• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2016 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7 http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 // A tensor bundle is a set of immutable persistent files storing a set of named
17 // tensors.  It is designed for checkpointing TensorFlow tensors.
18 //
19 // The paths of the managed files share a common prefix; e.g., with the prefix:
20 //   /fs/model/train/ckpt-step/ckpt
21 //
22 // the bundle may contain a metadata file, and sharded data files:
23 //   /fs/model/train/ckpt-step/
24 //       ckpt.index
25 //       ckpt.data-00000-of-00020
26 //       ckpt.data-00001-of-00020
27 //       ...
28 //       ckpt.data-00019-of-00020
29 //
30 // The ".index" file is a string-string immutable table
31 // (tensorflow::table::Table).  Each key is a name of a tensor and its value is
32 // a serialized BundleEntryProto.  Each BundleEntryProto describes the metadata
33 // of a tensor: which of the "data" files contains the content of a tensor, the
34 // offset into that file, checksum, some auxiliary data, etc.
35 //
36 // A tensor bundle can be accessed randomly using a BundleReader.  Usage:
37 //
38 //   BundleReader reader(env, "/fs/model/train/ckpt-step/ckpt");
39 //   reader.Lookup("name", &tensor);
40 //
41 // A tensor bundle can be built using BundleWriter.  Each BundleWriter builds a
42 // single data file bundle.  Multiple bundles can then be merged by
43 // MergeBundles() without reading and writing large chunk of data: it reads the
44 // metadata files and outputs a single merged metadata.  Typical usage:
45 //
46 //   worker 0:
47 //     BundleWriter writer(env, "/fs/model/train/ckpt-step/tmp/worker0-step");
48 //     writer.Add(...);  // Adds the tensors on this worker.
49 //     writer.Finish();  // Flushes.
50 //   worker 1:
51 //     BundleWriter writer(env, "/fs/model/train/ckpt-step/tmp/worker1-step");
52 //     writer.Add(...);
53 //     writer.Finish();
54 //   worker 2:
55 //     MergeBundles(env,
56 //       {"/fs/model/train/ckpt-step/tmp/worker0-step",
57 //        "/fs/model/train/ckpt-step/tmp/worker1-step"},
58 //       "/fs/model/train/ckpt-step/ckpt" /* merged prefix */);
59 //
60 
61 #ifndef TENSORFLOW_CORE_UTIL_TENSOR_BUNDLE_TENSOR_BUNDLE_H_
62 #define TENSORFLOW_CORE_UTIL_TENSOR_BUNDLE_TENSOR_BUNDLE_H_
63 
64 #include <map>
65 #include <string>
66 #include <unordered_map>
67 
68 #include "tensorflow/core/framework/tensor.h"
69 #include "tensorflow/core/framework/tensor_shape.h"
70 #include "tensorflow/core/framework/tensor_slice.h"
71 #include "tensorflow/core/lib/core/status.h"
72 #include "tensorflow/core/lib/gtl/array_slice.h"
73 #include "tensorflow/core/lib/io/cache.h"
74 #include "tensorflow/core/lib/io/inputbuffer.h"
75 #include "tensorflow/core/lib/io/table.h"
76 #include "tensorflow/core/platform/env.h"
77 #include "tensorflow/core/platform/file_system.h"
78 #include "tensorflow/core/platform/macros.h"
79 #include "tensorflow/core/platform/types.h"
80 #include "tensorflow/core/protobuf/tensor_bundle.pb.h"
81 #include "tensorflow/core/util/tensor_bundle/naming.h"
82 #include "tensorflow/core/util/tensor_slice_set.h"
83 
84 namespace tensorflow {
85 
86 class FileOutputBuffer;
87 
88 // Versioning of the tensor bundle format.
89 // Follows the same rules as 3p/tf/core/public/version.h.
90 //
91 // History:
92 // 0. Any tensor bundles produced before this field was added.
93 // 1. Added this field (2016-09-14).
94 extern const int kTensorBundleMinProducer;
95 extern const int kTensorBundleMinConsumer;
96 extern const int kTensorBundleVersion;
97 
98 // The empty string, hence always the first key in the metadata table.  Its
99 // corresponding value is a BundleHeaderProto.
100 extern const char* const kHeaderEntryKey;
101 
102 // Builds a string-string table of tensor names to BundleEntryProto (metadata).
103 //
104 // On construction, attempts to create a directory given by the dirname of
105 // "prefix", so "status()" must be checked before calling any member functions.
106 //
107 // All threads accessing the same BundleWriter must synchronize.
108 class BundleWriter {
109  public:
110   struct Options {
OptionsOptions111     Options() {}
112     // Alignment, in bytes, for tensor data.
113     // Must be >= 1. The default size of 1 densely packs tensors.
114     int data_alignment{1};
115   };
116   BundleWriter(Env* env, StringPiece prefix,
117                const Options& options = Options());
118 
119   // Adds the tensor "val" under key "key".
120   // Across calls "key" must be unique but can be added in any order.
121   Status Add(StringPiece key, const Tensor& val);
122 
123   // Partitioned variables support.
