1 /*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include <stdio.h>
13 #include <stdlib.h>
14 #include <memory.h>
15 #include <math.h>
16 #include <assert.h>
17
18 #include "config/aom_dsp_rtcd.h"
19
20 #include "av1/encoder/global_motion.h"
21
22 #include "av1/common/convolve.h"
23 #include "av1/common/resize.h"
24 #include "av1/common/warped_motion.h"
25
26 #include "av1/encoder/segmentation.h"
27 #include "av1/encoder/corner_detect.h"
28 #include "av1/encoder/corner_match.h"
29 #include "av1/encoder/ransac.h"
30
31 #define MIN_INLIER_PROB 0.1
32
33 #define MIN_TRANS_THRESH (1 * GM_TRANS_DECODE_FACTOR)
34
35 // Border over which to compute the global motion
36 #define ERRORADV_BORDER 0
37
38 // Number of pyramid levels in disflow computation
39 #define N_LEVELS 2
40 // Size of square patches in the disflow dense grid
41 #define PATCH_SIZE 8
42 // Center point of square patch
43 #define PATCH_CENTER ((PATCH_SIZE + 1) >> 1)
44 // Step size between patches, lower value means greater patch overlap
45 #define PATCH_STEP 1
46 // Minimum size of border padding for disflow
47 #define MIN_PAD 7
48 // Warp error convergence threshold for disflow
49 #define DISFLOW_ERROR_TR 0.01
50 // Max number of iterations if warp convergence is not found
51 #define DISFLOW_MAX_ITR 10
52
53 // Struct for an image pyramid
54 typedef struct {
55 int n_levels;
56 int pad_size;
57 int has_gradient;
58 int widths[N_LEVELS];
59 int heights[N_LEVELS];
60 int strides[N_LEVELS];
61 int level_loc[N_LEVELS];
62 unsigned char *level_buffer;
63 double *level_dx_buffer;
64 double *level_dy_buffer;
65 } ImagePyramid;
66
av1_is_enough_erroradvantage(double best_erroradvantage,int params_cost,int erroradv_type)67 int av1_is_enough_erroradvantage(double best_erroradvantage, int params_cost,
68 int erroradv_type) {
69 assert(erroradv_type < GM_ERRORADV_TR_TYPES);
70 return best_erroradvantage < erroradv_tr[erroradv_type] &&
71 best_erroradvantage * params_cost < erroradv_prod_tr[erroradv_type];
72 }
73
convert_to_params(const double * params,int32_t * model)74 static void convert_to_params(const double *params, int32_t *model) {
75 int i;
76 int alpha_present = 0;
77 model[0] = (int32_t)floor(params[0] * (1 << GM_TRANS_PREC_BITS) + 0.5);
78 model[1] = (int32_t)floor(params[1] * (1 << GM_TRANS_PREC_BITS) + 0.5);
79 model[0] = (int32_t)clamp(model[0], GM_TRANS_MIN, GM_TRANS_MAX) *
80 GM_TRANS_DECODE_FACTOR;
81 model[1] = (int32_t)clamp(model[1], GM_TRANS_MIN, GM_TRANS_MAX) *
82 GM_TRANS_DECODE_FACTOR;
83
84 for (i = 2; i < 6; ++i) {
85 const int diag_value = ((i == 2 || i == 5) ? (1 << GM_ALPHA_PREC_BITS) : 0);
86 model[i] = (int32_t)floor(params[i] * (1 << GM_ALPHA_PREC_BITS) + 0.5);
87 model[i] =
88 (int32_t)clamp(model[i] - diag_value, GM_ALPHA_MIN, GM_ALPHA_MAX);
89 alpha_present |= (model[i] != 0);
90 model[i] = (model[i] + diag_value) * GM_ALPHA_DECODE_FACTOR;
91 }
92 for (; i < 8; ++i) {
93 model[i] = (int32_t)floor(params[i] * (1 << GM_ROW3HOMO_PREC_BITS) + 0.5);
94 model[i] = (int32_t)clamp(model[i], GM_ROW3HOMO_MIN, GM_ROW3HOMO_MAX) *
95 GM_ROW3HOMO_DECODE_FACTOR;
96 alpha_present |= (model[i] != 0);
97 }
98
99 if (!alpha_present) {
100 if (abs(model[0]) < MIN_TRANS_THRESH && abs(model[1]) < MIN_TRANS_THRESH) {
101 model[0] = 0;
102 model[1] = 0;
103 }
104 }
105 }
106
av1_convert_model_to_params(const double * params,WarpedMotionParams * model)107 void av1_convert_model_to_params(const double *params,
108 WarpedMotionParams *model) {
109 convert_to_params(params, model->wmmat);
110 model->wmtype = get_wmtype(model);
111 model->invalid = 0;
112 }
113
114 // Adds some offset to a global motion parameter and handles
115 // all of the necessary precision shifts, clamping, and
116 // zero-centering.
