• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright 2006 The WebRTC Project Authors. All rights reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include <math.h>
12 #include <stdint.h>
13 #include <stdlib.h>
14 #include <string.h>
15 #include <time.h>
16 #if defined(WEBRTC_POSIX)
17 #include <netinet/in.h>
18 #endif
19 
20 #include <algorithm>
21 #include <memory>
22 #include <utility>
23 
24 #include "absl/memory/memory.h"
25 #include "rtc_base/arraysize.h"
26 #include "rtc_base/async_packet_socket.h"
27 #include "rtc_base/async_socket.h"
28 #include "rtc_base/async_udp_socket.h"
29 #include "rtc_base/fake_clock.h"
30 #include "rtc_base/gunit.h"
31 #include "rtc_base/ip_address.h"
32 #include "rtc_base/location.h"
33 #include "rtc_base/logging.h"
34 #include "rtc_base/message_handler.h"
35 #include "rtc_base/socket.h"
36 #include "rtc_base/socket_address.h"
37 #include "rtc_base/test_client.h"
38 #include "rtc_base/test_utils.h"
39 #include "rtc_base/third_party/sigslot/sigslot.h"
40 #include "rtc_base/thread.h"
41 #include "rtc_base/time_utils.h"
42 #include "rtc_base/virtual_socket_server.h"
43 #include "test/gtest.h"
44 
45 namespace rtc {
46 namespace {
47 
48 using webrtc::testing::SSE_CLOSE;
49 using webrtc::testing::SSE_ERROR;
50 using webrtc::testing::SSE_OPEN;
51 using webrtc::testing::SSE_READ;
52 using webrtc::testing::SSE_WRITE;
53 using webrtc::testing::StreamSink;
54 
55 // Sends at a constant rate but with random packet sizes.
56 struct Sender : public MessageHandler {
Senderrtc::__anon2d16ee820111::Sender57   Sender(Thread* th, AsyncSocket* s, uint32_t rt)
58       : thread(th),
59         socket(std::make_unique<AsyncUDPSocket>(s)),
60         done(false),
61         rate(rt),
62         count(0) {
63     last_send = rtc::TimeMillis();
64     thread->PostDelayed(RTC_FROM_HERE, NextDelay(), this, 1);
65   }
66 
NextDelayrtc::__anon2d16ee820111::Sender67   uint32_t NextDelay() {
68     uint32_t size = (rand() % 4096) + 1;
69     return 1000 * size / rate;
70   }
71 
OnMessagertc::__anon2d16ee820111::Sender72   void OnMessage(Message* pmsg) override {
73     ASSERT_EQ(1u, pmsg->message_id);
74 
75     if (done)
76       return;
77 
78     int64_t cur_time = rtc::TimeMillis();
79     int64_t delay = cur_time - last_send;
80     uint32_t size = static_cast<uint32_t>(rate * delay / 1000);
81     size = std::min<uint32_t>(size, 4096);
82     size = std::max<uint32_t>(size, sizeof(uint32_t));
83 
84     count += size;
85     memcpy(dummy, &cur_time, sizeof(cur_time));
86     socket->Send(dummy, size, options);
87 
88     last_send = cur_time;
89     thread->PostDelayed(RTC_FROM_HERE, NextDelay(), this, 1);
90   }
91 
92   Thread* thread;
93   std::unique_ptr<AsyncUDPSocket> socket;
94   rtc::PacketOptions options;
95   bool done;
96   uint32_t rate;  // bytes per second
97   uint32_t count;
98   int64_t last_send;
99   char dummy[4096];
100 };
101 
102 struct Receiver : public MessageHandler, public sigslot::has_slots<> {
Receiverrtc::__anon2d16ee820111::Receiver103   Receiver(Thread* th, AsyncSocket* s, uint32_t bw)
104       : thread(th),
105         socket(std::make_unique<AsyncUDPSocket>(s)),
106         bandwidth(bw),
107         done(false),
108         count(0),
109         sec_count(0),
110         sum(0),
111         sum_sq(0),
112         samples(0) {
113     socket->SignalReadPacket.connect(this, &Receiver::OnReadPacket);
114     thread->PostDelayed(RTC_FROM_HERE, 1000, this, 1);
115   }
116 
~Receiverrtc::__anon2d16ee820111::Receiver117   ~Receiver() override { thread->Clear(this); }
118 
OnReadPacketrtc::__anon2d16ee820111::Receiver119   void OnReadPacket(AsyncPacketSocket* s,
120                     const char* data,
121                     size_t size,
122                     const SocketAddress& remote_addr,
123                     const int64_t& /* packet_time_us */) {
124     ASSERT_EQ(socket.get(), s);
125     ASSERT_GE(size, 4U);
126 
127     count += size;
128     sec_count += size;
129 
130     uint32_t send_time = *reinterpret_cast<const uint32_t*>(data);
131     uint32_t recv_time = rtc::TimeMillis();
132     uint32_t delay = recv_time - send_time;
133     sum += delay;
134     sum_sq += delay * delay;
135     samples += 1;
136   }
137 
OnMessagertc::__anon2d16ee820111::Receiver138   void OnMessage(Message* pmsg) override {
139     ASSERT_EQ(1u, pmsg->message_id);
140 
141     if (done)
142       return;
143 
144     // It is always possible for us to receive more than expected because
145     // packets can be further delayed in delivery.
146     if (bandwidth > 0)
147       ASSERT_TRUE(sec_count <= 5 * bandwidth / 4);
148     sec_count = 0;
149     thread->PostDelayed(RTC_FROM_HERE, 1000, this, 1);
150   }
151 
152   Thread* thread;
153   std::unique_ptr<AsyncUDPSocket> socket;
154   uint32_t bandwidth;
155   bool done;
156   size_t count;
157   size_t sec_count;
158   double sum;
159   double sum_sq;
160   uint32_t samples;
161 };
162 
163 // Note: This test uses a fake clock in addition to a virtual network.
164 class VirtualSocketServerTest : public ::testing::Test {
165  public:
VirtualSocketServerTest()166   VirtualSocketServerTest()
167       : ss_(&fake_clock_),
168         thread_(&ss_),
169         kIPv4AnyAddress(IPAddress(INADDR_ANY), 0),
170         kIPv6AnyAddress(IPAddress(in6addr_any), 0) {}
171 
CheckPortIncrementalization(const SocketAddress & post,const SocketAddress & pre)172   void CheckPortIncrementalization(const SocketAddress& post,
173                                    const SocketAddress& pre) {
174     EXPECT_EQ(post.port(), pre.port() + 1);
175     IPAddress post_ip = post.ipaddr();
176     IPAddress pre_ip = pre.ipaddr();
177     EXPECT_EQ(pre_ip.family(), post_ip.family());
178     if (post_ip.family() == AF_INET) {
179       in_addr pre_ipv4 = pre_ip.ipv4_address();
180       in_addr post_ipv4 = post_ip.ipv4_address();
181       EXPECT_EQ(post_ipv4.s_addr, pre_ipv4.s_addr);
182     } else if (post_ip.family() == AF_INET6) {
183       in6_addr post_ip6 = post_ip.ipv6_address();
184       in6_addr pre_ip6 = pre_ip.ipv6_address();
185       uint32_t* post_as_ints = reinterpret_cast<uint32_t*>(&post_ip6.s6_addr);
186       uint32_t* pre_as_ints = reinterpret_cast<uint32_t*>(&pre_ip6.s6_addr);
187       EXPECT_EQ(post_as_ints[3], pre_as_ints[3]);
188     }
189   }
190 
191   // Test a client can bind to the any address, and all sent packets will have
192   // the default route as the source address. Also, it can receive packets sent
193   // to the default route.