124   // A slice of a full tensor is stored in two entries in the metadata table:
125   //
126   //   full_tensor_key   -> BundleEntryProto, describing all stored slices
127   //                        of this full tensor.  Does not append to the data
128   //                        file.
129   //   encoded slice key -> BundleEntryProto, describing one particular slice.
130   //                        Appends values of this slice to the data file.
131   //
132   // Slices of a full tensor can be added in any order.
133   //
134   // If a full tensor has slices placed on N devices and N BundleWriter's are
135   // concurrently used, the caller must use MergeBundles() to ensure that a
136   // consistent entry for "full_tensor_key" is produced.
137   //
138   // Returns an error if the same slice is added the second time.
139   Status AddSlice(StringPiece full_tensor_key,
140                   const TensorShape& full_tensor_shape,
141                   const TensorSlice& slice_spec, const Tensor& slice_tensor);
142 
143   // Finishes the writer and flushes.
144   Status Finish() TF_MUST_USE_RESULT;
145 
status()146   Status status() const { return status_; }
147 
148  private:
149   Env* const env_;  // Not owned.
150   const Options options_;
151   const string prefix_;
152   string metadata_path_;
153   string data_path_;
154   bool use_temp_file_;
155   std::unique_ptr<FileOutputBuffer> out_;
156   int64 size_;  // Number of bytes written into out_.
157   std::map<string, BundleEntryProto> entries_;
158   Status status_;
159 
160   TF_DISALLOW_COPY_AND_ASSIGN(BundleWriter);
161 };
162 
163 // Merges a set of bundles (given their prefixes) into a single bundle with the
164 // given "merged_prefix".  The merged metadata is guaranteed to be consistent.
165 //
166 // If there are N bundles in "prefixes", during the merge the data files will be
167 // renamed to contain a proper sharded file spec, with num_shards set to the sum
168 // of num_shards across the N input bundles.
169 //
170 // The caller should only rely on the metadata file of the merged bundle to
171 // query information about a tensor.  In particular, this function does not
172 // guarantee not to re-order the input data files.
173 //
174 // Once merged, makes a best effort to delete the old metadata files.
175 // Returns OK iff all bundles are successfully merged.
176 Status MergeBundles(Env* env, gtl::ArraySlice<tstring> prefixes,
177                     StringPiece merged_prefix);
178 
179 // On construction, silently attempts to read the metadata associated with
180 // "prefix".  If caller intends to call any function afterwards, "status()"
181 // must be checked.
182 // All threads accessing the same BundleReader must synchronize.
183 class BundleReader {
184  public:
185   BundleReader(Env* const env, StringPiece prefix);
186   ~BundleReader();
187 
188   // Is ok() iff the reader construction is successful (completed the read of
189   // the metadata).
status()190   Status status() const { return status_; }
191 
192   // Queries whether the bundle contains an entry keyed by "key".  Calls Seek()
193   // internally, so this call invalidates the reader's current position.
194   // REQUIRES: status().ok()
195   bool Contains(StringPiece key);
196 
197   // Looks up the dtype and the shape of the tensor keyed by "key".
198   // REQUIRES: status().ok()
199   Status LookupDtypeAndShape(StringPiece key, DataType* dtype,
200                              TensorShape* shape) TF_MUST_USE_RESULT;
201 
202   // Looks up the shape of the tensor keyed by "key".
203   // Clears "shape" if not found.
204   // REQUIRES: status().ok()
205   Status LookupTensorShape(StringPiece key,
206                            TensorShape* shape) TF_MUST_USE_RESULT;
207 
208   // Looks up the tensor keyed by "key".  If "key" refers to a partitioned
209   // tensor, attempts to look up the full contents using all stored slices.
210   //
211   // Caller must make sure "val" has the same shape and dtype as the
212   // corresponding contents, so that its buffer can be filled without needing
213   // extra allocation.  These can be queried via "LookupDtypeAndShape()".
214   //
215   // On error, "val" may contain nonsense data.  Returns a NotFound error if
216   // tensor keyed by "key" does not exist in this bundle.
217   //
218   // Validates the stored crc32c checksum against the restored bytes.
219   // REQUIRES: status().ok()
220   Status Lookup(StringPiece key, Tensor* val) TF_MUST_USE_RESULT;
221 
222   // Looks up the tensor pointed to by the internal iterator.
223   //
224   // On error, "val" may contain nonsense data.
225   //
226   // Validates the stored crc32c checksum against the restored bytes.
227   // REQUIRES: status().ok() && Valid()
228   Status ReadCurrent(Tensor* val) TF_MUST_USE_RESULT;
229 
230   // Looks up the slices of the tensor keyed by "key".  On OK, "slices"
231   // is non-empty if and only if the tensor is a partitioned tensor.
232   //
233   // Warning - there is no guaranteed ordering for the returned slices, so
234   // a slice with a larger start index in some dimension could come before
235   // another slice with a smaller start index in the same dimension.
236   // REQUIRES: status().ok()
237   Status LookupTensorSlices(StringPiece key, std::vector<TensorSlice>* slices)
238       TF_MUST_USE_RESULT;
239 
240   // Looks up a specific slice of a partitioned tensor.
