• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright (c) 2017 The Khronos Group Inc.
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 //    http://www.apache.org/licenses/LICENSE-2.0
9 //
10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
15 //
16 #include "../testBase.h"
17 
18 #if !defined(_WIN32)
19 #include <sys/mman.h>
20 #endif
21 
22 extern cl_mem_flags gMemFlagsToUse;
23 extern int gtestTypesToRun;
24 
25 extern bool validate_float_write_results( float *expected, float *actual, image_descriptor *imageInfo );
26 extern bool validate_half_write_results( cl_half *expected, cl_half *actual, image_descriptor *imageInfo );
27 
28 // Utility function to clamp down image sizes for certain tests to avoid
29 // using too much memory.
reduceImageSizeRange(size_t maxDimSize,MTdata & seed)30 static size_t reduceImageSizeRange(size_t maxDimSize, MTdata& seed) {
31   size_t DimSize = random_log_in_range(8, (int) maxDimSize/32, seed);
32   if (DimSize > (size_t) 128)
33     return 128;
34   else
35     return DimSize;
36 }
37 
reduceImageDepth(size_t maxDimSize,MTdata & seed)38 static size_t reduceImageDepth(size_t maxDimSize, MTdata& seed) {
39   size_t DimSize = random_log_in_range(8, (int) maxDimSize/32, seed);
40   if (DimSize > (size_t) 32)
41     return 32;
42   else
43     return DimSize;
44 }
45 
46 
47 const char *write3DKernelSourcePattern =
48 "%s"
49 "__kernel void sample_kernel( __global %s4 *input, write_only image3d_t output %s )\n"
50 "{\n"
51 "   int tidX = get_global_id(0), tidY = get_global_id(1), tidZ = get_global_id(2);\n"
52 "%s"
53 "   write_image%s( output, (int4)( tidX, tidY, tidZ, 0 ) %s, input[ offset ]);\n"
54 "}";
55 
56 const char *readwrite3DKernelSourcePattern =
57 "%s"
58 "__kernel void sample_kernel( __global %s4 *input, read_write image3d_t output %s )\n"
59 "{\n"
60 "   int tidX = get_global_id(0), tidY = get_global_id(1), tidZ = get_global_id(2);\n"
61 "%s"
62 "   write_image%s( output, (int4)( tidX, tidY, tidZ, 0 ) %s, input[ offset ]);\n"
63 "}";
64 
65 const char *khr3DWritesPragma =
66 "#pragma OPENCL EXTENSION cl_khr_3d_image_writes : enable\n";
67 
68 const char *offset3DSource=
69 "   int offset = tidZ*get_image_width(output)*get_image_height(output) + tidY*get_image_width(output) + tidX;\n";
70 
71 const char *offset3DLodSource =
72 "   int width_lod = ( get_image_width(output) >> lod ) ? ( get_image_width(output) >> lod ) : 1;\n"
73 "   int height_lod = ( get_image_height(output) >> lod ) ? ( get_image_height(output) >> lod ) : 1;\n"
74 "   int offset = tidZ*width_lod*height_lod + tidY*width_lod + tidX;\n";
75 
test_write_image_3D(cl_device_id device,cl_context context,cl_command_queue queue,cl_kernel kernel,image_descriptor * imageInfo,ExplicitType inputType,MTdata d)76 int test_write_image_3D( cl_device_id device, cl_context context, cl_command_queue queue, cl_kernel kernel,
77                         image_descriptor *imageInfo, ExplicitType inputType, MTdata d )
78 {
79     int                 totalErrors = 0;
80 
81     size_t              num_flags   = 0;
82     const cl_mem_flags  *mem_flag_types = NULL;
83     const char *        *mem_flag_names = NULL;
84     const cl_mem_flags  write_only_mem_flag_types[2] = {  CL_MEM_WRITE_ONLY,   CL_MEM_READ_WRITE };
85     const char *        write_only_mem_flag_names[2] = { "CL_MEM_WRITE_ONLY", "CL_MEM_READ_WRITE" };
86     const cl_mem_flags  read_write_mem_flag_types[1] = {  CL_MEM_READ_WRITE};
87     const char *        read_write_mem_flag_names[1] = { "CL_MEM_READ_WRITE"};
88 
89     if(gtestTypesToRun & kWriteTests)
90     {
91         mem_flag_types = write_only_mem_flag_types;
92         mem_flag_names = write_only_mem_flag_names;
93         num_flags      = sizeof( write_only_mem_flag_types ) / sizeof( write_only_mem_flag_types[0] );
94     }
95     else
96     {
97         mem_flag_types = read_write_mem_flag_types;
98         mem_flag_names = read_write_mem_flag_names;
99         num_flags      = sizeof( read_write_mem_flag_types ) / sizeof( read_write_mem_flag_types[0] );
100     }
101 
102     size_t pixelSize = get_pixel_size( imageInfo->format );
103 
104     for( size_t mem_flag_index = 0; mem_flag_index < num_flags; mem_flag_index++ )
105     {
106         int error;
107         size_t threads[3];
108         bool verifyRounding = false;
109         int forceCorrectlyRoundedWrites = 0;
110 
111 #if defined( __APPLE__ )
112         // Require Apple's CPU implementation to be correctly rounded, not just within 0.6
113         if( GetDeviceType(device) == CL_DEVICE_TYPE_CPU )
114             forceCorrectlyRoundedWrites = 1;
