138    if (quad->input.x0 >= maxx ||
139        quad->input.y0 >= maxy ||
140        quad->input.x0 + 1 < minx ||
141        quad->input.y0 + 1 < miny) {
142       /* totally clipped */
143       quad->inout.mask = 0x0;
144       return;
145    }
146    if (quad->input.x0 < minx)
147       quad->inout.mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
148    if (quad->input.y0 < miny)
149       quad->inout.mask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
150    if (quad->input.x0 == maxx - 1)
151       quad->inout.mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
152    if (quad->input.y0 == maxy - 1)
153       quad->inout.mask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
154 }
155 
156 
157 /**
158  * Emit a quad (pass to next stage) with clipping.
159  */
160 static inline void
clip_emit_quad(struct setup_context * setup,struct quad_header * quad)161 clip_emit_quad(struct setup_context *setup, struct quad_header *quad)
162 {
163    quad_clip(setup, quad);
164 
165    if (quad->inout.mask) {
166       struct softpipe_context *sp = setup->softpipe;
167 
168 #if DEBUG_FRAGS
169       setup->numFragsEmitted += util_bitcount(quad->inout.mask);
170 #endif
171 
172       sp->quad.first->run( sp->quad.first, &quad, 1 );
173    }
174 }
175 
176 
177 
178 /**
179  * Given an X or Y coordinate, return the block/quad coordinate that it
180  * belongs to.
181  */
182 static inline int
block(int x)183 block(int x)
184 {
185    return x & ~(2-1);
186 }
187 
188 
189 static inline int
block_x(int x)190 block_x(int x)
191 {
192    return x & ~(16-1);
193 }
194 
195 
196 /**
197  * Render a horizontal span of quads
198  */
199 static void
flush_spans(struct setup_context * setup)200 flush_spans(struct setup_context *setup)
201 {
202    const int step = MAX_QUADS;
203    const int xleft0 = setup->span.left[0];
204    const int xleft1 = setup->span.left[1];
205    const int xright0 = setup->span.right[0];
206    const int xright1 = setup->span.right[1];
207    struct quad_stage *pipe = setup->softpipe->quad.first;
208 
209    const int minleft = block_x(MIN2(xleft0, xleft1));
210    const int maxright = MAX2(xright0, xright1);
211    int x;
212 
213    /* process quads in horizontal chunks of 16 */
214    for (x = minleft; x < maxright; x += step) {
215       unsigned skip_left0 = CLAMP(xleft0 - x, 0, step);
216       unsigned skip_left1 = CLAMP(xleft1 - x, 0, step);
217       unsigned skip_right0 = CLAMP(x + step - xright0, 0, step);
218       unsigned skip_right1 = CLAMP(x + step - xright1, 0, step);
219       unsigned lx = x;
220       unsigned q = 0;
221 
222       unsigned skipmask_left0 = (1U << skip_left0) - 1U;
223       unsigned skipmask_left1 = (1U << skip_left1) - 1U;
224 
225       /* These calculations fail when step == 32 and skip_right == 0.
226        */
227       unsigned skipmask_right0 = ~0U << (unsigned)(step - skip_right0);
228       unsigned skipmask_right1 = ~0U << (unsigned)(step - skip_right1);
229 
230       unsigned mask0 = ~skipmask_left0 & ~skipmask_right0;
231       unsigned mask1 = ~skipmask_left1 & ~skipmask_right1;
232 
233       if (mask0 | mask1) {
234          do {
235             unsigned quadmask = (mask0 & 3) | ((mask1 & 3) << 2);
236             if (quadmask) {
237                setup->quad[q].input.x0 = lx;
238                setup->quad[q].input.y0 = setup->span.y;
239                setup->quad[q].input.facing = setup->facing;
240                setup->quad[q].inout.mask = quadmask;
241                setup->quad_ptrs[q] = &setup->quad[q];
242                q++;
243 #if DEBUG_FRAGS
244                setup->numFragsEmitted += util_bitcount(quadmask);
245 #endif
246             }
247             mask0 >>= 2;
248             mask1 >>= 2;
249             lx += 2;
250          } while (mask0 | mask1);
251 
252          pipe->run( pipe, setup->quad_ptrs, q );
253       }
254    }
255 
256 
257    setup->span.y = 0;
258    setup->span.right[0] = 0;
259    setup->span.right[1] = 0;
260    setup->span.left[0] = 1000000;     /* greater than right[0] */
261    setup->span.left[1] = 1000000;     /* greater than right[1] */
262 }
263 
264 
265 #if DEBUG_VERTS
266 static void
print_vertex(const struct setup_context * setup,const float (* v)[4])267 print_vertex(const struct setup_context *setup,
268              const float (*v)[4])
269 {
270    int i;
271    debug_printf("   Vertex: (%p)\n", (void *) v);
272    for (i = 0; i < setup->nr_vertex_attrs; i++) {
273       debug_printf("     %d: %f %f %f %f\n",  i,
274               v[i][0], v[i][1], v[i][2], v[i][3]);
275       if (util_is_inf_or_nan(v[i][0])) {
276          debug_printf("   NaN!\n");
277       }
278    }
279 }
280 #endif
281 
282 
283 /**
284  * Sort the vertices from top to bottom order, setting up the triangle
285  * edge fields (ebot, emaj, etop).
286  * \return FALSE if coords are inf/nan (cull the tri), TRUE otherwise
287  */
288 static boolean
setup_sort_vertices(struct setup_context * setup,float det,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])289 setup_sort_vertices(struct setup_context *setup,
290                     float det,
291                     const float (*v0)[4],
292                     const float (*v1)[4],
293                     const float (*v2)[4])
294 {
295    if (setup->softpipe->rasterizer->flatshade_first)
296       setup->vprovoke = v0;
297    else
298       setup->vprovoke = v2;
299 
300    /* determine bottom to top order of vertices */
301    {
302       float y0 = v0[0][1];
303       float y1 = v1[0][1];
304       float y2 = v2[0][1];
305       if (y0 <= y1) {
306 	 if (y1 <= y2) {
307 	    /* y0<=y1<=y2 */
308 	    setup->vmin = v0;
309 	    setup->vmid = v1;
310 	    setup->vmax = v2;
311 	 }
312 	 else if (y2 <= y0) {
313 	    /* y2<=y0<=y1 */
314 	    setup->vmin = v2;
315 	    setup->vmid = v0;
316 	    setup->vmax = v1;
317 	 }
318 	 else {
319 	    /* y0<=y2<=y1 */
320 	    setup->vmin = v0;
321 	    setup->vmid = v2;
322 	    setup->vmax = v1;
323 	 }
324       }
325       else {
326 	 if (y0 <= y2) {
327 	    /* y1<=y0<=y2 */
328 	    setup->vmin = v1;
329 	    setup->vmid = v0;
330 	    setup->vmax = v2;
331 	 }
332 	 else if (y2 <= y1) {
333 	    /* y2<=y1<=y0 */
334 	    setup->vmin = v2;
335 	    setup->vmid = v1;
336 	    setup->vmax = v0;
337 	 }
338 	 else {
339 	    /* y1<=y2<=y0 */
340 	    setup->vmin = v1;
341 	    setup->vmid = v2;
342 	    setup->vmax = v0;
343 	 }
344       }
345    }
346 
347    setup->ebot.dx = setup->vmid[0][0] - setup->vmin[0][0];
348    setup->ebot.dy = setup->vmid[0][1] - setup->vmin[0][1];
349    setup->emaj.dx = setup->vmax[0][0] - setup->vmin[0][0];
350    setup->emaj.dy = setup->vmax[0][1] - setup->vmin[0][1];
351    setup->etop.dx = setup->vmax[0][0] - setup->vmid[0][0];
352    setup->etop.dy = setup->vmax[0][1] - setup->vmid[0][1];
353 
354    /*
355     * Compute triangle's area.  Use 1/area to compute partial
356     * derivatives of attributes later.