TestDefaultRoute(const IPAddress & default_route)194   void TestDefaultRoute(const IPAddress& default_route) {
195     ss_.SetDefaultRoute(default_route);
196 
197     // Create client1 bound to the any address.
198     AsyncSocket* socket =
199         ss_.CreateAsyncSocket(default_route.family(), SOCK_DGRAM);
200     socket->Bind(EmptySocketAddressWithFamily(default_route.family()));
201     SocketAddress client1_any_addr = socket->GetLocalAddress();
202     EXPECT_TRUE(client1_any_addr.IsAnyIP());
203     auto client1 = std::make_unique<TestClient>(
204         std::make_unique<AsyncUDPSocket>(socket), &fake_clock_);
205 
206     // Create client2 bound to the default route.
207     AsyncSocket* socket2 =
208         ss_.CreateAsyncSocket(default_route.family(), SOCK_DGRAM);
209     socket2->Bind(SocketAddress(default_route, 0));
210     SocketAddress client2_addr = socket2->GetLocalAddress();
211     EXPECT_FALSE(client2_addr.IsAnyIP());
212     auto client2 = std::make_unique<TestClient>(
213         std::make_unique<AsyncUDPSocket>(socket2), &fake_clock_);
214 
215     // Client1 sends to client2, client2 should see the default route as
216     // client1's address.
217     SocketAddress client1_addr;
218     EXPECT_EQ(6, client1->SendTo("bizbaz", 6, client2_addr));
219     EXPECT_TRUE(client2->CheckNextPacket("bizbaz", 6, &client1_addr));
220     EXPECT_EQ(client1_addr,
221               SocketAddress(default_route, client1_any_addr.port()));
222 
223     // Client2 can send back to client1's default route address.
224     EXPECT_EQ(3, client2->SendTo("foo", 3, client1_addr));
225     EXPECT_TRUE(client1->CheckNextPacket("foo", 3, &client2_addr));
226   }
227 
BasicTest(const SocketAddress & initial_addr)228   void BasicTest(const SocketAddress& initial_addr) {
229     AsyncSocket* socket =
230         ss_.CreateAsyncSocket(initial_addr.family(), SOCK_DGRAM);
231     socket->Bind(initial_addr);
232     SocketAddress server_addr = socket->GetLocalAddress();
233     // Make sure VSS didn't switch families on us.
234     EXPECT_EQ(server_addr.family(), initial_addr.family());
235 
236     auto client1 = std::make_unique<TestClient>(
237         std::make_unique<AsyncUDPSocket>(socket), &fake_clock_);
238     AsyncSocket* socket2 =
239         ss_.CreateAsyncSocket(initial_addr.family(), SOCK_DGRAM);
240     auto client2 = std::make_unique<TestClient>(
241         std::make_unique<AsyncUDPSocket>(socket2), &fake_clock_);
242 
243     SocketAddress client2_addr;
244     EXPECT_EQ(3, client2->SendTo("foo", 3, server_addr));
245     EXPECT_TRUE(client1->CheckNextPacket("foo", 3, &client2_addr));
246 
247     SocketAddress client1_addr;
248     EXPECT_EQ(6, client1->SendTo("bizbaz", 6, client2_addr));
249     EXPECT_TRUE(client2->CheckNextPacket("bizbaz", 6, &client1_addr));
250     EXPECT_EQ(client1_addr, server_addr);
251 
252     SocketAddress empty = EmptySocketAddressWithFamily(initial_addr.family());
253     for (int i = 0; i < 10; i++) {
254       client2 = std::make_unique<TestClient>(
255           absl::WrapUnique(AsyncUDPSocket::Create(&ss_, empty)), &fake_clock_);
256 
257       SocketAddress next_client2_addr;
258       EXPECT_EQ(3, client2->SendTo("foo", 3, server_addr));
259       EXPECT_TRUE(client1->CheckNextPacket("foo", 3, &next_client2_addr));
260       CheckPortIncrementalization(next_client2_addr, client2_addr);
261       // EXPECT_EQ(next_client2_addr.port(), client2_addr.port() + 1);
262 
263       SocketAddress server_addr2;
264       EXPECT_EQ(6, client1->SendTo("bizbaz", 6, next_client2_addr));
265       EXPECT_TRUE(client2->CheckNextPacket("bizbaz", 6, &server_addr2));
266       EXPECT_EQ(server_addr2, server_addr);
267 
268       client2_addr = next_client2_addr;
269     }
270   }
271 
272   // initial_addr should be made from either INADDR_ANY or in6addr_any.
ConnectTest(const SocketAddress & initial_addr)273   void ConnectTest(const SocketAddress& initial_addr) {
274     StreamSink sink;
275     SocketAddress accept_addr;
276     const SocketAddress kEmptyAddr =
277         EmptySocketAddressWithFamily(initial_addr.family());
278 
279     // Create client
280     std::unique_ptr<AsyncSocket> client = absl::WrapUnique(
281         ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM));
282     sink.Monitor(client.get());
283     EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED);
284     EXPECT_TRUE(client->GetLocalAddress().IsNil());
285 
286     // Create server
287     std::unique_ptr<AsyncSocket> server = absl::WrapUnique(
288         ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM));
289     sink.Monitor(server.get());
290     EXPECT_NE(0, server->Listen(5));  // Bind required
291     EXPECT_EQ(0, server->Bind(initial_addr));
292     EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family());
293     EXPECT_EQ(0, server->Listen(5));
294     EXPECT_EQ(server->GetState(), AsyncSocket::CS_CONNECTING);
295 
296     // No pending server connections
297     EXPECT_FALSE(sink.Check(server.get(), SSE_READ));
298     EXPECT_TRUE(nullptr == server->Accept(&accept_addr));
299     EXPECT_EQ(AF_UNSPEC, accept_addr.family());
300 
301     // Attempt connect to listening socket
302     EXPECT_EQ(0, client->Connect(server->GetLocalAddress()));
303     EXPECT_NE(client->GetLocalAddress(), kEmptyAddr);          // Implicit Bind
304     EXPECT_NE(AF_UNSPEC, client->GetLocalAddress().family());  // Implicit Bind
305     EXPECT_NE(client->GetLocalAddress(), server->GetLocalAddress());
306 
307     // Client is connecting
308     EXPECT_EQ(client->GetState(), AsyncSocket::CS_CONNECTING);
309     EXPECT_FALSE(sink.Check(client.get(), SSE_OPEN));
310     EXPECT_FALSE(sink.Check(client.get(), SSE_CLOSE));
