1 use std::sync::atomic::{AtomicUsize, Ordering};
2
3 pub(super) struct AtomicCounters {
4 /// Packs together a number of counters. The counters are ordered as
5 /// follows, from least to most significant bits (here, we assuming
6 /// that [`THREADS_BITS`] is equal to 10):
7 ///
8 /// * Bits 0..10: Stores the number of **sleeping threads**
9 /// * Bits 10..20: Stores the number of **inactive threads**
10 /// * Bits 20..: Stores the **job event counter** (JEC)
11 ///
12 /// This uses 10 bits ([`THREADS_BITS`]) to encode the number of threads. Note
13 /// that the total number of bits (and hence the number of bits used for the
14 /// JEC) will depend on whether we are using a 32- or 64-bit architecture.
15 value: AtomicUsize,
16 }
17
18 #[derive(Copy, Clone)]
19 pub(super) struct Counters {
20 word: usize,
21 }
22
23 /// A value read from the **Jobs Event Counter**.
24 /// See the [`README.md`](README.md) for more
25 /// coverage of how the jobs event counter works.
26 #[derive(Copy, Clone, Debug, PartialEq, PartialOrd)]
27 pub(super) struct JobsEventCounter(usize);
28
29 impl JobsEventCounter {
30 pub(super) const DUMMY: JobsEventCounter = JobsEventCounter(std::usize::MAX);
31
32 #[inline]
as_usize(self) -> usize33 pub(super) fn as_usize(self) -> usize {
34 self.0
35 }
36
37 /// The JEC "is sleepy" if the last thread to increment it was in the
38 /// process of becoming sleepy. This is indicated by its value being *even*.
39 /// When new jobs are posted, they check if the JEC is sleepy, and if so
40 /// they incremented it.
41 #[inline]
is_sleepy(self) -> bool42 pub(super) fn is_sleepy(self) -> bool {
43 (self.as_usize() & 1) == 0
44 }
45
46 /// The JEC "is active" if the last thread to increment it was posting new
47 /// work. This is indicated by its value being *odd*. When threads get
48 /// sleepy, they will check if the JEC is active, and increment it.
49 #[inline]
is_active(self) -> bool50 pub(super) fn is_active(self) -> bool {
51 !self.is_sleepy()
52 }
53 }
54
55 /// Number of bits used for the thread counters.
56 const THREADS_BITS: usize = 10;
57
58 /// Bits to shift to select the sleeping threads
59 /// (used with `select_bits`).
60 const SLEEPING_SHIFT: usize = 0 * THREADS_BITS;
61
62 /// Bits to shift to select the inactive threads
63 /// (used with `select_bits`).
64 const INACTIVE_SHIFT: usize = 1 * THREADS_BITS;
65
66 /// Bits to shift to select the JEC
67 /// (use JOBS_BITS).
68 const JEC_SHIFT: usize = 2 * THREADS_BITS;
69
70 /// Max value for the thread counters.
71 const THREADS_MAX: usize = (1 << THREADS_BITS) - 1;
72
73 /// Constant that can be added to add one sleeping thread.
74 const ONE_SLEEPING: usize = 1;
75
76 /// Constant that can be added to add one inactive thread.
77 /// An inactive thread is either idle, sleepy, or sleeping.
78 const ONE_INACTIVE: usize = 1 << INACTIVE_SHIFT;
79
80 /// Constant that can be added to add one to the JEC.
81 const ONE_JEC: usize = 1 << JEC_SHIFT;
82
83 impl AtomicCounters {
84 #[inline]
new() -> AtomicCounters85 pub(super) fn new() -> AtomicCounters {
86 AtomicCounters {
87 value: AtomicUsize::new(0),
88 }
89 }
90
91 /// Load and return the current value of the various counters.
92 /// This value can then be given to other method which will
93 /// attempt to update the counters via compare-and-swap.
94 #[inline]
load(&self, ordering: Ordering) -> Counters95 pub(super) fn load(&self, ordering: Ordering) -> Counters {
96 Counters::new(self.value.load(ordering))
97 }
98
99 #[inline]
try_exchange(&self, old_value: Counters, new_value: Counters, ordering: Ordering) -> bool100 fn try_exchange(&self, old_value: Counters, new_value: Counters, ordering: Ordering) -> bool {
101 self.value
102 .compare_exchange(old_value.word, new_value.word, ordering, Ordering::Relaxed)
103 .is_ok()
104 }
105
106 /// Adds an inactive thread. This cannot fail.
107 ///
108 /// This should be invoked when a thread enters its idle loop looking
109 /// for work. It is decremented when work is found. Note that it is
110 /// not decremented if the thread transitions from idle to sleepy or sleeping;
111 /// so the number of inactive threads is always greater-than-or-equal
112 /// to the number of sleeping threads.
113 #[inline]
add_inactive_thread(&self)114 pub(super) fn add_inactive_thread(&self) {
115 self.value.fetch_add(ONE_INACTIVE, Ordering::SeqCst);
116 }
117
118 /// Increments the jobs event counter if `increment_when`, when applied to
119 /// the current value, is true. Used to toggle the JEC from even (sleepy) to
120 /// odd (active) or vice versa. Returns the final value of the counters, for
121 /// which `increment_when` is guaranteed to return false.
increment_jobs_event_counter_if( &self, increment_when: impl Fn(JobsEventCounter) -> bool, ) -> Counters122 pub(super) fn increment_jobs_event_counter_if(
123 &self,
124 increment_when: impl Fn(JobsEventCounter) -> bool,
125 ) -> Counters {
126 loop {
127 let old_value = self.load(Ordering::SeqCst);
128 if increment_when(old_value.jobs_counter()) {
129 let new_value = old_value.increment_jobs_counter();
130 if self.try_exchange(old_value, new_value, Ordering::SeqCst) {
131 return new_value;
132 }
133 } else {
134 return old_value;
135 }
136 }
137 }
138
139 /// Subtracts an inactive thread. This cannot fail. It is invoked
140 /// when a thread finds work and hence becomes active. It returns the
141 /// number of sleeping threads to wake up (if any).