357     *
358     * The area will be the same as prim->det, but the sign may be
359     * different depending on how the vertices get sorted above.
360     *
361     * To determine whether the primitive is front or back facing we
362     * use the prim->det value because its sign is correct.
363     */
364    {
365       const float area = (setup->emaj.dx * setup->ebot.dy -
366 			    setup->ebot.dx * setup->emaj.dy);
367 
368       setup->oneoverarea = 1.0f / area;
369 
370       /*
371       debug_printf("%s one-over-area %f  area %f  det %f\n",
372                    __FUNCTION__, setup->oneoverarea, area, det );
373       */
374       if (util_is_inf_or_nan(setup->oneoverarea))
375          return FALSE;
376    }
377 
378    /* We need to know if this is a front or back-facing triangle for:
379     *  - the GLSL gl_FrontFacing fragment attribute (bool)
380     *  - two-sided stencil test
381     * 0 = front-facing, 1 = back-facing
382     */
383    setup->facing =
384       ((det < 0.0) ^
385        (setup->softpipe->rasterizer->front_ccw));
386 
387    {
388       unsigned face = setup->facing == 0 ? PIPE_FACE_FRONT : PIPE_FACE_BACK;
389 
390       if (face & setup->cull_face)
391 	 return FALSE;
392    }
393 
394    return TRUE;
395 }
396 
397 
398 /* Apply cylindrical wrapping to v0, v1, v2 coordinates, if enabled.
399  * Input coordinates must be in [0, 1] range, otherwise results are undefined.
400  * Some combinations of coordinates produce invalid results,
401  * but this behaviour is acceptable.
402  */
403 static void
tri_apply_cylindrical_wrap(float v0,float v1,float v2,uint cylindrical_wrap,float output[3])404 tri_apply_cylindrical_wrap(float v0,
405                            float v1,
406                            float v2,
407                            uint cylindrical_wrap,
408                            float output[3])
409 {
410    if (cylindrical_wrap) {
411       float delta;
412 
413       delta = v1 - v0;
414       if (delta > 0.5f) {
415          v0 += 1.0f;
416       }
417       else if (delta < -0.5f) {
418          v1 += 1.0f;
419       }
420 
421       delta = v2 - v1;
422       if (delta > 0.5f) {
423          v1 += 1.0f;
424       }
425       else if (delta < -0.5f) {
426          v2 += 1.0f;
427       }
428 
429       delta = v0 - v2;
430       if (delta > 0.5f) {
431          v2 += 1.0f;
432       }
433       else if (delta < -0.5f) {
434          v0 += 1.0f;
435       }
436    }
437 
438    output[0] = v0;
439    output[1] = v1;
440    output[2] = v2;
441 }
442 
443 
444 /**
445  * Compute a0 for a constant-valued coefficient (GL_FLAT shading).
446  * The value value comes from vertex[slot][i].
447  * The result will be put into setup->coef[slot].a0[i].
448  * \param slot  which attribute slot
449  * \param i  which component of the slot (0..3)
450  */
451 static void
const_coeff(struct setup_context * setup,struct tgsi_interp_coef * coef,uint vertSlot,uint i)452 const_coeff(struct setup_context *setup,
453             struct tgsi_interp_coef *coef,
454             uint vertSlot, uint i)
455 {
456    assert(i <= 3);
457 
458    coef->dadx[i] = 0;
459    coef->dady[i] = 0;
460 
461    /* need provoking vertex info!
462     */
463    coef->a0[i] = setup->vprovoke[vertSlot][i];
464 }
465 
466 
467 /**
468  * Compute a0, dadx and dady for a linearly interpolated coefficient,
469  * for a triangle.
470  * v[0], v[1] and v[2] are vmin, vmid and vmax, respectively.
471  */
472 static void
tri_linear_coeff(struct setup_context * setup,struct tgsi_interp_coef * coef,uint i,const float v[3])473 tri_linear_coeff(struct setup_context *setup,
474                  struct tgsi_interp_coef *coef,
475                  uint i,
476                  const float v[3])
477 {
478    float botda = v[1] - v[0];
479    float majda = v[2] - v[0];
480    float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
481    float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
482    float dadx = a * setup->oneoverarea;
483    float dady = b * setup->oneoverarea;
484 
485    assert(i <= 3);
486 
487    coef->dadx[i] = dadx;
488    coef->dady[i] = dady;
489 
490    /* calculate a0 as the value which would be sampled for the
491     * fragment at (0,0), taking into account that we want to sample at
492     * pixel centers, in other words (pixel_offset, pixel_offset).
493     *
494     * this is neat but unfortunately not a good way to do things for
495     * triangles with very large values of dadx or dady as it will
496     * result in the subtraction and re-addition from a0 of a very
497     * large number, which means we'll end up loosing a lot of the
498     * fractional bits and precision from a0.  the way to fix this is
499     * to define a0 as the sample at a pixel center somewhere near vmin
500     * instead - i'll switch to this later.
501     */
502    coef->a0[i] = (v[0] -
503                   (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
504                    dady * (setup->vmin[0][1] - setup->pixel_offset)));
505 }
506 
507 
508 /**
509  * Compute a0, dadx and dady for a perspective-corrected interpolant,
510  * for a triangle.
511  * We basically multiply the vertex value by 1/w before computing
512  * the plane coefficients (a0, dadx, dady).