115 #endif
116 
117         if( imageInfo->format->image_channel_data_type == CL_HALF_FLOAT )
118             if( DetectFloatToHalfRoundingMode(queue) )
119                 return 1;
120 
121         BufferOwningPtr<char> maxImageUseHostPtrBackingStore, imageValues;
122 
123         create_random_image_data( inputType, imageInfo, imageValues, d );
124 
125         if(!gTestMipmaps)
126         {
127             if( inputType == kFloat && imageInfo->format->image_channel_data_type != CL_FLOAT )
128             {
129                 /* Pilot data for sRGB images */
130                 if(is_sRGBA_order(imageInfo->format->image_channel_order))
131                 {
132                     // We want to generate ints (mostly) in range of the target format which should be [0,255]
133                     // However the range chosen here is [-test_range_ext, 255 + test_range_ext] so that
134                     // it can test some out-of-range data points
135                     const unsigned int test_range_ext = 16;
136                     int formatMin = 0 - test_range_ext;
137                     int formatMax = 255 + test_range_ext;
138                     int pixel_value = 0;
139 
140                     // First, fill with arbitrary floats
141                     for( size_t z = 0; z < imageInfo->depth; z++ )
142                     {
143                         for( size_t y = 0; y < imageInfo->height; y++ )
144                         {
145                             float *inputValues = (float *)(char*)imageValues + imageInfo->width * y * 4 + imageInfo->height * imageInfo->width * z * 4;
146                             for( size_t i = 0; i < imageInfo->width * 4; i++ )
147                             {
148                                 pixel_value = random_in_range( formatMin, (int)formatMax, d );
149                                 inputValues[ i ] = (float)(pixel_value/255.0f);
150                             }
151                         }
152                     }
153 
154                     // Throw a few extra test values in there
155                     float *inputValues = (float *)(char*)imageValues;
156                     size_t i = 0;
157 
158                     // Piloting some debug inputs.
159                     inputValues[ i++ ] = -0.5f;
160                     inputValues[ i++ ] = 0.5f;
161                     inputValues[ i++ ] = 2.f;
162                     inputValues[ i++ ] = 0.5f;
163 
164                     // Also fill in the first few vectors with some deliberate tests to determine the rounding mode
165                     // is correct
166                     if( imageInfo->width > 12 )
167                     {
168                         float formatMax = (float)get_format_max_int( imageInfo->format );
169                         inputValues[ i++ ] = 4.0f / formatMax;
170                         inputValues[ i++ ] = 4.3f / formatMax;
171                         inputValues[ i++ ] = 4.5f / formatMax;
172                         inputValues[ i++ ] = 4.7f / formatMax;
173                         inputValues[ i++ ] = 5.0f / formatMax;
174                         inputValues[ i++ ] = 5.3f / formatMax;
175                         inputValues[ i++ ] = 5.5f / formatMax;
176                         inputValues[ i++ ] = 5.7f / formatMax;
177                     }
178                 }
179                 else
180                 {
181                     // First, fill with arbitrary floats
182                     for( size_t z = 0; z < imageInfo->depth; z++ )
183                     {
184                         for( size_t y = 0; y < imageInfo->height; y++ )
185                         {
186                             float *inputValues = (float *)(char*)imageValues + imageInfo->width * y * 4 + imageInfo->height * imageInfo->width * z * 4;
187                             for( size_t i = 0; i < imageInfo->width * 4; i++ )
188                                 inputValues[ i ] = get_random_float( -0.1f, 1.1f, d );
189                         }
190                     }
191 
192                     // Throw a few extra test values in there
193                     float *inputValues = (float *)(char*)imageValues;
194                     size_t i = 0;
195                     inputValues[ i++ ] = -0.0000000000009f;
196                     inputValues[ i++ ] = 1.f;
197                     inputValues[ i++ ] = -1.f;
198                     inputValues[ i++ ] = 2.f;
199 
200                     // Also fill in the first few vectors with some deliberate tests to determine the rounding mode