142 ///
143 /// See `add_inactive_thread`.
144 #[inline]
sub_inactive_thread(&self) -> usize145 pub(super) fn sub_inactive_thread(&self) -> usize {
146 let old_value = Counters::new(self.value.fetch_sub(ONE_INACTIVE, Ordering::SeqCst));
147 debug_assert!(
148 old_value.inactive_threads() > 0,
149 "sub_inactive_thread: old_value {:?} has no inactive threads",
150 old_value,
151 );
152 debug_assert!(
153 old_value.sleeping_threads() <= old_value.inactive_threads(),
154 "sub_inactive_thread: old_value {:?} had {} sleeping threads and {} inactive threads",
155 old_value,
156 old_value.sleeping_threads(),
157 old_value.inactive_threads(),
158 );
159
160 // Current heuristic: whenever an inactive thread goes away, if
161 // there are any sleeping threads, wake 'em up.
162 let sleeping_threads = old_value.sleeping_threads();
163 std::cmp::min(sleeping_threads, 2)
164 }
165
166 /// Subtracts a sleeping thread. This cannot fail, but it is only
167 /// safe to do if you you know the number of sleeping threads is
168 /// non-zero (i.e., because you have just awoken a sleeping
169 /// thread).
170 #[inline]
sub_sleeping_thread(&self)171 pub(super) fn sub_sleeping_thread(&self) {
172 let old_value = Counters::new(self.value.fetch_sub(ONE_SLEEPING, Ordering::SeqCst));
173 debug_assert!(
174 old_value.sleeping_threads() > 0,
175 "sub_sleeping_thread: old_value {:?} had no sleeping threads",
176 old_value,
177 );
178 debug_assert!(
179 old_value.sleeping_threads() <= old_value.inactive_threads(),
180 "sub_sleeping_thread: old_value {:?} had {} sleeping threads and {} inactive threads",
181 old_value,
182 old_value.sleeping_threads(),
183 old_value.inactive_threads(),
184 );
185 }
186
187 #[inline]
try_add_sleeping_thread(&self, old_value: Counters) -> bool188 pub(super) fn try_add_sleeping_thread(&self, old_value: Counters) -> bool {
189 debug_assert!(
190 old_value.inactive_threads() > 0,
191 "try_add_sleeping_thread: old_value {:?} has no inactive threads",
192 old_value,
193 );
194 debug_assert!(
195 old_value.sleeping_threads() < THREADS_MAX,
196 "try_add_sleeping_thread: old_value {:?} has too many sleeping threads",
197 old_value,
198 );
199
200 let mut new_value = old_value;
201 new_value.word += ONE_SLEEPING;
202
203 self.try_exchange(old_value, new_value, Ordering::SeqCst)
204 }
205 }
206
207 #[inline]
select_thread(word: usize, shift: usize) -> usize208 fn select_thread(word: usize, shift: usize) -> usize {
209 ((word >> shift) as usize) & THREADS_MAX
210 }
211
212 #[inline]
select_jec(word: usize) -> usize213 fn select_jec(word: usize) -> usize {
214 (word >> JEC_SHIFT) as usize
215 }
216
217 impl Counters {
218 #[inline]
new(word: usize) -> Counters219 fn new(word: usize) -> Counters {
220 Counters { word }
221 }
222
223 #[inline]
increment_jobs_counter(self) -> Counters224 fn increment_jobs_counter(self) -> Counters {
225 // We can freely add to JEC because it occupies the most significant bits.
226 // Thus it doesn't overflow into the other counters, just wraps itself.
227 Counters {
228 word: self.word.wrapping_add(ONE_JEC),
229 }
230 }
231
232 #[inline]
jobs_counter(self) -> JobsEventCounter233 pub(super) fn jobs_counter(self) -> JobsEventCounter {
234 JobsEventCounter(select_jec(self.word))
235 }
236
237 /// The number of threads that are not actively
238 /// executing work. They may be idle, sleepy, or asleep.
239 #[inline]
inactive_threads(self) -> usize240 pub(super) fn inactive_threads(self) -> usize {
241 select_thread(self.word, INACTIVE_SHIFT)
242 }
243
244 #[inline]
awake_but_idle_threads(self) -> usize245 pub(super) fn awake_but_idle_threads(self) -> usize {
246 debug_assert!(
247 self.sleeping_threads() <= self.inactive_threads(),
248 "sleeping threads: {} > raw idle threads {}",
249 self.sleeping_threads(),
250 self.inactive_threads()
251 );
252 self.inactive_threads() - self.sleeping_threads()
253 }
254
255 #[inline]
sleeping_threads(self) -> usize256 pub(super) fn sleeping_threads(self) -> usize {
257 select_thread(self.word, SLEEPING_SHIFT)
258 }
259 }
260
261 impl std::fmt::Debug for Counters {
fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result262 fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
263 let word = format!("{:016x}", self.word);
264 fmt.debug_struct("Counters")
265 .field("word", &word)
266 .field("jobs", &self.jobs_counter().0)
267 .field("inactive", &self.inactive_threads())
268 .field("sleeping", &self.sleeping_threads())
269 .finish()
270 }
271 }
272