513  * Later, when we compute the value at a particular fragment position we'll
514  * divide the interpolated value by the interpolated W at that fragment.
515  * v[0], v[1] and v[2] are vmin, vmid and vmax, respectively.
516  */
517 static void
tri_persp_coeff(struct setup_context * setup,struct tgsi_interp_coef * coef,uint i,const float v[3])518 tri_persp_coeff(struct setup_context *setup,
519                 struct tgsi_interp_coef *coef,
520                 uint i,
521                 const float v[3])
522 {
523    /* premultiply by 1/w  (v[0][3] is always W):
524     */
525    float mina = v[0] * setup->vmin[0][3];
526    float mida = v[1] * setup->vmid[0][3];
527    float maxa = v[2] * setup->vmax[0][3];
528    float botda = mida - mina;
529    float majda = maxa - mina;
530    float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
531    float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
532    float dadx = a * setup->oneoverarea;
533    float dady = b * setup->oneoverarea;
534 
535    assert(i <= 3);
536 
537    coef->dadx[i] = dadx;
538    coef->dady[i] = dady;
539    coef->a0[i] = (mina -
540                   (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
541                    dady * (setup->vmin[0][1] - setup->pixel_offset)));
542 }
543 
544 
545 /**
546  * Special coefficient setup for gl_FragCoord.
547  * X and Y are trivial, though Y may have to be inverted for OpenGL.
548  * Z and W are copied from posCoef which should have already been computed.
549  * We could do a bit less work if we'd examine gl_FragCoord's swizzle mask.
550  */
551 static void
setup_fragcoord_coeff(struct setup_context * setup,uint slot)552 setup_fragcoord_coeff(struct setup_context *setup, uint slot)
553 {
554    const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
555    boolean origin_lower_left =
556          fsInfo->properties[TGSI_PROPERTY_FS_COORD_ORIGIN];
557    boolean pixel_center_integer =
558          fsInfo->properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER];
559 
560    /*X*/
561    setup->coef[slot].a0[0] = pixel_center_integer ? 0.0f : 0.5f;
562    setup->coef[slot].dadx[0] = 1.0f;
563    setup->coef[slot].dady[0] = 0.0f;
564    /*Y*/
565    setup->coef[slot].a0[1] =
566 		   (origin_lower_left ? setup->softpipe->framebuffer.height-1 : 0)
567 		   + (pixel_center_integer ? 0.0f : 0.5f);
568    setup->coef[slot].dadx[1] = 0.0f;
569    setup->coef[slot].dady[1] = origin_lower_left ? -1.0f : 1.0f;
570    /*Z*/
571    setup->coef[slot].a0[2] = setup->posCoef.a0[2];
572    setup->coef[slot].dadx[2] = setup->posCoef.dadx[2];
573    setup->coef[slot].dady[2] = setup->posCoef.dady[2];
574    /*W*/
575    setup->coef[slot].a0[3] = setup->posCoef.a0[3];
576    setup->coef[slot].dadx[3] = setup->posCoef.dadx[3];
577    setup->coef[slot].dady[3] = setup->posCoef.dady[3];
578 }
579 
580 
581 
582 /**
583  * Compute the setup->coef[] array dadx, dady, a0 values.
584  * Must be called after setup->vmin,vmid,vmax,vprovoke are initialized.
585  */
586 static void
setup_tri_coefficients(struct setup_context * setup)587 setup_tri_coefficients(struct setup_context *setup)
588 {
589    struct softpipe_context *softpipe = setup->softpipe;
590    const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
591    const struct sp_setup_info *sinfo = &softpipe->setup_info;
592    uint fragSlot;
593    float v[3];
594 
595    assert(sinfo->valid);
596 
597    /* z and w are done by linear interpolation:
598     */
599    v[0] = setup->vmin[0][2];
600    v[1] = setup->vmid[0][2];
601    v[2] = setup->vmax[0][2];
602    tri_linear_coeff(setup, &setup->posCoef, 2, v);
603 
604    v[0] = setup->vmin[0][3];
605    v[1] = setup->vmid[0][3];
606    v[2] = setup->vmax[0][3];
607    tri_linear_coeff(setup, &setup->posCoef, 3, v);
608 
609    /* setup interpolation for all the remaining attributes:
610     */
611    for (fragSlot = 0; fragSlot < fsInfo->num_inputs; fragSlot++) {
612       const uint vertSlot = sinfo->attrib[fragSlot].src_index;
613       uint j;
614 
615       switch (sinfo->attrib[fragSlot].interp) {
616       case SP_INTERP_CONSTANT:
617          for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
618             const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
619          }
620          break;
621       case SP_INTERP_LINEAR:
622          for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
623             tri_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
624                                        setup->vmid[vertSlot][j],
625                                        setup->vmax[vertSlot][j],
626                                        fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j),
627                                        v);
628             tri_linear_coeff(setup, &setup->coef[fragSlot], j, v);
629          }
630          break;
631       case SP_INTERP_PERSPECTIVE:
632          for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
633             tri_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
634                                        setup->vmid[vertSlot][j],
635                                        setup->vmax[vertSlot][j],
636                                        fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j),
637                                        v);
638             tri_persp_coeff(setup, &setup->coef[fragSlot], j, v);
639          }
640          break;
641       case SP_INTERP_POS:
642          setup_fragcoord_coeff(setup, fragSlot);
643          break;
644       default:
645          assert(0);
646       }
647 
648       if (fsInfo->input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
649          /* convert 0 to 1.0 and 1 to -1.0 */
650          setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f;
651          setup->coef[fragSlot].dadx[0] = 0.0;
652          setup->coef[fragSlot].dady[0] = 0.0;
653       }
654 
655       if (0) {
656          for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
657             debug_printf("attr[%d].%c: a0:%f dx:%f dy:%f\n",
658                          fragSlot, "xyzw"[j],
659                          setup->coef[fragSlot].a0[j],
660                          setup->coef[fragSlot].dadx[j],
661                          setup->coef[fragSlot].dady[j]);
662          }
663       }
664    }
665 }
666 
667 
668 static void
setup_tri_edges(struct setup_context * setup)669 setup_tri_edges(struct setup_context *setup)
670 {
671    float vmin_x = setup->vmin[0][0] + setup->pixel_offset;
672    float vmid_x = setup->vmid[0][0] + setup->pixel_offset;
673 
674    float vmin_y = setup->vmin[0][1] - setup->pixel_offset;
675    float vmid_y = setup->vmid[0][1] - setup->pixel_offset;
676    float vmax_y = setup->vmax[0][1] - setup->pixel_offset;
677 
678    setup->emaj.sy = ceilf(vmin_y);
679    setup->emaj.lines = (int) ceilf(vmax_y - setup->emaj.sy);
680    setup->emaj.dxdy = setup->emaj.dy ? setup->emaj.dx / setup->emaj.dy : .0f;
681    setup->emaj.sx = vmin_x + (setup->emaj.sy - vmin_y) * setup->emaj.dxdy;
682 
683    setup->etop.sy = ceilf(vmid_y);
684    setup->etop.lines = (int) ceilf(vmax_y - setup->etop.sy);
685    setup->etop.dxdy = setup->etop.dy ? setup->etop.dx / setup->etop.dy : .0f;
686    setup->etop.sx = vmid_x + (setup->etop.sy - vmid_y) * setup->etop.dxdy;
687 
688    setup->ebot.sy = ceilf(vmin_y);
689    setup->ebot.lines = (int) ceilf(vmid_y - setup->ebot.sy);
690    setup->ebot.dxdy = setup->ebot.dy ? setup->ebot.dx / setup->ebot.dy : .0f;
691    setup->ebot.sx = vmin_x + (setup->ebot.sy - vmin_y) * setup->ebot.dxdy;
692 }
693 
694 
695 /**
696  * Render the upper or lower half of a triangle.