201                     // is correct
202                     if( imageInfo->width > 12 )
203                     {
204                         float formatMax = (float)get_format_max_int( imageInfo->format );
205                         inputValues[ i++ ] = 4.0f / formatMax;
206                         inputValues[ i++ ] = 4.3f / formatMax;
207                         inputValues[ i++ ] = 4.5f / formatMax;
208                         inputValues[ i++ ] = 4.7f / formatMax;
209                         inputValues[ i++ ] = 5.0f / formatMax;
210                         inputValues[ i++ ] = 5.3f / formatMax;
211                         inputValues[ i++ ] = 5.5f / formatMax;
212                         inputValues[ i++ ] = 5.7f / formatMax;
213                         verifyRounding = true;
214                     }
215                 }
216             }
217             else if( inputType == kUInt )
218             {
219                 unsigned int *inputValues = (unsigned int*)(char*)imageValues;
220                 size_t i = 0;
221                 inputValues[ i++ ] = 0;
222                 inputValues[ i++ ] = 65535;
223                 inputValues[ i++ ] = 7271820;
224                 inputValues[ i++ ] = 0;
225             }
226         }
227 
228         // Construct testing sources
229         clProtectedImage protImage;
230         clMemWrapper unprotImage;
231         cl_mem image;
232 
233         if( gMemFlagsToUse == CL_MEM_USE_HOST_PTR )
234         {
235             create_random_image_data( inputType, imageInfo, maxImageUseHostPtrBackingStore, d );
236 
237             unprotImage = create_image_3d( context, mem_flag_types[mem_flag_index] | CL_MEM_USE_HOST_PTR, imageInfo->format,
238                                           imageInfo->width, imageInfo->height, imageInfo->depth, 0, 0,
239                                           maxImageUseHostPtrBackingStore, &error );
240 
241             if( error != CL_SUCCESS )
242             {
243                 log_error( "ERROR: Unable to create 3D image of size %ld x %ld x %ld pitch %ld (%s)\n", imageInfo->width, imageInfo->height, imageInfo->depth, imageInfo->rowPitch, IGetErrorString( error ) );
244                 return error;
245             }
246 
247             image = (cl_mem)unprotImage;
248         }
249         else // Either CL_MEM_ALLOC_HOST_PTR, CL_MEM_COPY_HOST_PTR or none
250         {
251             // Note: if ALLOC_HOST_PTR is used, the driver allocates memory that can be accessed by the host, but otherwise
252             // it works just as if no flag is specified, so we just do the same thing either way
253             // Note: if the flags is really CL_MEM_COPY_HOST_PTR, we want to remove it, because we don't want to copy any incoming data
254             if(gTestMipmaps)
255             {
256                 cl_image_desc image_desc = {0};
257                 image_desc.image_type = imageInfo->type;
258                 image_desc.num_mip_levels = imageInfo->num_mip_levels;
259                 image_desc.image_width = imageInfo->width;
260                 image_desc.image_height = imageInfo->height;
261                 image_desc.image_depth = imageInfo->depth;
262 
263                 unprotImage = clCreateImage( context, mem_flag_types[mem_flag_index] | ( gMemFlagsToUse & ~(CL_MEM_COPY_HOST_PTR) ),
264                                              imageInfo->format, &image_desc, NULL, &error);
265                 if( error != CL_SUCCESS )
266                 {
267                     log_error( "ERROR: Unable to create %d level mipmapped 3D image of size %ld x %ld *%ld (%s, %s)\n", imageInfo->num_mip_levels, imageInfo->width, imageInfo->height, imageInfo->depth,
268                                IGetErrorString( error ), mem_flag_names[mem_flag_index] );
269                     return error;
270                 }
271             }
272             else
273             {
274                 unprotImage = create_image_3d( context, mem_flag_types[mem_flag_index] | ( gMemFlagsToUse & ~(CL_MEM_COPY_HOST_PTR) ), imageInfo->format,
275                                               imageInfo->width, imageInfo->height, imageInfo->depth, 0, 0, imageValues, &error );
276                 if( error != CL_SUCCESS )
277                 {
278                     log_error( "ERROR: Unable to create 3D image of size %ld x %ld x %ld pitch %ld (%s)\n", imageInfo->width, imageInfo->height, imageInfo->depth, imageInfo->rowPitch, IGetErrorString( error ) );
279                     return error;
280                 }
281             }
282             image = unprotImage;