311 
312     ss_.ProcessMessagesUntilIdle();
313 
314     // Client still connecting
315     EXPECT_EQ(client->GetState(), AsyncSocket::CS_CONNECTING);
316     EXPECT_FALSE(sink.Check(client.get(), SSE_OPEN));
317     EXPECT_FALSE(sink.Check(client.get(), SSE_CLOSE));
318 
319     // Server has pending connection
320     EXPECT_TRUE(sink.Check(server.get(), SSE_READ));
321     std::unique_ptr<Socket> accepted =
322         absl::WrapUnique(server->Accept(&accept_addr));
323     EXPECT_TRUE(nullptr != accepted);
324     EXPECT_NE(accept_addr, kEmptyAddr);
325     EXPECT_EQ(accepted->GetRemoteAddress(), accept_addr);
326 
327     EXPECT_EQ(accepted->GetState(), AsyncSocket::CS_CONNECTED);
328     EXPECT_EQ(accepted->GetLocalAddress(), server->GetLocalAddress());
329     EXPECT_EQ(accepted->GetRemoteAddress(), client->GetLocalAddress());
330 
331     ss_.ProcessMessagesUntilIdle();
332 
333     // Client has connected
334     EXPECT_EQ(client->GetState(), AsyncSocket::CS_CONNECTED);
335     EXPECT_TRUE(sink.Check(client.get(), SSE_OPEN));
336     EXPECT_FALSE(sink.Check(client.get(), SSE_CLOSE));
337     EXPECT_EQ(client->GetRemoteAddress(), server->GetLocalAddress());
338     EXPECT_EQ(client->GetRemoteAddress(), accepted->GetLocalAddress());
339   }
340 
ConnectToNonListenerTest(const SocketAddress & initial_addr)341   void ConnectToNonListenerTest(const SocketAddress& initial_addr) {
342     StreamSink sink;
343     SocketAddress accept_addr;
344     const SocketAddress nil_addr;
345     const SocketAddress empty_addr =
346         EmptySocketAddressWithFamily(initial_addr.family());
347 
348     // Create client
349     std::unique_ptr<AsyncSocket> client = absl::WrapUnique(
350         ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM));
351     sink.Monitor(client.get());
352 
353     // Create server
354     std::unique_ptr<AsyncSocket> server = absl::WrapUnique(
355         ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM));
356     sink.Monitor(server.get());
357     EXPECT_EQ(0, server->Bind(initial_addr));
358     EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family());
359     // Attempt connect to non-listening socket
360     EXPECT_EQ(0, client->Connect(server->GetLocalAddress()));
361 
362     ss_.ProcessMessagesUntilIdle();
363 
364     // No pending server connections
365     EXPECT_FALSE(sink.Check(server.get(), SSE_READ));
366     EXPECT_TRUE(nullptr == server->Accept(&accept_addr));
367     EXPECT_EQ(accept_addr, nil_addr);
368 
369     // Connection failed
370     EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED);
371     EXPECT_FALSE(sink.Check(client.get(), SSE_OPEN));
372     EXPECT_TRUE(sink.Check(client.get(), SSE_ERROR));
373     EXPECT_EQ(client->GetRemoteAddress(), nil_addr);
374   }
375 
CloseDuringConnectTest(const SocketAddress & initial_addr)376   void CloseDuringConnectTest(const SocketAddress& initial_addr) {
377     StreamSink sink;
378     SocketAddress accept_addr;
379     const SocketAddress empty_addr =
380         EmptySocketAddressWithFamily(initial_addr.family());
381 
382     // Create client and server
383     std::unique_ptr<AsyncSocket> client(
384         ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM));
385     sink.Monitor(client.get());
386     std::unique_ptr<AsyncSocket> server(
387         ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM));
388     sink.Monitor(server.get());
389 
390     // Initiate connect
391     EXPECT_EQ(0, server->Bind(initial_addr));
392     EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family());
393 
394     EXPECT_EQ(0, server->Listen(5));
395     EXPECT_EQ(0, client->Connect(server->GetLocalAddress()));
396 
397     // Server close before socket enters accept queue
398     EXPECT_FALSE(sink.Check(server.get(), SSE_READ));
399     server->Close();
400 
401     ss_.ProcessMessagesUntilIdle();
402 
403     // Result: connection failed
404     EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED);
405     EXPECT_TRUE(sink.Check(client.get(), SSE_ERROR));
406 
407     server.reset(ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM));
408     sink.Monitor(server.get());
409 
410     // Initiate connect
411     EXPECT_EQ(0, server->Bind(initial_addr));
412     EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family());
413 
414     EXPECT_EQ(0, server->Listen(5));
415     EXPECT_EQ(0, client->Connect(server->GetLocalAddress()));
416 
417     ss_.ProcessMessagesUntilIdle();
418 
419     // Server close while socket is in accept queue
420     EXPECT_TRUE(sink.Check(server.get(), SSE_READ));
421     server->Close();
422 
423     ss_.ProcessMessagesUntilIdle();
424 
425     // Result: connection failed
426     EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED);
427     EXPECT_TRUE(sink.Check(client.get(), SSE_ERROR));
428 
429     // New server
430     server.reset(ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM));
431     sink.Monitor(server.get());
432 
433     // Initiate connect
434     EXPECT_EQ(0, server->Bind(initial_addr));
435     EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family());
436 
437     EXPECT_EQ(0, server->Listen(5));
438     EXPECT_EQ(0, client->Connect(server->GetLocalAddress()));
439 
440     ss_.ProcessMessagesUntilIdle();
441 
442     // Server accepts connection
443     EXPECT_TRUE(sink.Check(server.get(), SSE_READ));
444     std::unique_ptr<AsyncSocket> accepted(server->Accept(&accept_addr));
445     ASSERT_TRUE(nullptr != accepted.get());
446     sink.Monitor(accepted.get());
447 
448     // Client closes before connection complets
449     EXPECT_EQ(accepted->GetState(), AsyncSocket::CS_CONNECTED);
450 
451     // Connected message has not been processed yet.