add_param_offset(int param_index,int32_t param_value,int32_t offset)117 static int32_t add_param_offset(int param_index, int32_t param_value,
118 int32_t offset) {
119 const int scale_vals[3] = { GM_TRANS_PREC_DIFF, GM_ALPHA_PREC_DIFF,
120 GM_ROW3HOMO_PREC_DIFF };
121 const int clamp_vals[3] = { GM_TRANS_MAX, GM_ALPHA_MAX, GM_ROW3HOMO_MAX };
122 // type of param: 0 - translation, 1 - affine, 2 - homography
123 const int param_type = (param_index < 2 ? 0 : (param_index < 6 ? 1 : 2));
124 const int is_one_centered = (param_index == 2 || param_index == 5);
125
126 // Make parameter zero-centered and offset the shift that was done to make
127 // it compatible with the warped model
128 param_value = (param_value - (is_one_centered << WARPEDMODEL_PREC_BITS)) >>
129 scale_vals[param_type];
130 // Add desired offset to the rescaled/zero-centered parameter
131 param_value += offset;
132 // Clamp the parameter so it does not overflow the number of bits allotted
133 // to it in the bitstream
134 param_value = (int32_t)clamp(param_value, -clamp_vals[param_type],
135 clamp_vals[param_type]);
136 // Rescale the parameter to WARPEDMODEL_PRECISION_BITS so it is compatible
137 // with the warped motion library
138 param_value *= (1 << scale_vals[param_type]);
139
140 // Undo the zero-centering step if necessary
141 return param_value + (is_one_centered << WARPEDMODEL_PREC_BITS);
142 }
143
force_wmtype(WarpedMotionParams * wm,TransformationType wmtype)144 static void force_wmtype(WarpedMotionParams *wm, TransformationType wmtype) {
145 switch (wmtype) {
146 case IDENTITY:
147 wm->wmmat[0] = 0;
148 wm->wmmat[1] = 0;
149 AOM_FALLTHROUGH_INTENDED;
150 case TRANSLATION:
151 wm->wmmat[2] = 1 << WARPEDMODEL_PREC_BITS;
152 wm->wmmat[3] = 0;
153 AOM_FALLTHROUGH_INTENDED;
154 case ROTZOOM:
155 wm->wmmat[4] = -wm->wmmat[3];
156 wm->wmmat[5] = wm->wmmat[2];
157 AOM_FALLTHROUGH_INTENDED;
158 case AFFINE: wm->wmmat[6] = wm->wmmat[7] = 0; break;
159 default: assert(0);
160 }
161 wm->wmtype = wmtype;
162 }
163
164 #if CONFIG_AV1_HIGHBITDEPTH
highbd_warp_error(WarpedMotionParams * wm,const uint16_t * const ref,int width,int height,int stride,const uint16_t * const dst,int p_col,int p_row,int p_width,int p_height,int p_stride,int subsampling_x,int subsampling_y,int bd,int64_t best_error,uint8_t * segment_map,int segment_map_stride)165 static int64_t highbd_warp_error(
166 WarpedMotionParams *wm, const uint16_t *const ref, int width, int height,
167 int stride, const uint16_t *const dst, int p_col, int p_row, int p_width,
168 int p_height, int p_stride, int subsampling_x, int subsampling_y, int bd,
169 int64_t best_error, uint8_t *segment_map, int segment_map_stride) {
170 int64_t gm_sumerr = 0;
171 const int error_bsize_w = AOMMIN(p_width, WARP_ERROR_BLOCK);
172 const int error_bsize_h = AOMMIN(p_height, WARP_ERROR_BLOCK);
173 uint16_t tmp[WARP_ERROR_BLOCK * WARP_ERROR_BLOCK];
174
175 ConvolveParams conv_params = get_conv_params(0, 0, bd);
176 conv_params.use_dist_wtd_comp_avg = 0;
177 for (int i = p_row; i < p_row + p_height; i += WARP_ERROR_BLOCK) {
178 for (int j = p_col; j < p_col + p_width; j += WARP_ERROR_BLOCK) {
179 int seg_x = j >> WARP_ERROR_BLOCK_LOG;
180 int seg_y = i >> WARP_ERROR_BLOCK_LOG;
181 // Only compute the error if this block contains inliers from the motion
182 // model
183 if (!segment_map[seg_y * segment_map_stride + seg_x]) continue;
184 // avoid warping extra 8x8 blocks in the padded region of the frame
185 // when p_width and p_height are not multiples of WARP_ERROR_BLOCK
186 const int warp_w = AOMMIN(error_bsize_w, p_col + p_width - j);
187 const int warp_h = AOMMIN(error_bsize_h, p_row + p_height - i);
188 highbd_warp_plane(wm, ref, width, height, stride, tmp, j, i, warp_w,
189 warp_h, WARP_ERROR_BLOCK, subsampling_x, subsampling_y,
190 bd, &conv_params);
191 gm_sumerr += av1_calc_highbd_frame_error(tmp, WARP_ERROR_BLOCK,
192 dst + j + i * p_stride, warp_w,
193 warp_h, p_stride, bd);
194 if (gm_sumerr > best_error) return INT64_MAX;
195 }
196 }
197 return gm_sumerr;
198 }
199 #endif
200
warp_error(WarpedMotionParams * wm,const uint8_t * const ref,int width,int height,int stride,const uint8_t * const dst,int p_col,int p_row,int p_width,int p_height,int p_stride,int subsampling_x,int subsampling_y,int64_t best_error,uint8_t * segment_map,int segment_map_stride)201 static int64_t warp_error(WarpedMotionParams *wm, const uint8_t *const ref,
202 int width, int height, int stride,
203 const uint8_t *const dst, int p_col, int p_row,
204 int p_width, int p_height, int p_stride,
205 int subsampling_x, int subsampling_y,
206 int64_t best_error, uint8_t *segment_map,
207 int segment_map_stride) {
208 int64_t gm_sumerr = 0;
209 int warp_w, warp_h;
210 const int error_bsize_w = AOMMIN(p_width, WARP_ERROR_BLOCK);
211 const int error_bsize_h = AOMMIN(p_height, WARP_ERROR_BLOCK);
212 DECLARE_ALIGNED(16, uint8_t, tmp[WARP_ERROR_BLOCK * WARP_ERROR_BLOCK]);
213 ConvolveParams conv_params = get_conv_params(0, 0, 8);
214 conv_params.use_dist_wtd_comp_avg = 0;
215
216 for (int i = p_row; i < p_row + p_height; i += WARP_ERROR_BLOCK) {
217 for (int j = p_col; j < p_col + p_width; j += WARP_ERROR_BLOCK) {
218 int seg_x = j >> WARP_ERROR_BLOCK_LOG;