283         }
284 
285         error = clSetKernelArg( kernel, 1, sizeof( cl_mem ), &image );
286         test_error( error, "Unable to set kernel arguments" );
287 
288         size_t width_lod = imageInfo->width;
289         size_t height_lod = imageInfo->height;
290         size_t depth_lod = imageInfo->depth;
291         size_t nextLevelOffset = 0;
292         size_t origin[ 4 ] = { 0, 0, 0, 0 };
293         size_t region[ 3 ] = { imageInfo->width, imageInfo->height, imageInfo->depth };
294 
295         int num_lod_loops = (gTestMipmaps)? imageInfo->num_mip_levels : 1;
296         for( int lod = 0; lod < num_lod_loops; lod++)
297         {
298             if(gTestMipmaps)
299             {
300                 error = clSetKernelArg( kernel, 2, sizeof( int ), &lod );
301             }
302             // Run the kernel
303             threads[0] = (size_t)width_lod;
304             threads[1] = (size_t)height_lod;
305             threads[2] = (size_t)depth_lod;
306 
307             clMemWrapper inputStream;
308 
309             char *imagePtrOffset = imageValues + nextLevelOffset;
310             inputStream =
311                 clCreateBuffer(context, CL_MEM_COPY_HOST_PTR,
312                                get_explicit_type_size(inputType) * 4 * width_lod
313                                    * height_lod * depth_lod,
314                                imagePtrOffset, &error);
315             test_error( error, "Unable to create input buffer" );
316 
317             // Set arguments
318             error = clSetKernelArg( kernel, 0, sizeof( cl_mem ), &inputStream );
319             test_error( error, "Unable to set kernel arguments" );
320 
321             error = clEnqueueNDRangeKernel( queue, kernel, 3, NULL, threads, NULL, 0, NULL, NULL );
322             test_error( error, "Unable to run kernel" );
323 
324             // Get results
325             size_t resultSize;
326             if(gTestMipmaps)
327                 resultSize = width_lod * height_lod * depth_lod * pixelSize;
328             else
329                 resultSize = imageInfo->slicePitch *imageInfo->depth;
330             clProtectedArray PA(resultSize);
331             char *resultValues = (char *)((void *)PA);
332 
333             if( gDebugTrace )
334                 log_info( "    reading results, %ld kbytes\n", (unsigned long)( resultSize / 1024 ) );
335 
336             origin[3] = lod;
337             region[0] = width_lod;
338             region[1] = height_lod;
339             region[2] = depth_lod;
340             error = clEnqueueReadImage( queue, image, CL_TRUE, origin, region, gEnablePitch ? imageInfo->rowPitch : 0, gEnablePitch ? imageInfo->slicePitch : 0, resultValues, 0, NULL, NULL );
341             test_error( error, "Unable to read results from kernel" );
342             if( gDebugTrace )
343                 log_info( "    results read\n" );
344 
345             // Validate results element by element
346             char *imagePtr = (char*)imageValues + nextLevelOffset;
347             int numTries = 5;
348             for( size_t z = 0, i = 0; z < depth_lod; z++ )
349             {
350                 for( size_t y = 0; y < height_lod; y++ )
351                 {
352                     char *resultPtr;
353                     if( gTestMipmaps )
354                         resultPtr = (char *)resultValues + y * width_lod * pixelSize + z * width_lod * height_lod * pixelSize;
355                     else
356                         resultPtr = (char *)resultValues + y * imageInfo->rowPitch + z * imageInfo->slicePitch;
357                     for( size_t x = 0; x < width_lod; x++, i++ )
358                     {
359                         char resultBuffer[ 16 ]; // Largest format would be 4 channels * 4 bytes (32 bits) each
360 
361                         // Convert this pixel
362                         if( inputType == kFloat )
363                             pack_image_pixel( (float *)imagePtr, imageInfo->format, resultBuffer );
364                         else if( inputType == kInt )
365                             pack_image_pixel( (int *)imagePtr, imageInfo->format, resultBuffer );
366                         else // if( inputType == kUInt )
367                             pack_image_pixel( (unsigned int *)imagePtr, imageInfo->format, resultBuffer );
368 
369                         // Compare against the results
370                         if(is_sRGBA_order(imageInfo->format->image_channel_order))
371                         {
372                             // Compare sRGB-mapped values
373                             cl_float expected[4]    = {0};