452     EXPECT_EQ(client->GetState(), AsyncSocket::CS_CONNECTING);
453     client->Close();
454 
455     ss_.ProcessMessagesUntilIdle();
456 
457     // Result: accepted socket closes
458     EXPECT_EQ(accepted->GetState(), AsyncSocket::CS_CLOSED);
459     EXPECT_TRUE(sink.Check(accepted.get(), SSE_CLOSE));
460     EXPECT_FALSE(sink.Check(client.get(), SSE_CLOSE));
461   }
462 
CloseTest(const SocketAddress & initial_addr)463   void CloseTest(const SocketAddress& initial_addr) {
464     StreamSink sink;
465     const SocketAddress kEmptyAddr;
466 
467     // Create clients
468     std::unique_ptr<AsyncSocket> a = absl::WrapUnique(
469         ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM));
470     sink.Monitor(a.get());
471     a->Bind(initial_addr);
472     EXPECT_EQ(a->GetLocalAddress().family(), initial_addr.family());
473 
474     std::unique_ptr<AsyncSocket> b = absl::WrapUnique(
475         ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM));
476     sink.Monitor(b.get());
477     b->Bind(initial_addr);
478     EXPECT_EQ(b->GetLocalAddress().family(), initial_addr.family());
479 
480     EXPECT_EQ(0, a->Connect(b->GetLocalAddress()));
481     EXPECT_EQ(0, b->Connect(a->GetLocalAddress()));
482 
483     ss_.ProcessMessagesUntilIdle();
484 
485     EXPECT_TRUE(sink.Check(a.get(), SSE_OPEN));
486     EXPECT_EQ(a->GetState(), AsyncSocket::CS_CONNECTED);
487     EXPECT_EQ(a->GetRemoteAddress(), b->GetLocalAddress());
488 
489     EXPECT_TRUE(sink.Check(b.get(), SSE_OPEN));
490     EXPECT_EQ(b->GetState(), AsyncSocket::CS_CONNECTED);
491     EXPECT_EQ(b->GetRemoteAddress(), a->GetLocalAddress());
492 
493     EXPECT_EQ(1, a->Send("a", 1));
494     b->Close();
495     EXPECT_EQ(1, a->Send("b", 1));
496 
497     ss_.ProcessMessagesUntilIdle();
498 
499     char buffer[10];
500     EXPECT_FALSE(sink.Check(b.get(), SSE_READ));
501     EXPECT_EQ(-1, b->Recv(buffer, 10, nullptr));
502 
503     EXPECT_TRUE(sink.Check(a.get(), SSE_CLOSE));
504     EXPECT_EQ(a->GetState(), AsyncSocket::CS_CLOSED);
505     EXPECT_EQ(a->GetRemoteAddress(), kEmptyAddr);
506 
507     // No signal for Closer
508     EXPECT_FALSE(sink.Check(b.get(), SSE_CLOSE));
509     EXPECT_EQ(b->GetState(), AsyncSocket::CS_CLOSED);
510     EXPECT_EQ(b->GetRemoteAddress(), kEmptyAddr);
511   }
512 
TcpSendTest(const SocketAddress & initial_addr)513   void TcpSendTest(const SocketAddress& initial_addr) {
514     StreamSink sink;
515     const SocketAddress kEmptyAddr;
516 
517     // Connect two sockets
518     std::unique_ptr<AsyncSocket> a = absl::WrapUnique(
519         ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM));
520     sink.Monitor(a.get());
521     a->Bind(initial_addr);
522     EXPECT_EQ(a->GetLocalAddress().family(), initial_addr.family());
523 
524     std::unique_ptr<AsyncSocket> b = absl::WrapUnique(
525         ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM));
526     sink.Monitor(b.get());
527     b->Bind(initial_addr);
528     EXPECT_EQ(b->GetLocalAddress().family(), initial_addr.family());
529 
530     EXPECT_EQ(0, a->Connect(b->GetLocalAddress()));
531     EXPECT_EQ(0, b->Connect(a->GetLocalAddress()));
532 
533     ss_.ProcessMessagesUntilIdle();
534 
535     const size_t kBufferSize = 2000;
536     ss_.set_send_buffer_capacity(kBufferSize);
537     ss_.set_recv_buffer_capacity(kBufferSize);
538 
539     const size_t kDataSize = 5000;
540     char send_buffer[kDataSize], recv_buffer[kDataSize];
541     for (size_t i = 0; i < kDataSize; ++i)
542       send_buffer[i] = static_cast<char>(i % 256);
543     memset(recv_buffer, 0, sizeof(recv_buffer));
544     size_t send_pos = 0, recv_pos = 0;
545 
546     // Can't send more than send buffer in one write
547     int result = a->Send(send_buffer + send_pos, kDataSize - send_pos);
548     EXPECT_EQ(static_cast<int>(kBufferSize), result);
549     send_pos += result;
550 
551     ss_.ProcessMessagesUntilIdle();
552     EXPECT_FALSE(sink.Check(a.get(), SSE_WRITE));
553     EXPECT_TRUE(sink.Check(b.get(), SSE_READ));
554 
555     // Receive buffer is already filled, fill send buffer again
556     result = a->Send(send_buffer + send_pos, kDataSize - send_pos);
557     EXPECT_EQ(static_cast<int>(kBufferSize), result);
558     send_pos += result;
559 
560     ss_.ProcessMessagesUntilIdle();
561     EXPECT_FALSE(sink.Check(a.get(), SSE_WRITE));
562     EXPECT_FALSE(sink.Check(b.get(), SSE_READ));
563 
564     // No more room in send or receive buffer
565     result = a->Send(send_buffer + send_pos, kDataSize - send_pos);
566     EXPECT_EQ(-1, result);
567     EXPECT_TRUE(a->IsBlocking());
568 
569     // Read a subset of the data
570     result = b->Recv(recv_buffer + recv_pos, 500, nullptr);
571     EXPECT_EQ(500, result);
572     recv_pos += result;
573 
574     ss_.ProcessMessagesUntilIdle();
575     EXPECT_TRUE(sink.Check(a.get(), SSE_WRITE));
576     EXPECT_TRUE(sink.Check(b.get(), SSE_READ));
577 
578     // Room for more on the sending side
579     result = a->Send(send_buffer + send_pos, kDataSize - send_pos);
580     EXPECT_EQ(500, result);
581     send_pos += result;
582 
583     // Empty the recv buffer
584     while (true) {
585       result = b->Recv(recv_buffer + recv_pos, kDataSize - recv_pos, nullptr);
586       if (result < 0) {
587         EXPECT_EQ(-1, result);
588         EXPECT_TRUE(b->IsBlocking());
589         break;
590       }
591       recv_pos += result;
592     }
593 
594     ss_.ProcessMessagesUntilIdle();
595     EXPECT_TRUE(sink.Check(b.get(), SSE_READ));
596 
597     // Continue to empty the recv buffer
598     while (true) {
599       result = b->Recv(recv_buffer + recv_pos, kDataSize - recv_pos, nullptr);
600       if (result < 0) {
601         EXPECT_EQ(-1, result);
602         EXPECT_TRUE(b->IsBlocking());
603         break;
604       }
605       recv_pos += result;
606     }
607 
608     // Send last of the data
609     result = a->Send(send_buffer + send_pos, kDataSize - send_pos);
610     EXPECT_EQ(500, result);
611     send_pos += result;
612 
613     ss_.ProcessMessagesUntilIdle();
614     EXPECT_TRUE(sink.Check(b.get(), SSE_READ));
615 
616     // Receive the last of the data
617     while (true) {
618       result = b->Recv(recv_buffer + recv_pos, kDataSize - recv_pos, nullptr);
619       if (result < 0) {
620         EXPECT_EQ(-1, result);
621         EXPECT_TRUE(b->IsBlocking());
622         break;
623       }
624       recv_pos += result;
625     }
626 
627     ss_.ProcessMessagesUntilIdle();
628     EXPECT_FALSE(sink.Check(b.get(), SSE_READ));
629 
630     // The received data matches the sent data
631     EXPECT_EQ(kDataSize, send_pos);
632     EXPECT_EQ(kDataSize, recv_pos);
633     EXPECT_EQ(0, memcmp(recv_buffer, send_buffer, kDataSize));
634   }
635 
TcpSendsPacketsInOrderTest(const SocketAddress & initial_addr)636   void TcpSendsPacketsInOrderTest(const SocketAddress& initial_addr) {
637     const SocketAddress kEmptyAddr;
638 
639     // Connect two sockets
640     std::unique_ptr<AsyncSocket> a = absl::WrapUnique(
641         ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM));
642     std::unique_ptr<AsyncSocket> b = absl::WrapUnique(
643         ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM));
644     a->Bind(initial_addr);
645     EXPECT_EQ(a->GetLocalAddress().family(), initial_addr.family());
646 
647     b->Bind(initial_addr);
648     EXPECT_EQ(b->GetLocalAddress().family(), initial_addr.family());
649 
650     EXPECT_EQ(0, a->Connect(b->GetLocalAddress()));
651     EXPECT_EQ(0, b->Connect(a->GetLocalAddress()));
652     ss_.ProcessMessagesUntilIdle();
653 
654     // First, deliver all packets in 0 ms.