219 int seg_y = i >> WARP_ERROR_BLOCK_LOG;
220 // Only compute the error if this block contains inliers from the motion
221 // model
222 if (!segment_map[seg_y * segment_map_stride + seg_x]) continue;
223 // avoid warping extra 8x8 blocks in the padded region of the frame
224 // when p_width and p_height are not multiples of WARP_ERROR_BLOCK
225 warp_w = AOMMIN(error_bsize_w, p_col + p_width - j);
226 warp_h = AOMMIN(error_bsize_h, p_row + p_height - i);
227 warp_plane(wm, ref, width, height, stride, tmp, j, i, warp_w, warp_h,
228 WARP_ERROR_BLOCK, subsampling_x, subsampling_y, &conv_params);
229
230 gm_sumerr +=
231 av1_calc_frame_error(tmp, WARP_ERROR_BLOCK, dst + j + i * p_stride,
232 warp_w, warp_h, p_stride);
233 if (gm_sumerr > best_error) return INT64_MAX;
234 }
235 }
236 return gm_sumerr;
237 }
238
av1_warp_error(WarpedMotionParams * wm,int use_hbd,int bd,const uint8_t * ref,int width,int height,int stride,uint8_t * dst,int p_col,int p_row,int p_width,int p_height,int p_stride,int subsampling_x,int subsampling_y,int64_t best_error,uint8_t * segment_map,int segment_map_stride)239 int64_t av1_warp_error(WarpedMotionParams *wm, int use_hbd, int bd,
240 const uint8_t *ref, int width, int height, int stride,
241 uint8_t *dst, int p_col, int p_row, int p_width,
242 int p_height, int p_stride, int subsampling_x,
243 int subsampling_y, int64_t best_error,
244 uint8_t *segment_map, int segment_map_stride) {
245 if (wm->wmtype <= AFFINE)
246 if (!av1_get_shear_params(wm)) return INT64_MAX;
247 #if CONFIG_AV1_HIGHBITDEPTH
248 if (use_hbd)
249 return highbd_warp_error(wm, CONVERT_TO_SHORTPTR(ref), width, height,
250 stride, CONVERT_TO_SHORTPTR(dst), p_col, p_row,
251 p_width, p_height, p_stride, subsampling_x,
252 subsampling_y, bd, best_error, segment_map,
253 segment_map_stride);
254 #endif
255 (void)use_hbd;
256 (void)bd;
257 return warp_error(wm, ref, width, height, stride, dst, p_col, p_row, p_width,
258 p_height, p_stride, subsampling_x, subsampling_y,
259 best_error, segment_map, segment_map_stride);
260 }
261
262 // Factors used to calculate the thresholds for av1_warp_error
263 static double thresh_factors[GM_REFINEMENT_COUNT] = { 1.25, 1.20, 1.15, 1.10,
264 1.05 };
265
calc_approx_erroradv_threshold(double scaling_factor,int64_t erroradv_threshold)266 static INLINE int64_t calc_approx_erroradv_threshold(
267 double scaling_factor, int64_t erroradv_threshold) {
268 return erroradv_threshold <
269 (int64_t)(((double)INT64_MAX / scaling_factor) + 0.5)
270 ? (int64_t)(scaling_factor * erroradv_threshold + 0.5)
271 : INT64_MAX;
272 }
273
av1_refine_integerized_param(WarpedMotionParams * wm,TransformationType wmtype,int use_hbd,int bd,uint8_t * ref,int r_width,int r_height,int r_stride,uint8_t * dst,int d_width,int d_height,int d_stride,int n_refinements,int64_t best_frame_error,uint8_t * segment_map,int segment_map_stride,int64_t erroradv_threshold)274 int64_t av1_refine_integerized_param(
275 WarpedMotionParams *wm, TransformationType wmtype, int use_hbd, int bd,
276 uint8_t *ref, int r_width, int r_height, int r_stride, uint8_t *dst,
277 int d_width, int d_height, int d_stride, int n_refinements,
278 int64_t best_frame_error, uint8_t *segment_map, int segment_map_stride,
279 int64_t erroradv_threshold) {
280 static const int max_trans_model_params[TRANS_TYPES] = { 0, 2, 4, 6 };
281 const int border = ERRORADV_BORDER;
282 int i = 0, p;
283 int n_params = max_trans_model_params[wmtype];
284 int32_t *param_mat = wm->wmmat;
285 int64_t step_error, best_error;
286 int32_t step;
287 int32_t *param;
288 int32_t curr_param;
289 int32_t best_param;
290
291 force_wmtype(wm, wmtype);
292 best_error =
293 av1_warp_error(wm, use_hbd, bd, ref, r_width, r_height, r_stride,
294 dst + border * d_stride + border, border, border,
295 d_width - 2 * border, d_height - 2 * border, d_stride, 0,
296 0, best_frame_error, segment_map, segment_map_stride);
297 best_error = AOMMIN(best_error, best_frame_error);
298 step = 1 << (n_refinements - 1);
299 for (i = 0; i < n_refinements; i++, step >>= 1) {
300 int64_t error_adv_thresh =
301 calc_approx_erroradv_threshold(thresh_factors[i], erroradv_threshold);
302 for (p = 0; p < n_params; ++p) {
303 int step_dir = 0;
304 // Skip searches for parameters that are forced to be 0
305 param = param_mat + p;
306 curr_param = *param;
307 best_param = curr_param;
308 // look to the left
309 *param = add_param_offset(p, curr_param, -step);
310 step_error =
311 av1_warp_error(wm, use_hbd, bd, ref, r_width, r_height, r_stride,
312 dst + border * d_stride + border, border, border,
313 d_width - 2 * border, d_height - 2 * border, d_stride,
314 0, 0, AOMMIN(best_error, error_adv_thresh),
315 segment_map, segment_map_stride);
316 if (step_error < best_error) {
317 best_error = step_error;
318 best_param = *param;
319 step_dir = -1;
320 }
321
322 // look to the right
323 *param = add_param_offset(p, curr_param, step);
324 step_error =
325 av1_warp_error(wm, use_hbd, bd, ref, r_width, r_height, r_stride,
326 dst + border * d_stride + border, border, border,
327 d_width - 2 * border, d_height - 2 * border, d_stride,
328 0, 0, AOMMIN(best_error, error_adv_thresh),
329 segment_map, segment_map_stride);
330 if (step_error < best_error) {