374                             cl_float* input_values  = (float*)imagePtr;
375                             cl_uchar *actual        = (cl_uchar*)resultPtr;
376                             float max_err           = MAX_lRGB_TO_sRGB_CONVERSION_ERROR;
377                             float err[4]            = {0.0f};
378 
379                             for( unsigned int j = 0; j < get_format_channel_count( imageInfo->format ); j++ )
380                             {
381                                 if(j < 3)
382                                 {
383                                     expected[j] = sRGBmap(input_values[j]);
384                                 }
385                                 else // there is no sRGB conversion for alpha component if it exists
386                                 {
387                                     expected[j] = NORMALIZE(input_values[j], 255.0f);
388                                 }
389 
390                                 err[j] = fabsf( expected[ j ] - actual[ j ] );
391                             }
392 
393                             if ((err[0] > max_err) ||
394                                 (err[1] > max_err) ||
395                                 (err[2] > max_err) ||
396                                 (err[3] > FLT_EPSILON)) // there is no conversion for alpha
397                             {
398                                 log_error( "       Error:     %g %g %g %g\n", err[0], err[1], err[2], err[3]);
399                                 log_error( "       Input:     %g %g %g %g\n", *((float *)imagePtr), *((float *)imagePtr + 1), *((float *)imagePtr + 2), *((float *)imagePtr + 3));
400                                 log_error( "       Expected: %g %g %g %g\n", expected[ 0 ], expected[ 1 ], expected[ 2 ], expected[ 3 ] );
401                                 log_error( "       Actual:   %d %d %d %d\n", actual[ 0 ], actual[ 1 ], actual[ 2 ], actual[ 3 ] );
402                                 return 1;
403                             }
404                         }
405                         else if( imageInfo->format->image_channel_data_type == CL_FLOAT )
406                         {
407                             float *expected = (float *)resultBuffer;
408                             float *actual = (float *)resultPtr;
409 
410                             if( !validate_float_write_results( expected, actual, imageInfo ) )
411                             {
412                                 unsigned int *e = (unsigned int *)resultBuffer;
413                                 unsigned int *a = (unsigned int *)resultPtr;
414                                 log_error( "ERROR: Sample %ld (%ld,%ld,%ld) did not validate! (%s)\n", i, x, y, z, mem_flag_names[ mem_flag_index ] );
415                                 log_error( "       Expected: %a %a %a %a\n", expected[ 0 ], expected[ 1 ], expected[ 2 ], expected[ 3 ] );
416                                 log_error( "       Expected: %08x %08x %08x %08x\n", e[ 0 ], e[ 1 ], e[ 2 ], e[ 3 ] );
417                                 log_error( "       Actual:   %a %a %a %a\n", actual[ 0 ], actual[ 1 ], actual[ 2 ], actual[ 3 ] );
418                                 log_error( "       Actual:   %08x %08x %08x %08x\n", a[ 0 ], a[ 1 ], a[ 2 ], a[ 3 ] );
419                                 totalErrors++;
420                                 if( ( --numTries ) == 0 )
421                                     return 1;
422                             }
423                         }
424                         else if( imageInfo->format->image_channel_data_type == CL_HALF_FLOAT )
425                         {
426                             cl_half *e = (cl_half *)resultBuffer;
427                             cl_half *a = (cl_half *)resultPtr;
428                             if( !validate_half_write_results( e, a, imageInfo ) )
429                             {
430                                 totalErrors++;
431                                 log_error( "ERROR: Sample %ld (%ld,%ld,%ld) did not validate! (%s)\n", i, x, y, z, mem_flag_names[ mem_flag_index ] );
432                                 unsigned short *e = (unsigned short *)resultBuffer;
433                                 unsigned short *a = (unsigned short *)resultPtr;
434                                 log_error( "    Expected: 0x%04x 0x%04x 0x%04x 0x%04x\n", e[ 0 ], e[ 1 ], e[ 2 ], e[ 3 ] );
435                                 log_error( "    Actual:   0x%04x 0x%04x 0x%04x 0x%04x\n", a[ 0 ], a[ 1 ], a[ 2 ], a[ 3 ] );
436                                 if( inputType == kFloat )