655     char buffer[2] = {0, 0};
656     const char cNumPackets = 10;
657     for (char i = 0; i < cNumPackets; ++i) {
658       buffer[0] = '0' + i;
659       EXPECT_EQ(1, a->Send(buffer, 1));
660     }
661 
662     ss_.ProcessMessagesUntilIdle();
663 
664     for (char i = 0; i < cNumPackets; ++i) {
665       EXPECT_EQ(1, b->Recv(buffer, sizeof(buffer), nullptr));
666       EXPECT_EQ(static_cast<char>('0' + i), buffer[0]);
667     }
668 
669     // Next, deliver packets at random intervals
670     const uint32_t mean = 50;
671     const uint32_t stddev = 50;
672 
673     ss_.set_delay_mean(mean);
674     ss_.set_delay_stddev(stddev);
675     ss_.UpdateDelayDistribution();
676 
677     for (char i = 0; i < cNumPackets; ++i) {
678       buffer[0] = 'A' + i;
679       EXPECT_EQ(1, a->Send(buffer, 1));
680     }
681 
682     ss_.ProcessMessagesUntilIdle();
683 
684     for (char i = 0; i < cNumPackets; ++i) {
685       EXPECT_EQ(1, b->Recv(buffer, sizeof(buffer), nullptr));
686       EXPECT_EQ(static_cast<char>('A' + i), buffer[0]);
687     }
688   }
689 
690   // It is important that initial_addr's port has to be 0 such that the
691   // incremental port behavior could ensure the 2 Binds result in different
692   // address.
BandwidthTest(const SocketAddress & initial_addr)693   void BandwidthTest(const SocketAddress& initial_addr) {
694     AsyncSocket* send_socket =
695         ss_.CreateAsyncSocket(initial_addr.family(), SOCK_DGRAM);
696     AsyncSocket* recv_socket =
697         ss_.CreateAsyncSocket(initial_addr.family(), SOCK_DGRAM);
698     ASSERT_EQ(0, send_socket->Bind(initial_addr));
699     ASSERT_EQ(0, recv_socket->Bind(initial_addr));
700     EXPECT_EQ(send_socket->GetLocalAddress().family(), initial_addr.family());
701     EXPECT_EQ(recv_socket->GetLocalAddress().family(), initial_addr.family());
702     ASSERT_EQ(0, send_socket->Connect(recv_socket->GetLocalAddress()));
703 
704     uint32_t bandwidth = 64 * 1024;
705     ss_.set_bandwidth(bandwidth);
706 
707     Thread* pthMain = Thread::Current();
708     Sender sender(pthMain, send_socket, 80 * 1024);
709     Receiver receiver(pthMain, recv_socket, bandwidth);
710 
711     // Allow the sender to run for 5 (simulated) seconds, then be stopped for 5
712     // seconds.
713     SIMULATED_WAIT(false, 5000, fake_clock_);
714     sender.done = true;
715     SIMULATED_WAIT(false, 5000, fake_clock_);
716 
717     // Ensure the observed bandwidth fell within a reasonable margin of error.
718     EXPECT_TRUE(receiver.count >= 5 * 3 * bandwidth / 4);
719     EXPECT_TRUE(receiver.count <= 6 * bandwidth);  // queue could drain for 1s
720 
721     ss_.set_bandwidth(0);
722   }
723 
724   // It is important that initial_addr's port has to be 0 such that the
725   // incremental port behavior could ensure the 2 Binds result in different
726   // address.
DelayTest(const SocketAddress & initial_addr)727   void DelayTest(const SocketAddress& initial_addr) {
728     time_t seed = ::time(nullptr);
729     RTC_LOG(LS_VERBOSE) << "seed = " << seed;
730     srand(static_cast<unsigned int>(seed));
731 
732     const uint32_t mean = 2000;
733     const uint32_t stddev = 500;
734 
735     ss_.set_delay_mean(mean);
736     ss_.set_delay_stddev(stddev);
737     ss_.UpdateDelayDistribution();
738 
739     AsyncSocket* send_socket =
740         ss_.CreateAsyncSocket(initial_addr.family(), SOCK_DGRAM);
741     AsyncSocket* recv_socket =
742         ss_.CreateAsyncSocket(initial_addr.family(), SOCK_DGRAM);
743     ASSERT_EQ(0, send_socket->Bind(initial_addr));
744     ASSERT_EQ(0, recv_socket->Bind(initial_addr));
745     EXPECT_EQ(send_socket->GetLocalAddress().family(), initial_addr.family());
746     EXPECT_EQ(recv_socket->GetLocalAddress().family(), initial_addr.family());
747     ASSERT_EQ(0, send_socket->Connect(recv_socket->GetLocalAddress()));
748 
749     Thread* pthMain = Thread::Current();
750     // Avg packet size is 2K, so at 200KB/s for 10s, we should see about
751     // 1000 packets, which is necessary to get a good distribution.
752     Sender sender(pthMain, send_socket, 100 * 2 * 1024);
753     Receiver receiver(pthMain, recv_socket, 0);
754 
755     // Simulate 10 seconds of packets being sent, then check the observed delay
756     // distribution.
757     SIMULATED_WAIT(false, 10000, fake_clock_);
758     sender.done = receiver.done = true;
759     ss_.ProcessMessagesUntilIdle();
760 
761     const double sample_mean = receiver.sum / receiver.samples;
762     double num =
763         receiver.samples * receiver.sum_sq - receiver.sum * receiver.sum;
764     double den = receiver.samples * (receiver.samples - 1);
765     const double sample_stddev = sqrt(num / den);
766     RTC_LOG(LS_VERBOSE) << "mean=" << sample_mean
767                         << " stddev=" << sample_stddev;
768 
769     EXPECT_LE(500u, receiver.samples);
770     // We initially used a 0.1 fudge factor, but on the build machine, we
771     // have seen the value differ by as much as 0.13.
772     EXPECT_NEAR(mean, sample_mean, 0.15 * mean);
773     EXPECT_NEAR(stddev, sample_stddev, 0.15 * stddev);
774 
775     ss_.set_delay_mean(0);
776     ss_.set_delay_stddev(0);
777     ss_.UpdateDelayDistribution();
778   }
779 
780   // Test cross-family communication between a client bound to client_addr and a
781   // server bound to server_addr. shouldSucceed indicates if communication is
782   // expected to work or not.
CrossFamilyConnectionTest(const SocketAddress & client_addr,const SocketAddress & server_addr,bool shouldSucceed)783   void CrossFamilyConnectionTest(const SocketAddress& client_addr,
784                                  const SocketAddress& server_addr,
785                                  bool shouldSucceed) {
786     StreamSink sink;
787     SocketAddress accept_address;
788     const SocketAddress kEmptyAddr;
789 
790     // Client gets a IPv4 address
791     std::unique_ptr<AsyncSocket> client = absl::WrapUnique(
792         ss_.CreateAsyncSocket(client_addr.family(), SOCK_STREAM));
793     sink.Monitor(client.get());
794     EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED);
795     EXPECT_EQ(client->GetLocalAddress(), kEmptyAddr);
796     client->Bind(client_addr);
797 
798     // Server gets a non-mapped non-any IPv6 address.