331 best_error = step_error;
332 best_param = *param;
333 step_dir = 1;
334 }
335 *param = best_param;
336
337 // look to the direction chosen above repeatedly until error increases
338 // for the biggest step size
339 while (step_dir) {
340 *param = add_param_offset(p, best_param, step * step_dir);
341 step_error =
342 av1_warp_error(wm, use_hbd, bd, ref, r_width, r_height, r_stride,
343 dst + border * d_stride + border, border, border,
344 d_width - 2 * border, d_height - 2 * border,
345 d_stride, 0, 0, AOMMIN(best_error, error_adv_thresh),
346 segment_map, segment_map_stride);
347 if (step_error < best_error) {
348 best_error = step_error;
349 best_param = *param;
350 } else {
351 *param = best_param;
352 step_dir = 0;
353 }
354 }
355 }
356 }
357 force_wmtype(wm, wmtype);
358 wm->wmtype = get_wmtype(wm);
359 return best_error;
360 }
361
av1_downconvert_frame(YV12_BUFFER_CONFIG * frm,int bit_depth)362 unsigned char *av1_downconvert_frame(YV12_BUFFER_CONFIG *frm, int bit_depth) {
363 int i, j;
364 uint16_t *orig_buf = CONVERT_TO_SHORTPTR(frm->y_buffer);
365 uint8_t *buf_8bit = frm->y_buffer_8bit;
366 assert(buf_8bit);
367 if (!frm->buf_8bit_valid) {
368 for (i = 0; i < frm->y_height; ++i) {
369 for (j = 0; j < frm->y_width; ++j) {
370 buf_8bit[i * frm->y_stride + j] =
371 orig_buf[i * frm->y_stride + j] >> (bit_depth - 8);
372 }
373 }
374 frm->buf_8bit_valid = 1;
375 }
376 return buf_8bit;
377 }
378
get_inliers_from_indices(MotionModel * params,int * correspondences)379 static void get_inliers_from_indices(MotionModel *params,
380 int *correspondences) {
381 int *inliers_tmp = (int *)aom_malloc(2 * MAX_CORNERS * sizeof(*inliers_tmp));
382 memset(inliers_tmp, 0, 2 * MAX_CORNERS * sizeof(*inliers_tmp));
383
384 for (int i = 0; i < params->num_inliers; i++) {
385 int index = params->inliers[i];
386 inliers_tmp[2 * i] = correspondences[4 * index];
387 inliers_tmp[2 * i + 1] = correspondences[4 * index + 1];
388 }
389 memcpy(params->inliers, inliers_tmp, sizeof(*inliers_tmp) * 2 * MAX_CORNERS);
390 aom_free(inliers_tmp);
391 }
392
393 #define FEAT_COUNT_TR 3
394 #define SEG_COUNT_TR 0.40
av1_compute_feature_segmentation_map(uint8_t * segment_map,int width,int height,int * inliers,int num_inliers)395 void av1_compute_feature_segmentation_map(uint8_t *segment_map, int width,
396 int height, int *inliers,
397 int num_inliers) {
398 int seg_count = 0;
399 memset(segment_map, 0, sizeof(*segment_map) * width * height);
400
401 for (int i = 0; i < num_inliers; i++) {
402 int x = inliers[i * 2];
403 int y = inliers[i * 2 + 1];
404 int seg_x = x >> WARP_ERROR_BLOCK_LOG;
405 int seg_y = y >> WARP_ERROR_BLOCK_LOG;
406 segment_map[seg_y * width + seg_x] += 1;
407 }
408
409 for (int i = 0; i < height; i++) {
410 for (int j = 0; j < width; j++) {
411 uint8_t feat_count = segment_map[i * width + j];
412 segment_map[i * width + j] = (feat_count >= FEAT_COUNT_TR);
413 seg_count += (segment_map[i * width + j]);
414 }
415 }
416
417 // If this motion does not make up a large enough portion of the frame,
418 // use the unsegmented version of the error metric
419 if (seg_count < (width * height * SEG_COUNT_TR))
420 memset(segment_map, 1, width * height * sizeof(*segment_map));
421 }
422
compute_global_motion_feature_based(TransformationType type,unsigned char * frm_buffer,int frm_width,int frm_height,int frm_stride,int * frm_corners,int num_frm_corners,YV12_BUFFER_CONFIG * ref,int bit_depth,int * num_inliers_by_motion,MotionModel * params_by_motion,int num_motions)423 static int compute_global_motion_feature_based(
424 TransformationType type, unsigned char *frm_buffer, int frm_width,
425 int frm_height, int frm_stride, int *frm_corners, int num_frm_corners,
426 YV12_BUFFER_CONFIG *ref, int bit_depth, int *num_inliers_by_motion,
427 MotionModel *params_by_motion, int num_motions) {
428 int i;
429 int num_ref_corners;
430 int num_correspondences;
431 int *correspondences;
432 int ref_corners[2 * MAX_CORNERS];
433 unsigned char *ref_buffer = ref->y_buffer;
434 RansacFunc ransac = av1_get_ransac_type(type);
435
436 if (ref->flags & YV12_FLAG_HIGHBITDEPTH) {
437 ref_buffer = av1_downconvert_frame(ref, bit_depth);
438 }
439
440 num_ref_corners =
441 av1_fast_corner_detect(ref_buffer, ref->y_width, ref->y_height,
442 ref->y_stride, ref_corners, MAX_CORNERS);
443
444 // find correspondences between the two images
445 correspondences =
446 (int *)malloc(num_frm_corners * 4 * sizeof(*correspondences));
447 num_correspondences = av1_determine_correspondence(
448 frm_buffer, (int *)frm_corners, num_frm_corners, ref_buffer,
449 (int *)ref_corners, num_ref_corners, frm_width, frm_height, frm_stride,
450 ref->y_stride, correspondences);
451
452 ransac(correspondences, num_correspondences, num_inliers_by_motion,
453 params_by_motion, num_motions);
454
455 // Set num_inliers = 0 for motions with too few inliers so they are ignored.
456 for (i = 0; i < num_motions; ++i) {
457 if (num_inliers_by_motion[i] < MIN_INLIER_PROB * num_correspondences ||
458 num_correspondences == 0) {
459 num_inliers_by_motion[i] = 0;
460 } else {
461 get_inliers_from_indices(¶ms_by_motion[i], correspondences);
462 }
463 }
464
465 free(correspondences);
466
467 // Return true if any one of the motions has inliers.