697  * Scissoring/cliprect is applied here too.
698  */
699 static void
subtriangle(struct setup_context * setup,struct edge * eleft,struct edge * eright,int lines,unsigned viewport_index)700 subtriangle(struct setup_context *setup,
701             struct edge *eleft,
702             struct edge *eright,
703             int lines,
704             unsigned viewport_index)
705 {
706    const struct pipe_scissor_state *cliprect = &setup->softpipe->cliprect[viewport_index];
707    const int minx = (int) cliprect->minx;
708    const int maxx = (int) cliprect->maxx;
709    const int miny = (int) cliprect->miny;
710    const int maxy = (int) cliprect->maxy;
711    int y, start_y, finish_y;
712    int sy = (int)eleft->sy;
713 
714    assert((int)eleft->sy == (int) eright->sy);
715    assert(lines >= 0);
716 
717    /* clip top/bottom */
718    start_y = sy;
719    if (start_y < miny)
720       start_y = miny;
721 
722    finish_y = sy + lines;
723    if (finish_y > maxy)
724       finish_y = maxy;
725 
726    start_y -= sy;
727    finish_y -= sy;
728 
729    /*
730    debug_printf("%s %d %d\n", __FUNCTION__, start_y, finish_y);
731    */
732 
733    for (y = start_y; y < finish_y; y++) {
734 
735       /* avoid accumulating adds as floats don't have the precision to
736        * accurately iterate large triangle edges that way.  luckily we
737        * can just multiply these days.
738        *
739        * this is all drowned out by the attribute interpolation anyway.
740        */
741       int left = (int)(eleft->sx + y * eleft->dxdy);
742       int right = (int)(eright->sx + y * eright->dxdy);
743 
744       /* clip left/right */
745       if (left < minx)
746          left = minx;
747       if (right > maxx)
748          right = maxx;
749 
750       if (left < right) {
751          int _y = sy + y;
752          if (block(_y) != setup->span.y) {
753             flush_spans(setup);
754             setup->span.y = block(_y);
755          }
756 
757          setup->span.left[_y&1] = left;
758          setup->span.right[_y&1] = right;
759       }
760    }
761 
762 
763    /* save the values so that emaj can be restarted:
764     */
765    eleft->sx += lines * eleft->dxdy;
766    eright->sx += lines * eright->dxdy;
767    eleft->sy += lines;
768    eright->sy += lines;
769 }
770 
771 
772 /**
773  * Recalculate prim's determinant.  This is needed as we don't have
774  * get this information through the vbuf_render interface & we must
775  * calculate it here.
776  */
777 static float
calc_det(const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])778 calc_det(const float (*v0)[4],
779          const float (*v1)[4],
780          const float (*v2)[4])
781 {
782    /* edge vectors e = v0 - v2, f = v1 - v2 */
783    const float ex = v0[0][0] - v2[0][0];
784    const float ey = v0[0][1] - v2[0][1];
785    const float fx = v1[0][0] - v2[0][0];
786    const float fy = v1[0][1] - v2[0][1];
787 
788    /* det = cross(e,f).z */
789    return ex * fy - ey * fx;
790 }
791 
792 
793 /**
794  * Do setup for triangle rasterization, then render the triangle.
795  */
796 void
sp_setup_tri(struct setup_context * setup,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])797 sp_setup_tri(struct setup_context *setup,
798              const float (*v0)[4],
799              const float (*v1)[4],
800              const float (*v2)[4])
801 {
802    float det;
803    uint layer = 0;
804    unsigned viewport_index = 0;
805 #if DEBUG_VERTS
806    debug_printf("Setup triangle:\n");
807    print_vertex(setup, v0);
808    print_vertex(setup, v1);
809    print_vertex(setup, v2);
810 #endif
811 
812    if (unlikely(sp_debug & SP_DBG_NO_RAST) ||
813        setup->softpipe->rasterizer->rasterizer_discard)
814       return;
815 
816    det = calc_det(v0, v1, v2);
817    /*
818    debug_printf("%s\n", __FUNCTION__ );
819    */
820 
821 #if DEBUG_FRAGS
822    setup->numFragsEmitted = 0;
823    setup->numFragsWritten = 0;
824 #endif
825 
826    if (!setup_sort_vertices( setup, det, v0, v1, v2 ))
827       return;
828 
829    setup_tri_coefficients( setup );
830    setup_tri_edges( setup );
831 
832    assert(setup->softpipe->reduced_prim == PIPE_PRIM_TRIANGLES);
833 
834    setup->span.y = 0;
835    setup->span.right[0] = 0;
836    setup->span.right[1] = 0;
837    /*   setup->span.z_mode = tri_z_mode( setup->ctx ); */
838    if (setup->softpipe->layer_slot > 0) {
839       layer = *(unsigned *)setup->vprovoke[setup->softpipe->layer_slot];
840       layer = MIN2(layer, setup->max_layer);
841    }
842    setup->quad[0].input.layer = layer;
843 
844    if (setup->softpipe->viewport_index_slot > 0) {
845       unsigned *udata = (unsigned*)v0[setup->softpipe->viewport_index_slot];
846       viewport_index = sp_clamp_viewport_idx(*udata);
847    }
848    setup->quad[0].input.viewport_index = viewport_index;
849 
850    /*   init_constant_attribs( setup ); */
851 
852    if (setup->oneoverarea < 0.0) {
853       /* emaj on left:
854        */
855       subtriangle(setup, &setup->emaj, &setup->ebot, setup->ebot.lines, viewport_index);
856       subtriangle(setup, &setup->emaj, &setup->etop, setup->etop.lines, viewport_index);
857    }
858    else {
859       /* emaj on right:
860        */
861       subtriangle(setup, &setup->ebot, &setup->emaj, setup->ebot.lines, viewport_index);
862       subtriangle(setup, &setup->etop, &setup->emaj, setup->etop.lines, viewport_index);
863    }
864 
865    flush_spans( setup );
866 
867    if (setup->softpipe->active_statistics_queries) {
868       setup->softpipe->pipeline_statistics.c_primitives++;
869    }
870 
871 #if DEBUG_FRAGS
872    printf("Tri: %u frags emitted, %u written\n",
873           setup->numFragsEmitted,
874           setup->numFragsWritten);
875 #endif
876 }
877 
878 
879 /* Apply cylindrical wrapping to v0, v1 coordinates, if enabled.