799     // IPv4 sockets should not be able to connect to this.
800     std::unique_ptr<AsyncSocket> server = absl::WrapUnique(
801         ss_.CreateAsyncSocket(server_addr.family(), SOCK_STREAM));
802     sink.Monitor(server.get());
803     server->Bind(server_addr);
804     server->Listen(5);
805 
806     if (shouldSucceed) {
807       EXPECT_EQ(0, client->Connect(server->GetLocalAddress()));
808       ss_.ProcessMessagesUntilIdle();
809       EXPECT_TRUE(sink.Check(server.get(), SSE_READ));
810       std::unique_ptr<Socket> accepted =
811           absl::WrapUnique(server->Accept(&accept_address));
812       EXPECT_TRUE(nullptr != accepted);
813       EXPECT_NE(kEmptyAddr, accept_address);
814       ss_.ProcessMessagesUntilIdle();
815       EXPECT_TRUE(sink.Check(client.get(), SSE_OPEN));
816       EXPECT_EQ(client->GetRemoteAddress(), server->GetLocalAddress());
817     } else {
818       // Check that the connection failed.
819       EXPECT_EQ(-1, client->Connect(server->GetLocalAddress()));
820       ss_.ProcessMessagesUntilIdle();
821 
822       EXPECT_FALSE(sink.Check(server.get(), SSE_READ));
823       EXPECT_TRUE(nullptr == server->Accept(&accept_address));
824       EXPECT_EQ(accept_address, kEmptyAddr);
825       EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED);
826       EXPECT_FALSE(sink.Check(client.get(), SSE_OPEN));
827       EXPECT_EQ(client->GetRemoteAddress(), kEmptyAddr);
828     }
829   }
830 
831   // Test cross-family datagram sending between a client bound to client_addr
832   // and a server bound to server_addr. shouldSucceed indicates if sending is
833   // expected to succeed or not.
CrossFamilyDatagramTest(const SocketAddress & client_addr,const SocketAddress & server_addr,bool shouldSucceed)834   void CrossFamilyDatagramTest(const SocketAddress& client_addr,
835                                const SocketAddress& server_addr,
836                                bool shouldSucceed) {
837     AsyncSocket* socket = ss_.CreateAsyncSocket(AF_INET, SOCK_DGRAM);
838     socket->Bind(server_addr);
839     SocketAddress bound_server_addr = socket->GetLocalAddress();
840     auto client1 = std::make_unique<TestClient>(
841         std::make_unique<AsyncUDPSocket>(socket), &fake_clock_);
842 
843     AsyncSocket* socket2 = ss_.CreateAsyncSocket(AF_INET, SOCK_DGRAM);
844     socket2->Bind(client_addr);
845     auto client2 = std::make_unique<TestClient>(
846         std::make_unique<AsyncUDPSocket>(socket2), &fake_clock_);
847     SocketAddress client2_addr;
848 
849     if (shouldSucceed) {
850       EXPECT_EQ(3, client2->SendTo("foo", 3, bound_server_addr));
851       EXPECT_TRUE(client1->CheckNextPacket("foo", 3, &client2_addr));
852       SocketAddress client1_addr;
853       EXPECT_EQ(6, client1->SendTo("bizbaz", 6, client2_addr));
854       EXPECT_TRUE(client2->CheckNextPacket("bizbaz", 6, &client1_addr));
855       EXPECT_EQ(client1_addr, bound_server_addr);
856     } else {
857       EXPECT_EQ(-1, client2->SendTo("foo", 3, bound_server_addr));
858       EXPECT_TRUE(client1->CheckNoPacket());
859     }
860   }
861 
862  protected:
863   rtc::ScopedFakeClock fake_clock_;
864   VirtualSocketServer ss_;
865   AutoSocketServerThread thread_;
866   const SocketAddress kIPv4AnyAddress;
867   const SocketAddress kIPv6AnyAddress;
868 };
869 
TEST_F(VirtualSocketServerTest,basic_v4)870 TEST_F(VirtualSocketServerTest, basic_v4) {
871   SocketAddress ipv4_test_addr(IPAddress(INADDR_ANY), 5000);
872   BasicTest(ipv4_test_addr);
873 }
874 
TEST_F(VirtualSocketServerTest,basic_v6)875 TEST_F(VirtualSocketServerTest, basic_v6) {
876   SocketAddress ipv6_test_addr(IPAddress(in6addr_any), 5000);
877   BasicTest(ipv6_test_addr);
878 }
879 
TEST_F(VirtualSocketServerTest,TestDefaultRoute_v4)880 TEST_F(VirtualSocketServerTest, TestDefaultRoute_v4) {
881   IPAddress ipv4_default_addr(0x01020304);
882   TestDefaultRoute(ipv4_default_addr);
883 }
884 
TEST_F(VirtualSocketServerTest,TestDefaultRoute_v6)885 TEST_F(VirtualSocketServerTest, TestDefaultRoute_v6) {
886   IPAddress ipv6_default_addr;
887   EXPECT_TRUE(
888       IPFromString("2401:fa00:4:1000:be30:5bff:fee5:c3", &ipv6_default_addr));
889   TestDefaultRoute(ipv6_default_addr);
890 }
891 
TEST_F(VirtualSocketServerTest,connect_v4)892 TEST_F(VirtualSocketServerTest, connect_v4) {
893   ConnectTest(kIPv4AnyAddress);
894 }
895 
TEST_F(VirtualSocketServerTest,connect_v6)896 TEST_F(VirtualSocketServerTest, connect_v6) {
897   ConnectTest(kIPv6AnyAddress);
898 }
899 
TEST_F(VirtualSocketServerTest,connect_to_non_listener_v4)900 TEST_F(VirtualSocketServerTest, connect_to_non_listener_v4) {
901   ConnectToNonListenerTest(kIPv4AnyAddress);
902 }
903 
TEST_F(VirtualSocketServerTest,connect_to_non_listener_v6)904 TEST_F(VirtualSocketServerTest, connect_to_non_listener_v6) {
905   ConnectToNonListenerTest(kIPv6AnyAddress);
906 }
907 
TEST_F(VirtualSocketServerTest,close_during_connect_v4)908 TEST_F(VirtualSocketServerTest, close_during_connect_v4) {
909   CloseDuringConnectTest(kIPv4AnyAddress);
910 }
911 
TEST_F(VirtualSocketServerTest,close_during_connect_v6)912 TEST_F(VirtualSocketServerTest, close_during_connect_v6) {
913   CloseDuringConnectTest(kIPv6AnyAddress);
914 }
915 
TEST_F(VirtualSocketServerTest,close_v4)916 TEST_F(VirtualSocketServerTest, close_v4) {
917   CloseTest(kIPv4AnyAddress);
918 }
919 
TEST_F(VirtualSocketServerTest,close_v6)920 TEST_F(VirtualSocketServerTest, close_v6) {
921   CloseTest(kIPv6AnyAddress);
922 }
923 
TEST_F(VirtualSocketServerTest,tcp_send_v4)924 TEST_F(VirtualSocketServerTest, tcp_send_v4) {
925   TcpSendTest(kIPv4AnyAddress);
926 }
927 
TEST_F(VirtualSocketServerTest,tcp_send_v6)928 TEST_F(VirtualSocketServerTest, tcp_send_v6) {
929   TcpSendTest(kIPv6AnyAddress);
930 }
931 
TEST_F(VirtualSocketServerTest,TcpSendsPacketsInOrder_v4)932 TEST_F(VirtualSocketServerTest, TcpSendsPacketsInOrder_v4) {
933   TcpSendsPacketsInOrderTest(kIPv4AnyAddress);
934 }
935 
TEST_F(VirtualSocketServerTest,TcpSendsPacketsInOrder_v6)936 TEST_F(VirtualSocketServerTest, TcpSendsPacketsInOrder_v6) {
937   TcpSendsPacketsInOrderTest(kIPv6AnyAddress);
938 }
939 
TEST_F(VirtualSocketServerTest,bandwidth_v4)940 TEST_F(VirtualSocketServerTest, bandwidth_v4) {
941   BandwidthTest(kIPv4AnyAddress);
942 }
943 
TEST_F(VirtualSocketServerTest,bandwidth_v6)944 TEST_F(VirtualSocketServerTest, bandwidth_v6) {
945   BandwidthTest(kIPv6AnyAddress);
946 }
947 
TEST_F(VirtualSocketServerTest,delay_v4)948 TEST_F(VirtualSocketServerTest, delay_v4) {
949   DelayTest(kIPv4AnyAddress);
950 }
951 
TEST_F(VirtualSocketServerTest,delay_v6)952 TEST_F(VirtualSocketServerTest, delay_v6) {
953   DelayTest(kIPv6AnyAddress);
954 }
955 
956 // Works, receiving socket sees 127.0.0.2.