468 for (i = 0; i < num_motions; ++i) {
469 if (num_inliers_by_motion[i] > 0) return 1;
470 }
471 return 0;
472 }
473
474 // Don't use points around the frame border since they are less reliable
valid_point(int x,int y,int width,int height)475 static INLINE int valid_point(int x, int y, int width, int height) {
476 return (x > (PATCH_SIZE + PATCH_CENTER)) &&
477 (x < (width - PATCH_SIZE - PATCH_CENTER)) &&
478 (y > (PATCH_SIZE + PATCH_CENTER)) &&
479 (y < (height - PATCH_SIZE - PATCH_CENTER));
480 }
481
determine_disflow_correspondence(int * frm_corners,int num_frm_corners,double * flow_u,double * flow_v,int width,int height,int stride,double * correspondences)482 static int determine_disflow_correspondence(int *frm_corners,
483 int num_frm_corners, double *flow_u,
484 double *flow_v, int width,
485 int height, int stride,
486 double *correspondences) {
487 int num_correspondences = 0;
488 int x, y;
489 for (int i = 0; i < num_frm_corners; ++i) {
490 x = frm_corners[2 * i];
491 y = frm_corners[2 * i + 1];
492 if (valid_point(x, y, width, height)) {
493 correspondences[4 * num_correspondences] = x;
494 correspondences[4 * num_correspondences + 1] = y;
495 correspondences[4 * num_correspondences + 2] = x + flow_u[y * stride + x];
496 correspondences[4 * num_correspondences + 3] = y + flow_v[y * stride + x];
497 num_correspondences++;
498 }
499 }
500 return num_correspondences;
501 }
502
getCubicValue(double p[4],double x)503 static double getCubicValue(double p[4], double x) {
504 return p[1] + 0.5 * x *
505 (p[2] - p[0] +
506 x * (2.0 * p[0] - 5.0 * p[1] + 4.0 * p[2] - p[3] +
507 x * (3.0 * (p[1] - p[2]) + p[3] - p[0])));
508 }
509
get_subcolumn(unsigned char * ref,double col[4],int stride,int x,int y_start)510 static void get_subcolumn(unsigned char *ref, double col[4], int stride, int x,
511 int y_start) {
512 int i;
513 for (i = 0; i < 4; ++i) {
514 col[i] = ref[(i + y_start) * stride + x];
515 }
516 }
517
bicubic(unsigned char * ref,double x,double y,int stride)518 static double bicubic(unsigned char *ref, double x, double y, int stride) {
519 double arr[4];
520 int k;
521 int i = (int)x;
522 int j = (int)y;
523 for (k = 0; k < 4; ++k) {
524 double arr_temp[4];
525 get_subcolumn(ref, arr_temp, stride, i + k - 1, j - 1);
526 arr[k] = getCubicValue(arr_temp, y - j);
527 }
528 return getCubicValue(arr, x - i);
529 }
530
531 // Interpolate a warped block using bicubic interpolation when possible
interpolate(unsigned char * ref,double x,double y,int width,int height,int stride)532 static unsigned char interpolate(unsigned char *ref, double x, double y,
533 int width, int height, int stride) {
534 if (x < 0 && y < 0)
535 return ref[0];
536 else if (x < 0 && y > height - 1)
537 return ref[(height - 1) * stride];
538 else if (x > width - 1 && y < 0)
539 return ref[width - 1];
540 else if (x > width - 1 && y > height - 1)
541 return ref[(height - 1) * stride + (width - 1)];
542 else if (x < 0) {
543 int v;
544 int i = (int)y;
545 double a = y - i;
546 if (y > 1 && y < height - 2) {
547 double arr[4];
548 get_subcolumn(ref, arr, stride, 0, i - 1);
549 return clamp((int)(getCubicValue(arr, a) + 0.5), 0, 255);
550 }
551 v = (int)(ref[i * stride] * (1 - a) + ref[(i + 1) * stride] * a + 0.5);
552 return clamp(v, 0, 255);
553 } else if (y < 0) {
554 int v;
555 int j = (int)x;
556 double b = x - j;
557 if (x > 1 && x < width - 2) {
558 double arr[4] = { ref[j - 1], ref[j], ref[j + 1], ref[j + 2] };
559 return clamp((int)(getCubicValue(arr, b) + 0.5), 0, 255);
560 }
561 v = (int)(ref[j] * (1 - b) + ref[j + 1] * b + 0.5);
562 return clamp(v, 0, 255);
563 } else if (x > width - 1) {
564 int v;
565 int i = (int)y;
566 double a = y - i;
567 if (y > 1 && y < height - 2) {
568 double arr[4];
569 get_subcolumn(ref, arr, stride, width - 1, i - 1);
570 return clamp((int)(getCubicValue(arr, a) + 0.5), 0, 255);
571 }
572 v = (int)(ref[i * stride + width - 1] * (1 - a) +
573 ref[(i + 1) * stride + width - 1] * a + 0.5);
574 return clamp(v, 0, 255);
575 } else if (y > height - 1) {
576 int v;
577 int j = (int)x;
578 double b = x - j;
579 if (x > 1 && x < width - 2) {
580 int row = (height - 1) * stride;
581 double arr[4] = { ref[row + j - 1], ref[row + j], ref[row + j + 1],
582 ref[row + j + 2] };
583 return clamp((int)(getCubicValue(arr, b) + 0.5), 0, 255);
584 }
585 v = (int)(ref[(height - 1) * stride + j] * (1 - b) +
586 ref[(height - 1) * stride + j + 1] * b + 0.5);
587 return clamp(v, 0, 255);
588 } else if (x > 1 && y > 1 && x < width - 2 && y < height - 2) {
589 return clamp((int)(bicubic(ref, x, y, stride) + 0.5), 0, 255);
590 } else {
591 int i = (int)y;
592 int j = (int)x;
593 double a = y - i;
594 double b = x - j;
595 int v = (int)(ref[i * stride + j] * (1 - a) * (1 - b) +
596 ref[i * stride + j + 1] * (1 - a) * b +
597 ref[(i + 1) * stride + j] * a * (1 - b) +
598 ref[(i + 1) * stride + j + 1] * a * b);
599 return clamp(v, 0, 255);
600 }
601 }
602
603 // Warps a block using flow vector [u, v] and computes the mse
compute_warp_and_error(unsigned char * ref,unsigned char * frm,int width,int height,int stride,int x,int y,double u,double v,int16_t * dt)604 static double compute_warp_and_error(unsigned char *ref, unsigned char *frm,
605 int width, int height, int stride, int x,
606 int y, double u, double v, int16_t *dt) {
607 int i, j;
608 unsigned char warped;
609 double x_w, y_w;
610 double mse = 0;
611 int16_t err = 0;
612 for (i = y; i < y + PATCH_SIZE; ++i)
613 for (j = x; j < x + PATCH_SIZE; ++j) {
614 x_w = (double)j + u;
615 y_w = (double)i + v;
616 warped = interpolate(ref, x_w, y_w, width, height, stride);
617 err = warped - frm[j + i * stride];
618 mse += err * err;
619 dt[(i - y) * PATCH_SIZE + (j - x)] = err;
620 }
621
622 mse /= (PATCH_SIZE * PATCH_SIZE);
623 return mse;
624 }
625
626 // Computes the components of the system of equations used to solve for
627 // a flow vector. This includes:
628 // 1.) The hessian matrix for optical flow. This matrix is in the
629 // form of:
630 //
631 // M = |sum(dx * dx) sum(dx * dy)|
632 // |sum(dx * dy) sum(dy * dy)|
633 //
634 // 2.) b = |sum(dx * dt)|
635 // |sum(dy * dt)|
636 // Where the sums are computed over a square window of PATCH_SIZE.