880  * Input coordinates must be in [0, 1] range, otherwise results are undefined.
881  */
882 static void
line_apply_cylindrical_wrap(float v0,float v1,uint cylindrical_wrap,float output[2])883 line_apply_cylindrical_wrap(float v0,
884                             float v1,
885                             uint cylindrical_wrap,
886                             float output[2])
887 {
888    if (cylindrical_wrap) {
889       float delta;
890 
891       delta = v1 - v0;
892       if (delta > 0.5f) {
893          v0 += 1.0f;
894       }
895       else if (delta < -0.5f) {
896          v1 += 1.0f;
897       }
898    }
899 
900    output[0] = v0;
901    output[1] = v1;
902 }
903 
904 
905 /**
906  * Compute a0, dadx and dady for a linearly interpolated coefficient,
907  * for a line.
908  * v[0] and v[1] are vmin and vmax, respectively.
909  */
910 static void
line_linear_coeff(const struct setup_context * setup,struct tgsi_interp_coef * coef,uint i,const float v[2])911 line_linear_coeff(const struct setup_context *setup,
912                   struct tgsi_interp_coef *coef,
913                   uint i,
914                   const float v[2])
915 {
916    const float da = v[1] - v[0];
917    const float dadx = da * setup->emaj.dx * setup->oneoverarea;
918    const float dady = da * setup->emaj.dy * setup->oneoverarea;
919    coef->dadx[i] = dadx;
920    coef->dady[i] = dady;
921    coef->a0[i] = (v[0] -
922                   (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
923                    dady * (setup->vmin[0][1] - setup->pixel_offset)));
924 }
925 
926 
927 /**
928  * Compute a0, dadx and dady for a perspective-corrected interpolant,
929  * for a line.
930  * v[0] and v[1] are vmin and vmax, respectively.
931  */
932 static void
line_persp_coeff(const struct setup_context * setup,struct tgsi_interp_coef * coef,uint i,const float v[2])933 line_persp_coeff(const struct setup_context *setup,
934                  struct tgsi_interp_coef *coef,
935                  uint i,
936                  const float v[2])
937 {
938    const float a0 = v[0] * setup->vmin[0][3];
939    const float a1 = v[1] * setup->vmax[0][3];
940    const float da = a1 - a0;
941    const float dadx = da * setup->emaj.dx * setup->oneoverarea;
942    const float dady = da * setup->emaj.dy * setup->oneoverarea;
943    coef->dadx[i] = dadx;
944    coef->dady[i] = dady;
945    coef->a0[i] = (a0 -
946                   (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
947                    dady * (setup->vmin[0][1] - setup->pixel_offset)));
948 }
949 
950 
951 /**
952  * Compute the setup->coef[] array dadx, dady, a0 values.
953  * Must be called after setup->vmin,vmax are initialized.
954  */
955 static boolean
setup_line_coefficients(struct setup_context * setup,const float (* v0)[4],const float (* v1)[4])956 setup_line_coefficients(struct setup_context *setup,
957                         const float (*v0)[4],
958                         const float (*v1)[4])
959 {
960    struct softpipe_context *softpipe = setup->softpipe;
961    const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
962    const struct sp_setup_info *sinfo = &softpipe->setup_info;
963    uint fragSlot;
964    float area;
965    float v[2];
966 
967    assert(sinfo->valid);
968 
969    /* use setup->vmin, vmax to point to vertices */
970    if (softpipe->rasterizer->flatshade_first)
971       setup->vprovoke = v0;
972    else
973       setup->vprovoke = v1;
974    setup->vmin = v0;
975    setup->vmax = v1;
976 
977    setup->emaj.dx = setup->vmax[0][0] - setup->vmin[0][0];
978    setup->emaj.dy = setup->vmax[0][1] - setup->vmin[0][1];
979 
980    /* NOTE: this is not really area but something proportional to it */
981    area = setup->emaj.dx * setup->emaj.dx + setup->emaj.dy * setup->emaj.dy;
982    if (area == 0.0f || util_is_inf_or_nan(area))
983       return FALSE;
984    setup->oneoverarea = 1.0f / area;
985 
986    /* z and w are done by linear interpolation:
987     */
988    v[0] = setup->vmin[0][2];
989    v[1] = setup->vmax[0][2];
990    line_linear_coeff(setup, &setup->posCoef, 2, v);
991 
992    v[0] = setup->vmin[0][3];
993    v[1] = setup->vmax[0][3];
994    line_linear_coeff(setup, &setup->posCoef, 3, v);
995 
996    /* setup interpolation for all the remaining attributes:
997     */
998    for (fragSlot = 0; fragSlot < fsInfo->num_inputs; fragSlot++) {
999       const uint vertSlot = sinfo->attrib[fragSlot].src_index;
1000       uint j;
1001 
1002       switch (sinfo->attrib[fragSlot].interp) {
1003       case SP_INTERP_CONSTANT:
1004          for (j = 0; j < TGSI_NUM_CHANNELS; j++)
1005             const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
1006          break;
1007       case SP_INTERP_LINEAR:
1008          for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
1009             line_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
1010                                         setup->vmax[vertSlot][j],
1011                                         fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j),
1012                                         v);
1013             line_linear_coeff(setup, &setup->coef[fragSlot], j, v);
1014          }
1015          break;
1016       case SP_INTERP_PERSPECTIVE:
1017          for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
1018             line_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
1019                                         setup->vmax[vertSlot][j],
1020                                         fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j),
1021                                         v);
1022             line_persp_coeff(setup, &setup->coef[fragSlot], j, v);
1023          }
1024          break;
1025       case SP_INTERP_POS:
1026          setup_fragcoord_coeff(setup, fragSlot);
1027          break;
1028       default:
1029          assert(0);
1030       }
1031 
1032       if (fsInfo->input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
1033          /* convert 0 to 1.0 and 1 to -1.0 */
1034          setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f;
1035          setup->coef[fragSlot].dadx[0] = 0.0;
1036          setup->coef[fragSlot].dady[0] = 0.0;
1037       }
1038    }
1039    return TRUE;
1040 }
1041 
1042 
1043 /**
1044  * Plot a pixel in a line segment.