TEST_F(VirtualSocketServerTest,CanConnectFromMappedIPv6ToIPv4Any)957 TEST_F(VirtualSocketServerTest, CanConnectFromMappedIPv6ToIPv4Any) {
958   CrossFamilyConnectionTest(SocketAddress("::ffff:127.0.0.2", 0),
959                             SocketAddress("0.0.0.0", 5000), true);
960 }
961 
962 // Fails.
TEST_F(VirtualSocketServerTest,CantConnectFromUnMappedIPv6ToIPv4Any)963 TEST_F(VirtualSocketServerTest, CantConnectFromUnMappedIPv6ToIPv4Any) {
964   CrossFamilyConnectionTest(SocketAddress("::2", 0),
965                             SocketAddress("0.0.0.0", 5000), false);
966 }
967 
968 // Fails.
TEST_F(VirtualSocketServerTest,CantConnectFromUnMappedIPv6ToMappedIPv6)969 TEST_F(VirtualSocketServerTest, CantConnectFromUnMappedIPv6ToMappedIPv6) {
970   CrossFamilyConnectionTest(SocketAddress("::2", 0),
971                             SocketAddress("::ffff:127.0.0.1", 5000), false);
972 }
973 
974 // Works. receiving socket sees ::ffff:127.0.0.2.
TEST_F(VirtualSocketServerTest,CanConnectFromIPv4ToIPv6Any)975 TEST_F(VirtualSocketServerTest, CanConnectFromIPv4ToIPv6Any) {
976   CrossFamilyConnectionTest(SocketAddress("127.0.0.2", 0),
977                             SocketAddress("::", 5000), true);
978 }
979 
980 // Fails.
TEST_F(VirtualSocketServerTest,CantConnectFromIPv4ToUnMappedIPv6)981 TEST_F(VirtualSocketServerTest, CantConnectFromIPv4ToUnMappedIPv6) {
982   CrossFamilyConnectionTest(SocketAddress("127.0.0.2", 0),
983                             SocketAddress("::1", 5000), false);
984 }
985 
986 // Works. Receiving socket sees ::ffff:127.0.0.1.
TEST_F(VirtualSocketServerTest,CanConnectFromIPv4ToMappedIPv6)987 TEST_F(VirtualSocketServerTest, CanConnectFromIPv4ToMappedIPv6) {
988   CrossFamilyConnectionTest(SocketAddress("127.0.0.1", 0),
989                             SocketAddress("::ffff:127.0.0.2", 5000), true);
990 }
991 
992 // Works, receiving socket sees a result from GetNextIP.
TEST_F(VirtualSocketServerTest,CanConnectFromUnboundIPv6ToIPv4Any)993 TEST_F(VirtualSocketServerTest, CanConnectFromUnboundIPv6ToIPv4Any) {
994   CrossFamilyConnectionTest(SocketAddress("::", 0),
995                             SocketAddress("0.0.0.0", 5000), true);
996 }
997 
998 // Works, receiving socket sees whatever GetNextIP gave the client.
TEST_F(VirtualSocketServerTest,CanConnectFromUnboundIPv4ToIPv6Any)999 TEST_F(VirtualSocketServerTest, CanConnectFromUnboundIPv4ToIPv6Any) {
1000   CrossFamilyConnectionTest(SocketAddress("0.0.0.0", 0),
1001                             SocketAddress("::", 5000), true);
1002 }
1003 
TEST_F(VirtualSocketServerTest,CanSendDatagramFromUnboundIPv4ToIPv6Any)1004 TEST_F(VirtualSocketServerTest, CanSendDatagramFromUnboundIPv4ToIPv6Any) {
1005   CrossFamilyDatagramTest(SocketAddress("0.0.0.0", 0),
1006                           SocketAddress("::", 5000), true);
1007 }
1008 
TEST_F(VirtualSocketServerTest,CanSendDatagramFromMappedIPv6ToIPv4Any)1009 TEST_F(VirtualSocketServerTest, CanSendDatagramFromMappedIPv6ToIPv4Any) {
1010   CrossFamilyDatagramTest(SocketAddress("::ffff:127.0.0.1", 0),
1011                           SocketAddress("0.0.0.0", 5000), true);
1012 }
1013 
TEST_F(VirtualSocketServerTest,CantSendDatagramFromUnMappedIPv6ToIPv4Any)1014 TEST_F(VirtualSocketServerTest, CantSendDatagramFromUnMappedIPv6ToIPv4Any) {
1015   CrossFamilyDatagramTest(SocketAddress("::2", 0),
1016                           SocketAddress("0.0.0.0", 5000), false);
1017 }
1018 
TEST_F(VirtualSocketServerTest,CantSendDatagramFromUnMappedIPv6ToMappedIPv6)1019 TEST_F(VirtualSocketServerTest, CantSendDatagramFromUnMappedIPv6ToMappedIPv6) {
1020   CrossFamilyDatagramTest(SocketAddress("::2", 0),
1021                           SocketAddress("::ffff:127.0.0.1", 5000), false);
1022 }
1023 
TEST_F(VirtualSocketServerTest,CanSendDatagramFromIPv4ToIPv6Any)1024 TEST_F(VirtualSocketServerTest, CanSendDatagramFromIPv4ToIPv6Any) {
1025   CrossFamilyDatagramTest(SocketAddress("127.0.0.2", 0),
1026                           SocketAddress("::", 5000), true);
1027 }
1028 
TEST_F(VirtualSocketServerTest,CantSendDatagramFromIPv4ToUnMappedIPv6)1029 TEST_F(VirtualSocketServerTest, CantSendDatagramFromIPv4ToUnMappedIPv6) {
1030   CrossFamilyDatagramTest(SocketAddress("127.0.0.2", 0),
1031                           SocketAddress("::1", 5000), false);
1032 }
1033 
TEST_F(VirtualSocketServerTest,CanSendDatagramFromIPv4ToMappedIPv6)1034 TEST_F(VirtualSocketServerTest, CanSendDatagramFromIPv4ToMappedIPv6) {
1035   CrossFamilyDatagramTest(SocketAddress("127.0.0.1", 0),
1036                           SocketAddress("::ffff:127.0.0.2", 5000), true);
1037 }
1038 
TEST_F(VirtualSocketServerTest,CanSendDatagramFromUnboundIPv6ToIPv4Any)1039 TEST_F(VirtualSocketServerTest, CanSendDatagramFromUnboundIPv6ToIPv4Any) {
1040   CrossFamilyDatagramTest(SocketAddress("::", 0),
1041                           SocketAddress("0.0.0.0", 5000), true);
1042 }
1043 