compute_flow_system(const double * dx,int dx_stride,const double * dy,int dy_stride,const int16_t * dt,int dt_stride,double * M,double * b)637 static INLINE void compute_flow_system(const double *dx, int dx_stride,
638 const double *dy, int dy_stride,
639 const int16_t *dt, int dt_stride,
640 double *M, double *b) {
641 for (int i = 0; i < PATCH_SIZE; i++) {
642 for (int j = 0; j < PATCH_SIZE; j++) {
643 M[0] += dx[i * dx_stride + j] * dx[i * dx_stride + j];
644 M[1] += dx[i * dx_stride + j] * dy[i * dy_stride + j];
645 M[3] += dy[i * dy_stride + j] * dy[i * dy_stride + j];
646
647 b[0] += dx[i * dx_stride + j] * dt[i * dt_stride + j];
648 b[1] += dy[i * dy_stride + j] * dt[i * dt_stride + j];
649 }
650 }
651
652 M[2] = M[1];
653 }
654
655 // Solves a general Mx = b where M is a 2x2 matrix and b is a 2x1 matrix
solve_2x2_system(const double * M,const double * b,double * output_vec)656 static INLINE void solve_2x2_system(const double *M, const double *b,
657 double *output_vec) {
658 double M_0 = M[0];
659 double M_3 = M[3];
660 double det = (M_0 * M_3) - (M[1] * M[2]);
661 if (det < 1e-5) {
662 // Handle singular matrix
663 // TODO(sarahparker) compare results using pseudo inverse instead
664 M_0 += 1e-10;
665 M_3 += 1e-10;
666 det = (M_0 * M_3) - (M[1] * M[2]);
667 }
668 const double det_inv = 1 / det;
669 const double mult_b0 = det_inv * b[0];
670 const double mult_b1 = det_inv * b[1];
671 output_vec[0] = M_3 * mult_b0 - M[1] * mult_b1;
672 output_vec[1] = -M[2] * mult_b0 + M_0 * mult_b1;
673 }
674
675 /*
676 static INLINE void image_difference(const uint8_t *src, int src_stride,
677 const uint8_t *ref, int ref_stride,
678 int16_t *dst, int dst_stride, int height,
679 int width) {
680 const int block_unit = 8;
681 // Take difference in 8x8 blocks to make use of optimized diff function
682 for (int i = 0; i < height; i += block_unit) {
683 for (int j = 0; j < width; j += block_unit) {
684 aom_subtract_block(block_unit, block_unit, dst + i * dst_stride + j,
685 dst_stride, src + i * src_stride + j, src_stride,
686 ref + i * ref_stride + j, ref_stride);
687 }
688 }
689 }
690 */
691
692 // Compute an image gradient using a sobel filter.
693 // If dir == 1, compute the x gradient. If dir == 0, compute y. This function
694 // assumes the images have been padded so that they can be processed in units
695 // of 8.
sobel_xy_image_gradient(const uint8_t * src,int src_stride,double * dst,int dst_stride,int height,int width,int dir)696 static INLINE void sobel_xy_image_gradient(const uint8_t *src, int src_stride,
697 double *dst, int dst_stride,
698 int height, int width, int dir) {
699 double norm = 1.0;
700 // TODO(sarahparker) experiment with doing this over larger block sizes
701 const int block_unit = 8;
702 // Filter in 8x8 blocks to eventually make use of optimized convolve function
703 for (int i = 0; i < height; i += block_unit) {
704 for (int j = 0; j < width; j += block_unit) {
705 av1_convolve_2d_sobel_y_c(src + i * src_stride + j, src_stride,
706 dst + i * dst_stride + j, dst_stride,
707 block_unit, block_unit, dir, norm);
708 }
709 }
710 }
711
alloc_pyramid(int width,int height,int pad_size,int compute_gradient)712 static ImagePyramid *alloc_pyramid(int width, int height, int pad_size,
713 int compute_gradient) {
714 ImagePyramid *pyr = aom_malloc(sizeof(*pyr));
715 pyr->has_gradient = compute_gradient;
716 // 2 * width * height is the upper bound for a buffer that fits
717 // all pyramid levels + padding for each level
718 const int buffer_size = sizeof(*pyr->level_buffer) * 2 * width * height +
719 (width + 2 * pad_size) * 2 * pad_size * N_LEVELS;
720 pyr->level_buffer = aom_malloc(buffer_size);
721 memset(pyr->level_buffer, 0, buffer_size);
722
723 if (compute_gradient) {
724 const int gradient_size =
725 sizeof(*pyr->level_dx_buffer) * 2 * width * height +
726 (width + 2 * pad_size) * 2 * pad_size * N_LEVELS;
727 pyr->level_dx_buffer = aom_malloc(gradient_size);
728 pyr->level_dy_buffer = aom_malloc(gradient_size);
729 memset(pyr->level_dx_buffer, 0, gradient_size);
730 memset(pyr->level_dy_buffer, 0, gradient_size);
731 }
732 return pyr;
733 }
734
free_pyramid(ImagePyramid * pyr)735 static void free_pyramid(ImagePyramid *pyr) {
736 aom_free(pyr->level_buffer);
737 if (pyr->has_gradient) {
738 aom_free(pyr->level_dx_buffer);
739 aom_free(pyr->level_dy_buffer);
740 }
741 aom_free(pyr);
742 }
743
update_level_dims(ImagePyramid * frm_pyr,int level)744 static INLINE void update_level_dims(ImagePyramid *frm_pyr, int level) {
745 frm_pyr->widths[level] = frm_pyr->widths[level - 1] >> 1;
746 frm_pyr->heights[level] = frm_pyr->heights[level - 1] >> 1;
747 frm_pyr->strides[level] = frm_pyr->widths[level] + 2 * frm_pyr->pad_size;
748 // Point the beginning of the next level buffer to the correct location inside
749 // the padded border
750 frm_pyr->level_loc[level] =
751 frm_pyr->level_loc[level - 1] +
752 frm_pyr->strides[level - 1] *
753 (2 * frm_pyr->pad_size + frm_pyr->heights[level - 1]);
754 }
755
756 // Compute coarse to fine pyramids for a frame
compute_flow_pyramids(unsigned char * frm,const int frm_width,const int frm_height,const int frm_stride,int n_levels,int pad_size,int compute_grad,ImagePyramid * frm_pyr)757 static void compute_flow_pyramids(unsigned char *frm, const int frm_width,
758 const int frm_height, const int frm_stride,
759 int n_levels, int pad_size, int compute_grad,
760 ImagePyramid *frm_pyr) {
761 int cur_width, cur_height, cur_stride, cur_loc;