1045  */
1046 static inline void
plot(struct setup_context * setup,int x,int y)1047 plot(struct setup_context *setup, int x, int y)
1048 {
1049    const int iy = y & 1;
1050    const int ix = x & 1;
1051    const int quadX = x - ix;
1052    const int quadY = y - iy;
1053    const int mask = (1 << ix) << (2 * iy);
1054 
1055    if (quadX != setup->quad[0].input.x0 ||
1056        quadY != setup->quad[0].input.y0)
1057    {
1058       /* flush prev quad, start new quad */
1059 
1060       if (setup->quad[0].input.x0 != -1)
1061          clip_emit_quad(setup, &setup->quad[0]);
1062 
1063       setup->quad[0].input.x0 = quadX;
1064       setup->quad[0].input.y0 = quadY;
1065       setup->quad[0].inout.mask = 0x0;
1066    }
1067 
1068    setup->quad[0].inout.mask |= mask;
1069 }
1070 
1071 
1072 /**
1073  * Do setup for line rasterization, then render the line.
1074  * Single-pixel width, no stipple, etc.  We rely on the 'draw' module
1075  * to handle stippling and wide lines.
1076  */
1077 void
sp_setup_line(struct setup_context * setup,const float (* v0)[4],const float (* v1)[4])1078 sp_setup_line(struct setup_context *setup,
1079               const float (*v0)[4],
1080               const float (*v1)[4])
1081 {
1082    int x0 = (int) v0[0][0];
1083    int x1 = (int) v1[0][0];
1084    int y0 = (int) v0[0][1];
1085    int y1 = (int) v1[0][1];
1086    int dx = x1 - x0;
1087    int dy = y1 - y0;
1088    int xstep, ystep;
1089    uint layer = 0;
1090    unsigned viewport_index = 0;
1091 
1092 #if DEBUG_VERTS
1093    debug_printf("Setup line:\n");
1094    print_vertex(setup, v0);
1095    print_vertex(setup, v1);
1096 #endif
1097 
1098    if (unlikely(sp_debug & SP_DBG_NO_RAST) ||
1099        setup->softpipe->rasterizer->rasterizer_discard)
1100       return;
1101 
1102    if (dx == 0 && dy == 0)
1103       return;
1104 
1105    if (!setup_line_coefficients(setup, v0, v1))
1106       return;
1107 
1108    assert(v0[0][0] < 1.0e9);
1109    assert(v0[0][1] < 1.0e9);
1110    assert(v1[0][0] < 1.0e9);
1111    assert(v1[0][1] < 1.0e9);
1112 
1113    if (dx < 0) {
1114       dx = -dx;   /* make positive */
1115       xstep = -1;
1116    }
1117    else {
1118       xstep = 1;
1119    }
1120 
1121    if (dy < 0) {
1122       dy = -dy;   /* make positive */
1123       ystep = -1;
1124    }
1125    else {
1126       ystep = 1;
1127    }
1128 
1129    assert(dx >= 0);
1130    assert(dy >= 0);
1131    assert(setup->softpipe->reduced_prim == PIPE_PRIM_LINES);
1132 
1133    setup->quad[0].input.x0 = setup->quad[0].input.y0 = -1;
1134    setup->quad[0].inout.mask = 0x0;
1135    if (setup->softpipe->layer_slot > 0) {
1136       layer = *(unsigned *)setup->vprovoke[setup->softpipe->layer_slot];
1137       layer = MIN2(layer, setup->max_layer);
1138    }
1139    setup->quad[0].input.layer = layer;
1140 
1141    if (setup->softpipe->viewport_index_slot > 0) {
1142       unsigned *udata = (unsigned*)setup->vprovoke[setup->softpipe->viewport_index_slot];
1143       viewport_index = sp_clamp_viewport_idx(*udata);
1144    }
1145    setup->quad[0].input.viewport_index = viewport_index;
1146 
1147    /* XXX temporary: set coverage to 1.0 so the line appears
1148     * if AA mode happens to be enabled.
1149     */
1150    setup->quad[0].input.coverage[0] =
1151    setup->quad[0].input.coverage[1] =
1152    setup->quad[0].input.coverage[2] =
1153    setup->quad[0].input.coverage[3] = 1.0;
1154 
1155    if (dx > dy) {
1156       /*** X-major line ***/
1157       int i;
1158       const int errorInc = dy + dy;
1159       int error = errorInc - dx;
1160       const int errorDec = error - dx;
1161 
1162       for (i = 0; i < dx; i++) {
1163          plot(setup, x0, y0);
1164 
1165          x0 += xstep;
1166          if (error < 0) {
1167             error += errorInc;
1168          }
1169          else {
1170             error += errorDec;
1171             y0 += ystep;
1172          }
1173       }
1174    }
1175    else {
1176       /*** Y-major line ***/
1177       int i;
1178       const int errorInc = dx + dx;
1179       int error = errorInc - dy;
1180       const int errorDec = error - dy;
1181 
1182       for (i = 0; i < dy; i++) {
1183          plot(setup, x0, y0);
1184 
1185          y0 += ystep;
1186          if (error < 0) {
1187             error += errorInc;
1188          }
1189          else {
1190             error += errorDec;
1191             x0 += xstep;
1192          }
1193       }
1194    }
1195 
1196    /* draw final quad */
1197    if (setup->quad[0].inout.mask) {
1198       clip_emit_quad(setup, &setup->quad[0]);
1199    }
1200 }
1201 
1202 
1203 static void
point_persp_coeff(const struct setup_context * setup,const float (* vert)[4],struct tgsi_interp_coef * coef,uint vertSlot,uint i)1204 point_persp_coeff(const struct setup_context *setup,
1205                   const float (*vert)[4],
1206                   struct tgsi_interp_coef *coef,
1207                   uint vertSlot, uint i)
1208 {
1209    assert(i <= 3);
1210    coef->dadx[i] = 0.0F;
1211    coef->dady[i] = 0.0F;
1212    coef->a0[i] = vert[vertSlot][i] * vert[0][3];
1213 }
1214 
1215 
1216 /**
1217  * Do setup for point rasterization, then render the point.
1218  * Round or square points...
1219  * XXX could optimize a lot for 1-pixel points.