241   // It is only required that the stored slices cover the requested slice,
242   // namely "slice_spec" is a subset of the union of the stored slices.
243   // REQUIRES: status().ok()
244   Status LookupSlice(StringPiece full_tensor_key, const TensorSlice& slice_spec,
245                      Tensor* val) TF_MUST_USE_RESULT;
246 
247   // Seeks to the first position in the bundle whose key is no less than "key".
248   // REQUIRES: status().ok()
Seek(StringPiece key)249   void Seek(StringPiece key) { return iter_->Seek(key); }
250   // Moves to the next position in the bundle.
251   // REQUIRES: status().ok()
Next()252   void Next() const { iter_->Next(); }
253   // Returns true iff the reader is positioned to a key/val pair.
254   // REQUIRES: status().ok()
Valid()255   bool Valid() const { return iter_->Valid(); }
256 
257   // Returns the key at the current position.
258   // REQUIRES: status().ok() && Valid()
key()259   StringPiece key() const { return iter_->key(); }
260   // Returns the raw value at the current position.
261   // REQUIRES: status().ok() && Valid()
value()262   StringPiece value() const { return iter_->value(); }
263 
264   string DebugString();
265 
266  private:
267   // Seeks for "key" and reads the metadata proto.
268   // On non-OK return, clears "entry" for the caller.
269   // REQUIRES: status().ok()
270   Status GetBundleEntryProto(StringPiece key,
271                              BundleEntryProto* entry) TF_MUST_USE_RESULT;
272 
273   // Reads the tensor value described by the metadata proto "entry".
274   // Usage for "val" follows the comment of "Lookup()".
275   Status GetValue(const BundleEntryProto& entry,
276                   Tensor* val) TF_MUST_USE_RESULT;
277 
278   // Reads the slice described by "slice_spec".  The corresponding full tensor
279   // has key "ful_tensor_key" and metadata proto "full_tensor_entry".
280   // REQUIRES: full_tensor_entry.slices_size() > 0
281   Status GetSliceValue(StringPiece full_tensor_key,
282                        const BundleEntryProto& full_tensor_entry,
283                        const TensorSlice& slice_spec,
284                        Tensor* val) TF_MUST_USE_RESULT;
285 
286   Env* env_;  // Not owned.
287   const string prefix_;
288 
289   Status status_;
290   RandomAccessFile* metadata_;  // Owned.
291   table::Table* table_;
292   table::Cache* index_cache_;
293   table::Iterator* iter_;
294   // Owned the InputBuffer objects and their underlying RandomAccessFile's.
295   std::unordered_map<int32, io::InputBuffer*> data_;
296 
297   // Maps each partitioned tensor's key to its stored slices (represented in a
298   // TensorSliceSet).  Populated on-demand.
299   std::unordered_map<string, checkpoint::TensorSliceSet*> tensor_slices_;
300 
301   // Expected number of data file shards in the bundle.  Extracted by reading
302   // the header entry in the metadata table.
303   int num_shards_;
304 
305   // Flag that this class sets to true when the endianness of the target bundle
306   // differs from that of the current system's processor architecture.
307   bool need_to_swap_bytes_;
308 
309   friend class TensorBundleAlignmentTest;  // For testing data alignment.
310 
311   TF_DISALLOW_COPY_AND_ASSIGN(BundleReader);
312 };
313 
314 // A buffering wrapper for a WritableFile.  Useful if the caller wishes to issue
315 // small writes to a file (e.g. writing out a list of small varints).
316 // External synchronization must be used in the presence of concurrent callers.
317 class FileOutputBuffer {
318  public:
FileOutputBuffer(WritableFile * file,size_t buffer_size)319   FileOutputBuffer(WritableFile* file, size_t buffer_size)
320       : file_(file), position_(0), buffer_size_(buffer_size) {
321     DCHECK_GT(buffer_size, 0);
322     buffer_.resize(buffer_size);
323   }
324   ~FileOutputBuffer();
325 
326   // Buffered append.
327   Status Append(StringPiece data);
328 
329   // Returns the running crc32c checksum of all currently appended bytes.
crc32c()330   uint32 crc32c() { return crc32c_; }
331   // Clears the running crc32c checksum.
clear_crc32c()332   void clear_crc32c() { crc32c_ = 0; }
333 
334   // Appends the buffered data, then closes the underlying file.
335   Status Close();
336 
337  private:
338   // Appends the buffered data to the underlying file. Does NOT flush the file.
339   Status FlushBuffer();
340 
341   WritableFile* file_;  // Owned.
342 
343   // buffer_[0, position_) holds the buffered data not yet appended to the
344   // underlying file.
345   size_t position_;
346   const size_t buffer_size_;
347   std::vector<char> buffer_;
348 
349   // Checksum of all appended bytes since construction or last clear_crc32c().
350   uint32 crc32c_ = 0;
351 };
352 
353 }  // namespace tensorflow
354 
355 #endif  // TENSORFLOW_CORE_UTIL_TENSOR_BUNDLE_TENSOR_BUNDLE_H_
356