TEST_F(VirtualSocketServerTest,SetSendingBlockedWithUdpSocket)1044 TEST_F(VirtualSocketServerTest, SetSendingBlockedWithUdpSocket) {
1045   AsyncSocket* socket1 =
1046       ss_.CreateAsyncSocket(kIPv4AnyAddress.family(), SOCK_DGRAM);
1047   std::unique_ptr<AsyncSocket> socket2 = absl::WrapUnique(
1048       ss_.CreateAsyncSocket(kIPv4AnyAddress.family(), SOCK_DGRAM));
1049   socket1->Bind(kIPv4AnyAddress);
1050   socket2->Bind(kIPv4AnyAddress);
1051   auto client1 = std::make_unique<TestClient>(
1052       std::make_unique<AsyncUDPSocket>(socket1), &fake_clock_);
1053 
1054   ss_.SetSendingBlocked(true);
1055   EXPECT_EQ(-1, client1->SendTo("foo", 3, socket2->GetLocalAddress()));
1056   EXPECT_TRUE(socket1->IsBlocking());
1057   EXPECT_EQ(0, client1->ready_to_send_count());
1058 
1059   ss_.SetSendingBlocked(false);
1060   EXPECT_EQ(1, client1->ready_to_send_count());
1061   EXPECT_EQ(3, client1->SendTo("foo", 3, socket2->GetLocalAddress()));
1062 }
1063 
TEST_F(VirtualSocketServerTest,SetSendingBlockedWithTcpSocket)1064 TEST_F(VirtualSocketServerTest, SetSendingBlockedWithTcpSocket) {
1065   constexpr size_t kBufferSize = 1024;
1066   ss_.set_send_buffer_capacity(kBufferSize);
1067   ss_.set_recv_buffer_capacity(kBufferSize);
1068 
1069   StreamSink sink;
1070   std::unique_ptr<AsyncSocket> socket1 = absl::WrapUnique(
1071       ss_.CreateAsyncSocket(kIPv4AnyAddress.family(), SOCK_STREAM));
1072   std::unique_ptr<AsyncSocket> socket2 = absl::WrapUnique(
1073       ss_.CreateAsyncSocket(kIPv4AnyAddress.family(), SOCK_STREAM));
1074   sink.Monitor(socket1.get());
1075   sink.Monitor(socket2.get());
1076   socket1->Bind(kIPv4AnyAddress);
1077   socket2->Bind(kIPv4AnyAddress);
1078 
1079   // Connect sockets.
1080   EXPECT_EQ(0, socket1->Connect(socket2->GetLocalAddress()));
1081   EXPECT_EQ(0, socket2->Connect(socket1->GetLocalAddress()));
1082   ss_.ProcessMessagesUntilIdle();
1083 
1084   char data[kBufferSize] = {};
1085 
1086   // First Send call will fill the send buffer but not send anything.
1087   ss_.SetSendingBlocked(true);
1088   EXPECT_EQ(static_cast<int>(kBufferSize), socket1->Send(data, kBufferSize));
1089   ss_.ProcessMessagesUntilIdle();
1090   EXPECT_FALSE(sink.Check(socket1.get(), SSE_WRITE));
1091   EXPECT_FALSE(sink.Check(socket2.get(), SSE_READ));
1092   EXPECT_FALSE(socket1->IsBlocking());
1093 
1094   // Since the send buffer is full, next Send will result in EWOULDBLOCK.
1095   EXPECT_EQ(-1, socket1->Send(data, kBufferSize));
1096   EXPECT_FALSE(sink.Check(socket1.get(), SSE_WRITE));
1097   EXPECT_FALSE(sink.Check(socket2.get(), SSE_READ));
1098   EXPECT_TRUE(socket1->IsBlocking());
1099 
1100   // When sending is unblocked, the buffered data should be sent and
1101   // SignalWriteEvent should fire.
1102   ss_.SetSendingBlocked(false);
1103   ss_.ProcessMessagesUntilIdle();
1104   EXPECT_TRUE(sink.Check(socket1.get(), SSE_WRITE));
1105   EXPECT_TRUE(sink.Check(socket2.get(), SSE_READ));
1106 }
1107 
TEST_F(VirtualSocketServerTest,CreatesStandardDistribution)1108 TEST_F(VirtualSocketServerTest, CreatesStandardDistribution) {
1109   const uint32_t kTestMean[] = {10, 100, 333, 1000};
1110   const double kTestDev[] = {0.25, 0.1, 0.01};
1111   // TODO(deadbeef): The current code only works for 1000 data points or more.
1112   const uint32_t kTestSamples[] = {/*10, 100,*/ 1000};
1113   for (size_t midx = 0; midx < arraysize(kTestMean); ++midx) {
1114     for (size_t didx = 0; didx < arraysize(kTestDev); ++didx) {
1115       for (size_t sidx = 0; sidx < arraysize(kTestSamples); ++sidx) {
1116         ASSERT_LT(0u, kTestSamples[sidx]);
1117         const uint32_t kStdDev =
1118             static_cast<uint32_t>(kTestDev[didx] * kTestMean[midx]);
1119         VirtualSocketServer::Function* f =
1120             VirtualSocketServer::CreateDistribution(kTestMean[midx], kStdDev,
1121                                                     kTestSamples[sidx]);
1122         ASSERT_TRUE(nullptr != f);
1123         ASSERT_EQ(kTestSamples[sidx], f->size());
1124         double sum = 0;
1125         for (uint32_t i = 0; i < f->size(); ++i) {
1126           sum += (*f)[i].second;
1127         }
1128         const double mean = sum / f->size();
1129         double sum_sq_dev = 0;
1130         for (uint32_t i = 0; i < f->size(); ++i) {
1131           double dev = (*f)[i].second - mean;
1132           sum_sq_dev += dev * dev;
1133         }
1134         const double stddev = sqrt(sum_sq_dev / f->size());
1135         EXPECT_NEAR(kTestMean[midx], mean, 0.1 * kTestMean[midx])
1136             << "M=" << kTestMean[midx] << " SD=" << kStdDev
1137             << " N=" << kTestSamples[sidx];
1138         EXPECT_NEAR(kStdDev, stddev, 0.1 * kStdDev)
1139             << "M=" << kTestMean[midx] << " SD=" << kStdDev
1140             << " N=" << kTestSamples[sidx];
1141         delete f;
1142       }
1143     }
1144   }
1145 }
1146 
1147 }  // namespace
1148 }  // namespace rtc
1149