1220  */
1221 void
sp_setup_point(struct setup_context * setup,const float (* v0)[4])1222 sp_setup_point(struct setup_context *setup,
1223                const float (*v0)[4])
1224 {
1225    struct softpipe_context *softpipe = setup->softpipe;
1226    const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
1227    const int sizeAttr = setup->softpipe->psize_slot;
1228    const float size
1229       = sizeAttr > 0 ? v0[sizeAttr][0]
1230       : setup->softpipe->rasterizer->point_size;
1231    const float halfSize = 0.5F * size;
1232    const boolean round = (boolean) setup->softpipe->rasterizer->point_smooth;
1233    const float x = v0[0][0];  /* Note: data[0] is always position */
1234    const float y = v0[0][1];
1235    const struct sp_setup_info *sinfo = &softpipe->setup_info;
1236    uint fragSlot;
1237    uint layer = 0;
1238    unsigned viewport_index = 0;
1239 #if DEBUG_VERTS
1240    debug_printf("Setup point:\n");
1241    print_vertex(setup, v0);
1242 #endif
1243 
1244    assert(sinfo->valid);
1245 
1246    if (unlikely(sp_debug & SP_DBG_NO_RAST) ||
1247        setup->softpipe->rasterizer->rasterizer_discard)
1248       return;
1249 
1250    assert(setup->softpipe->reduced_prim == PIPE_PRIM_POINTS);
1251 
1252    if (setup->softpipe->layer_slot > 0) {
1253       layer = *(unsigned *)v0[setup->softpipe->layer_slot];
1254       layer = MIN2(layer, setup->max_layer);
1255    }
1256    setup->quad[0].input.layer = layer;
1257 
1258    if (setup->softpipe->viewport_index_slot > 0) {
1259       unsigned *udata = (unsigned*)v0[setup->softpipe->viewport_index_slot];
1260       viewport_index = sp_clamp_viewport_idx(*udata);
1261    }
1262    setup->quad[0].input.viewport_index = viewport_index;
1263 
1264    /* For points, all interpolants are constant-valued.
1265     * However, for point sprites, we'll need to setup texcoords appropriately.
1266     * XXX: which coefficients are the texcoords???
1267     * We may do point sprites as textured quads...
1268     *
1269     * KW: We don't know which coefficients are texcoords - ultimately
1270     * the choice of what interpolation mode to use for each attribute
1271     * should be determined by the fragment program, using
1272     * per-attribute declaration statements that include interpolation
1273     * mode as a parameter.  So either the fragment program will have
1274     * to be adjusted for pointsprite vs normal point behaviour, or
1275     * otherwise a special interpolation mode will have to be defined
1276     * which matches the required behaviour for point sprites.  But -
1277     * the latter is not a feature of normal hardware, and as such
1278     * probably should be ruled out on that basis.
1279     */
1280    setup->vprovoke = v0;
1281 
1282    /* setup Z, W */
1283    const_coeff(setup, &setup->posCoef, 0, 2);
1284    const_coeff(setup, &setup->posCoef, 0, 3);
1285 
1286    for (fragSlot = 0; fragSlot < fsInfo->num_inputs; fragSlot++) {
1287       const uint vertSlot = sinfo->attrib[fragSlot].src_index;
1288       uint j;
1289 
1290       switch (sinfo->attrib[fragSlot].interp) {
1291       case SP_INTERP_CONSTANT:
1292          /* fall-through */
1293       case SP_INTERP_LINEAR:
1294          for (j = 0; j < TGSI_NUM_CHANNELS; j++)
1295             const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
1296          break;
1297       case SP_INTERP_PERSPECTIVE:
1298          for (j = 0; j < TGSI_NUM_CHANNELS; j++)
1299             point_persp_coeff(setup, setup->vprovoke,
1300                               &setup->coef[fragSlot], vertSlot, j);
1301          break;
1302       case SP_INTERP_POS:
1303          setup_fragcoord_coeff(setup, fragSlot);
1304          break;
1305       default:
1306          assert(0);
1307       }
1308 
1309       if (fsInfo->input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
1310          /* convert 0 to 1.0 and 1 to -1.0 */
1311          setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f;
1312          setup->coef[fragSlot].dadx[0] = 0.0;
1313          setup->coef[fragSlot].dady[0] = 0.0;
1314       }
1315    }
1316 
1317 
1318    if (halfSize <= 0.5 && !round) {
1319       /* special case for 1-pixel points */
1320       const int ix = ((int) x) & 1;
1321       const int iy = ((int) y) & 1;
1322       setup->quad[0].input.x0 = (int) x - ix;
1323       setup->quad[0].input.y0 = (int) y - iy;
1324       setup->quad[0].inout.mask = (1 << ix) << (2 * iy);
1325       clip_emit_quad(setup, &setup->quad[0]);
1326    }
1327    else {
1328       if (round) {
1329          /* rounded points */
1330          const int ixmin = block((int) (x - halfSize));
1331          const int ixmax = block((int) (x + halfSize));
1332          const int iymin = block((int) (y - halfSize));
1333          const int iymax = block((int) (y + halfSize));
1334          const float rmin = halfSize - 0.7071F;  /* 0.7071 = sqrt(2)/2 */
1335          const float rmax = halfSize + 0.7071F;
1336          const float rmin2 = MAX2(0.0F, rmin * rmin);
1337          const float rmax2 = rmax * rmax;
1338          const float cscale = 1.0F / (rmax2 - rmin2);
1339          int ix, iy;
1340 
1341          for (iy = iymin; iy <= iymax; iy += 2) {
1342             for (ix = ixmin; ix <= ixmax; ix += 2) {
1343                float dx, dy, dist2, cover;
1344 
1345                setup->quad[0].inout.mask = 0x0;
1346 
1347                dx = (ix + 0.5f) - x;
1348                dy = (iy + 0.5f) - y;
1349                dist2 = dx * dx + dy * dy;
1350                if (dist2 <= rmax2) {
1351                   cover = 1.0F - (dist2 - rmin2) * cscale;
1352                   setup->quad[0].input.coverage[QUAD_TOP_LEFT] = MIN2(cover, 1.0f);
1353                   setup->quad[0].inout.mask |= MASK_TOP_LEFT;
1354                }
1355 
1356                dx = (ix + 1.5f) - x;
1357                dy = (iy + 0.5f) - y;
1358                dist2 = dx * dx + dy * dy;
1359                if (dist2 <= rmax2) {
1360                   cover = 1.0F - (dist2 - rmin2) * cscale;
1361                   setup->quad[0].input.coverage[QUAD_TOP_RIGHT] = MIN2(cover, 1.0f);