762 assert((frm_width >> n_levels) > 0);
763 assert((frm_height >> n_levels) > 0);
764
765 // Initialize first level
766 frm_pyr->n_levels = n_levels;
767 frm_pyr->pad_size = pad_size;
768 frm_pyr->widths[0] = frm_width;
769 frm_pyr->heights[0] = frm_height;
770 frm_pyr->strides[0] = frm_width + 2 * frm_pyr->pad_size;
771 // Point the beginning of the level buffer to the location inside
772 // the padded border
773 frm_pyr->level_loc[0] =
774 frm_pyr->strides[0] * frm_pyr->pad_size + frm_pyr->pad_size;
775 // This essentially copies the original buffer into the pyramid buffer
776 // without the original padding
777 av1_resize_plane(frm, frm_height, frm_width, frm_stride,
778 frm_pyr->level_buffer + frm_pyr->level_loc[0],
779 frm_pyr->heights[0], frm_pyr->widths[0],
780 frm_pyr->strides[0]);
781
782 if (compute_grad) {
783 cur_width = frm_pyr->widths[0];
784 cur_height = frm_pyr->heights[0];
785 cur_stride = frm_pyr->strides[0];
786 cur_loc = frm_pyr->level_loc[0];
787 assert(frm_pyr->has_gradient && frm_pyr->level_dx_buffer != NULL &&
788 frm_pyr->level_dy_buffer != NULL);
789 // Computation x gradient
790 sobel_xy_image_gradient(frm_pyr->level_buffer + cur_loc, cur_stride,
791 frm_pyr->level_dx_buffer + cur_loc, cur_stride,
792 cur_height, cur_width, 1);
793
794 // Computation y gradient
795 sobel_xy_image_gradient(frm_pyr->level_buffer + cur_loc, cur_stride,
796 frm_pyr->level_dy_buffer + cur_loc, cur_stride,
797 cur_height, cur_width, 0);
798 }
799
800 // Start at the finest level and resize down to the coarsest level
801 for (int level = 1; level < n_levels; ++level) {
802 update_level_dims(frm_pyr, level);
803 cur_width = frm_pyr->widths[level];
804 cur_height = frm_pyr->heights[level];
805 cur_stride = frm_pyr->strides[level];
806 cur_loc = frm_pyr->level_loc[level];
807
808 av1_resize_plane(frm_pyr->level_buffer + frm_pyr->level_loc[level - 1],
809 frm_pyr->heights[level - 1], frm_pyr->widths[level - 1],
810 frm_pyr->strides[level - 1],
811 frm_pyr->level_buffer + cur_loc, cur_height, cur_width,
812 cur_stride);
813
814 if (compute_grad) {
815 assert(frm_pyr->has_gradient && frm_pyr->level_dx_buffer != NULL &&
816 frm_pyr->level_dy_buffer != NULL);
817 // Computation x gradient
818 sobel_xy_image_gradient(frm_pyr->level_buffer + cur_loc, cur_stride,
819 frm_pyr->level_dx_buffer + cur_loc, cur_stride,
820 cur_height, cur_width, 1);
821
822 // Computation y gradient
823 sobel_xy_image_gradient(frm_pyr->level_buffer + cur_loc, cur_stride,
824 frm_pyr->level_dy_buffer + cur_loc, cur_stride,
825 cur_height, cur_width, 0);
826 }
827 }
828 }
829
compute_flow_at_point(unsigned char * frm,unsigned char * ref,double * dx,double * dy,int x,int y,int width,int height,int stride,double * u,double * v)830 static INLINE void compute_flow_at_point(unsigned char *frm, unsigned char *ref,
831 double *dx, double *dy, int x, int y,
832 int width, int height, int stride,
833 double *u, double *v) {
834 double M[4] = { 0 };
835 double b[2] = { 0 };
836 double tmp_output_vec[2] = { 0 };
837 double error = 0;
838 int16_t dt[PATCH_SIZE * PATCH_SIZE];
839 double o_u = *u;
840 double o_v = *v;
841
842 for (int itr = 0; itr < DISFLOW_MAX_ITR; itr++) {
843 error = compute_warp_and_error(ref, frm, width, height, stride, x, y, *u,
844 *v, dt);
845 if (error <= DISFLOW_ERROR_TR) break;
846 compute_flow_system(dx, stride, dy, stride, dt, PATCH_SIZE, M, b);
847 solve_2x2_system(M, b, tmp_output_vec);
848 *u += tmp_output_vec[0];
849 *v += tmp_output_vec[1];
850 }
851 if (fabs(*u - o_u) > PATCH_SIZE || fabs(*v - o_u) > PATCH_SIZE) {
852 *u = o_u;
853 *v = o_v;
854 }
855 }
856
857 // make sure flow_u and flow_v start at 0
compute_flow_field(ImagePyramid * frm_pyr,ImagePyramid * ref_pyr,double * flow_u,double * flow_v)858 static void compute_flow_field(ImagePyramid *frm_pyr, ImagePyramid *ref_pyr,
859 double *flow_u, double *flow_v) {
860 int cur_width, cur_height, cur_stride, cur_loc, patch_loc, patch_center;
861 double *u_upscale =
862 aom_malloc(frm_pyr->strides[0] * frm_pyr->heights[0] * sizeof(*flow_u));
863 double *v_upscale =
864 aom_malloc(frm_pyr->strides[0] * frm_pyr->heights[0] * sizeof(*flow_v));
865
866 assert(frm_pyr->n_levels == ref_pyr->n_levels);
867
868 // Compute flow field from coarsest to finest level of the pyramid
869 for (int level = frm_pyr->n_levels - 1; level >= 0; --level) {
870 cur_width = frm_pyr->widths[level];
871 cur_height = frm_pyr->heights[level];
872 cur_stride = frm_pyr->strides[level];
873 cur_loc = frm_pyr->level_loc[level];
874
875 for (int i = PATCH_SIZE; i < cur_height - PATCH_SIZE; i += PATCH_STEP) {
876 for (int j = PATCH_SIZE; j < cur_width - PATCH_SIZE; j += PATCH_STEP) {
877 patch_loc = i * cur_stride + j;
878 patch_center = patch_loc + PATCH_CENTER * cur_stride + PATCH_CENTER;
879 compute_flow_at_point(frm_pyr->level_buffer + cur_loc,
880 ref_pyr->level_buffer + cur_loc,
881 frm_pyr->level_dx_buffer + cur_loc + patch_loc,
882 frm_pyr->level_dy_buffer + cur_loc + patch_loc, j,
883 i, cur_width, cur_height, cur_stride,
884 flow_u + patch_center, flow_v + patch_center);
885 }
886 }
887 // TODO(sarahparker) Replace this with upscale function in resize.c
888 if (level > 0) {
889 int h_upscale = frm_pyr->heights[level - 1];
890 int w_upscale = frm_pyr->widths[level - 1];
891 int s_upscale = frm_pyr->strides[level - 1];
892 for (int i = 0; i < h_upscale; ++i) {
893 for (int j = 0; j < w_upscale; ++j) {
894 u_upscale[j + i * s_upscale] =
895 flow_u[(int)(j >> 1) + (int)(i >> 1) * cur_stride];