1362                   setup->quad[0].inout.mask |= MASK_TOP_RIGHT;
1363                }
1364 
1365                dx = (ix + 0.5f) - x;
1366                dy = (iy + 1.5f) - y;
1367                dist2 = dx * dx + dy * dy;
1368                if (dist2 <= rmax2) {
1369                   cover = 1.0F - (dist2 - rmin2) * cscale;
1370                   setup->quad[0].input.coverage[QUAD_BOTTOM_LEFT] = MIN2(cover, 1.0f);
1371                   setup->quad[0].inout.mask |= MASK_BOTTOM_LEFT;
1372                }
1373 
1374                dx = (ix + 1.5f) - x;
1375                dy = (iy + 1.5f) - y;
1376                dist2 = dx * dx + dy * dy;
1377                if (dist2 <= rmax2) {
1378                   cover = 1.0F - (dist2 - rmin2) * cscale;
1379                   setup->quad[0].input.coverage[QUAD_BOTTOM_RIGHT] = MIN2(cover, 1.0f);
1380                   setup->quad[0].inout.mask |= MASK_BOTTOM_RIGHT;
1381                }
1382 
1383                if (setup->quad[0].inout.mask) {
1384                   setup->quad[0].input.x0 = ix;
1385                   setup->quad[0].input.y0 = iy;
1386                   clip_emit_quad(setup, &setup->quad[0]);
1387                }
1388             }
1389          }
1390       }
1391       else {
1392          /* square points */
1393          const int xmin = (int) (x + 0.75 - halfSize);
1394          const int ymin = (int) (y + 0.25 - halfSize);
1395          const int xmax = xmin + (int) size;
1396          const int ymax = ymin + (int) size;
1397          /* XXX could apply scissor to xmin,ymin,xmax,ymax now */
1398          const int ixmin = block(xmin);
1399          const int ixmax = block(xmax - 1);
1400          const int iymin = block(ymin);
1401          const int iymax = block(ymax - 1);
1402          int ix, iy;
1403 
1404          /*
1405          debug_printf("(%f, %f) -> X:%d..%d Y:%d..%d\n", x, y, xmin, xmax,ymin,ymax);
1406          */
1407          for (iy = iymin; iy <= iymax; iy += 2) {
1408             uint rowMask = 0xf;
1409             if (iy < ymin) {
1410                /* above the top edge */
1411                rowMask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
1412             }
1413             if (iy + 1 >= ymax) {
1414                /* below the bottom edge */
1415                rowMask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
1416             }
1417 
1418             for (ix = ixmin; ix <= ixmax; ix += 2) {
1419                uint mask = rowMask;
1420 
1421                if (ix < xmin) {
1422                   /* fragment is past left edge of point, turn off left bits */
1423                   mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
1424                }
1425                if (ix + 1 >= xmax) {
1426                   /* past the right edge */
1427                   mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
1428                }
1429 
1430                setup->quad[0].inout.mask = mask;
1431                setup->quad[0].input.x0 = ix;
1432                setup->quad[0].input.y0 = iy;
1433                clip_emit_quad(setup, &setup->quad[0]);
1434             }
1435          }
1436       }
1437    }
1438 }
1439 
1440 
1441 /**
1442  * Called by vbuf code just before we start buffering primitives.
1443  */
1444 void
sp_setup_prepare(struct setup_context * setup)1445 sp_setup_prepare(struct setup_context *setup)
1446 {
1447    struct softpipe_context *sp = setup->softpipe;
1448    int i;
1449    unsigned max_layer = ~0;
1450    if (sp->dirty) {
1451       softpipe_update_derived(sp, sp->reduced_api_prim);
1452    }
1453 
1454    /* Note: nr_attrs is only used for debugging (vertex printing) */
1455    setup->nr_vertex_attrs = draw_num_shader_outputs(sp->draw);
1456 
1457    /*
1458     * Determine how many layers the fb has (used for clamping layer value).
1459     * OpenGL (but not d3d10) permits different amount of layers per rt, however
1460     * results are undefined if layer exceeds the amount of layers of ANY
1461     * attachment hence don't need separate per cbuf and zsbuf max.
1462     */
1463    for (i = 0; i < setup->softpipe->framebuffer.nr_cbufs; i++) {
1464       struct pipe_surface *cbuf = setup->softpipe->framebuffer.cbufs[i];
1465       if (cbuf) {
1466          max_layer = MIN2(max_layer,
1467                           cbuf->u.tex.last_layer - cbuf->u.tex.first_layer);
1468 
1469       }
1470    }
1471 
1472    /* Prepare pixel offset for rasterisation:
1473     *  - pixel center (0.5, 0.5) for GL, or
1474     *  - assume (0.0, 0.0) for other APIs.
1475     */
1476    if (setup->softpipe->rasterizer->half_pixel_center) {
1477       setup->pixel_offset = 0.5f;
1478    } else {
1479       setup->pixel_offset = 0.0f;
1480    }
1481 
1482    setup->max_layer = max_layer;
1483 
1484    sp->quad.first->begin( sp->quad.first );
1485 
1486    if (sp->reduced_api_prim == PIPE_PRIM_TRIANGLES &&
1487        sp->rasterizer->fill_front == PIPE_POLYGON_MODE_FILL &&
1488        sp->rasterizer->fill_back == PIPE_POLYGON_MODE_FILL) {
1489       /* we'll do culling */
1490       setup->cull_face = sp->rasterizer->cull_face;
1491    }
1492    else {
1493       /* 'draw' will do culling */
1494       setup->cull_face = PIPE_FACE_NONE;
1495    }
1496 }
1497 
1498 
1499 void
sp_setup_destroy_context(struct setup_context * setup)1500 sp_setup_destroy_context(struct setup_context *setup)
1501 {
1502    FREE( setup );
1503 }
1504 
1505 
1506 /**
1507  * Create a new primitive setup/render stage.
1508  */
1509 struct setup_context *
sp_setup_create_context(struct softpipe_context * softpipe)1510 sp_setup_create_context(struct softpipe_context *softpipe)
1511 {
1512    struct setup_context *setup = CALLOC_STRUCT(setup_context);
1513    unsigned i;
1514 
1515    setup->softpipe = softpipe;
1516 
1517    for (i = 0; i < MAX_QUADS; i++) {
1518       setup->quad[i].coef = setup->coef;
1519       setup->quad[i].posCoef = &setup->posCoef;
1520    }
1521 
1522    setup->span.left[0] = 1000000;     /* greater than right[0] */
1523    setup->span.left[1] = 1000000;     /* greater than right[1] */
1524 
1525    return setup;
1526 }
1527