896 v_upscale[j + i * s_upscale] =
897 flow_v[(int)(j >> 1) + (int)(i >> 1) * cur_stride];
898 }
899 }
900 memcpy(flow_u, u_upscale,
901 frm_pyr->strides[0] * frm_pyr->heights[0] * sizeof(*flow_u));
902 memcpy(flow_v, v_upscale,
903 frm_pyr->strides[0] * frm_pyr->heights[0] * sizeof(*flow_v));
904 }
905 }
906 aom_free(u_upscale);
907 aom_free(v_upscale);
908 }
909
compute_global_motion_disflow_based(TransformationType type,unsigned char * frm_buffer,int frm_width,int frm_height,int frm_stride,int * frm_corners,int num_frm_corners,YV12_BUFFER_CONFIG * ref,int bit_depth,int * num_inliers_by_motion,MotionModel * params_by_motion,int num_motions)910 static int compute_global_motion_disflow_based(
911 TransformationType type, unsigned char *frm_buffer, int frm_width,
912 int frm_height, int frm_stride, int *frm_corners, int num_frm_corners,
913 YV12_BUFFER_CONFIG *ref, int bit_depth, int *num_inliers_by_motion,
914 MotionModel *params_by_motion, int num_motions) {
915 unsigned char *ref_buffer = ref->y_buffer;
916 const int ref_width = ref->y_width;
917 const int ref_height = ref->y_height;
918 const int pad_size = AOMMAX(PATCH_SIZE, MIN_PAD);
919 int num_correspondences;
920 double *correspondences;
921 RansacFuncDouble ransac = av1_get_ransac_double_prec_type(type);
922 assert(frm_width == ref_width);
923 assert(frm_height == ref_height);
924
925 // Ensure the number of pyramid levels will work with the frame resolution
926 const int msb =
927 frm_width < frm_height ? get_msb(frm_width) : get_msb(frm_height);
928 const int n_levels = AOMMIN(msb, N_LEVELS);
929
930 if (ref->flags & YV12_FLAG_HIGHBITDEPTH) {
931 ref_buffer = av1_downconvert_frame(ref, bit_depth);
932 }
933
934 // TODO(sarahparker) We will want to do the source pyramid computation
935 // outside of this function so it doesn't get recomputed for every
936 // reference. We also don't need to compute every pyramid level for the
937 // reference in advance, since lower levels can be overwritten once their
938 // flow field is computed and upscaled. I'll add these optimizations
939 // once the full implementation is working.
940 // Allocate frm image pyramids
941 int compute_gradient = 1;
942 ImagePyramid *frm_pyr =
943 alloc_pyramid(frm_width, frm_height, pad_size, compute_gradient);
944 compute_flow_pyramids(frm_buffer, frm_width, frm_height, frm_stride, n_levels,
945 pad_size, compute_gradient, frm_pyr);
946 // Allocate ref image pyramids
947 compute_gradient = 0;
948 ImagePyramid *ref_pyr =
949 alloc_pyramid(ref_width, ref_height, pad_size, compute_gradient);
950 compute_flow_pyramids(ref_buffer, ref_width, ref_height, ref->y_stride,
951 n_levels, pad_size, compute_gradient, ref_pyr);
952
953 double *flow_u =
954 aom_malloc(frm_pyr->strides[0] * frm_pyr->heights[0] * sizeof(*flow_u));
955 double *flow_v =
956 aom_malloc(frm_pyr->strides[0] * frm_pyr->heights[0] * sizeof(*flow_v));
957
958 memset(flow_u, 0,
959 frm_pyr->strides[0] * frm_pyr->heights[0] * sizeof(*flow_u));
960 memset(flow_v, 0,
961 frm_pyr->strides[0] * frm_pyr->heights[0] * sizeof(*flow_v));
962
963 compute_flow_field(frm_pyr, ref_pyr, flow_u, flow_v);
964
965 // find correspondences between the two images using the flow field
966 correspondences = aom_malloc(num_frm_corners * 4 * sizeof(*correspondences));
967 num_correspondences = determine_disflow_correspondence(
968 frm_corners, num_frm_corners, flow_u, flow_v, frm_width, frm_height,
969 frm_pyr->strides[0], correspondences);
970 ransac(correspondences, num_correspondences, num_inliers_by_motion,
971 params_by_motion, num_motions);
972
973 free_pyramid(frm_pyr);
974 free_pyramid(ref_pyr);
975 aom_free(correspondences);
976 aom_free(flow_u);
977 aom_free(flow_v);
978 // Set num_inliers = 0 for motions with too few inliers so they are ignored.
979 for (int i = 0; i < num_motions; ++i) {
980 if (num_inliers_by_motion[i] < MIN_INLIER_PROB * num_correspondences) {
981 num_inliers_by_motion[i] = 0;
982 }
983 }
984
985 // Return true if any one of the motions has inliers.
986 for (int i = 0; i < num_motions; ++i) {
987 if (num_inliers_by_motion[i] > 0) return 1;
988 }
989 return 0;
990 }
991
av1_compute_global_motion(TransformationType type,unsigned char * frm_buffer,int frm_width,int frm_height,int frm_stride,int * frm_corners,int num_frm_corners,YV12_BUFFER_CONFIG * ref,int bit_depth,GlobalMotionEstimationType gm_estimation_type,int * num_inliers_by_motion,MotionModel * params_by_motion,int num_motions)992 int av1_compute_global_motion(TransformationType type,
993 unsigned char *frm_buffer, int frm_width,
994 int frm_height, int frm_stride, int *frm_corners,
995 int num_frm_corners, YV12_BUFFER_CONFIG *ref,
996 int bit_depth,
997 GlobalMotionEstimationType gm_estimation_type,
998 int *num_inliers_by_motion,
999 MotionModel *params_by_motion, int num_motions) {
1000 switch (gm_estimation_type) {
1001 case GLOBAL_MOTION_FEATURE_BASED:
1002 return compute_global_motion_feature_based(
1003 type, frm_buffer, frm_width, frm_height, frm_stride, frm_corners,
1004 num_frm_corners, ref, bit_depth, num_inliers_by_motion,
1005 params_by_motion, num_motions);
1006 case GLOBAL_MOTION_DISFLOW_BASED:
1007 return compute_global_motion_disflow_based(
1008 type, frm_buffer, frm_width, frm_height, frm_stride, frm_corners,
1009 num_frm_corners, ref, bit_depth, num_inliers_by_motion,
1010 params_by_motion, num_motions);
1011 default: assert(0 && "Unknown global motion estimation type");
1012 }
1013 return 0;
1014 }
1015