437                                 {
438                                     float *p = (float *)imagePtr;
439                                     log_error( "    Source: %a %a %a %a\n", p[ 0 ], p[ 1 ], p[ 2 ], p[ 3 ] );
440                                     log_error( "          : %12.24f %12.24f %12.24f %12.24f\n", p[ 0 ], p[ 1 ], p[ 2 ], p[ 3 ] );
441                                 }
442                                 if( ( --numTries ) == 0 )
443                                     return 1;
444                             }
445                         }
446                         else
447                         {
448                             // Exact result passes every time
449                             if( memcmp( resultBuffer, resultPtr, get_pixel_size( imageInfo->format ) ) != 0 )
450                             {
451                                 // result is inexact.  Calculate error
452                                 int failure = 1;
453                                 float errors[4] = {NAN, NAN, NAN, NAN};
454                                 pack_image_pixel_error( (float *)imagePtr, imageInfo->format, resultBuffer, errors );
455 
456                                 // We are allowed 0.6 absolute error vs. infinitely precise for some normalized formats
457                                 if( 0 == forceCorrectlyRoundedWrites    &&
458                                    (
459                                     imageInfo->format->image_channel_data_type == CL_UNORM_INT8 ||
460                                     imageInfo->format->image_channel_data_type == CL_UNORM_INT_101010 ||
461                                     imageInfo->format->image_channel_data_type == CL_UNORM_INT16 ||
462                                     imageInfo->format->image_channel_data_type == CL_SNORM_INT8 ||
463                                     imageInfo->format->image_channel_data_type == CL_SNORM_INT16
464                                     ))
465                                 {
466                                     if( ! (fabsf( errors[0] ) > 0.6f) && ! (fabsf( errors[1] ) > 0.6f) &&
467                                        ! (fabsf( errors[2] ) > 0.6f) && ! (fabsf( errors[3] ) > 0.6f)  )
468                                         failure = 0;
469                                 }
470 
471 
472                                 if( failure )
473                                 {
474                                     totalErrors++;
475                                     // Is it our special rounding test?
476                                     if( verifyRounding && i >= 1 && i <= 2 )
477                                     {
478                                         // Try to guess what the rounding mode of the device really is based on what it returned
479                                         const char *deviceRounding = "unknown";
480                                         unsigned int deviceResults[8];
481                                         read_image_pixel<unsigned int>( resultPtr, imageInfo, 0, 0, 0, deviceResults, lod );
482                                         read_image_pixel<unsigned int>( resultPtr, imageInfo, 1, 0, 0, &deviceResults[ 4 ], lod );
483 
484                                         if( deviceResults[ 0 ] == 4 && deviceResults[ 1 ] == 4 && deviceResults[ 2 ] == 4 && deviceResults[ 3 ] == 4 &&
485                                            deviceResults[ 4 ] == 5 && deviceResults[ 5 ] == 5 && deviceResults[ 6 ] == 5 && deviceResults[ 7 ] == 5 )
486                                             deviceRounding = "truncate";
487                                         else if( deviceResults[ 0 ] == 4 && deviceResults[ 1 ] == 4 && deviceResults[ 2 ] == 5 && deviceResults[ 3 ] == 5 &&
488                                                 deviceResults[ 4 ] == 5 && deviceResults[ 5 ] == 5 && deviceResults[ 6 ] == 6 && deviceResults[ 7 ] == 6 )
489                                             deviceRounding = "round to nearest";
490                                         else if( deviceResults[ 0 ] == 4 && deviceResults[ 1 ] == 4 && deviceResults[ 2 ] == 4 && deviceResults[ 3 ] == 5 &&
491                                                 deviceResults[ 4 ] == 5 && deviceResults[ 5 ] == 5 && deviceResults[ 6 ] == 6 && deviceResults[ 7 ] == 6 )
492                                             deviceRounding = "round to even";
493 
494                                         log_error( "ERROR: Rounding mode sample (%ld) did not validate, probably due to the device's rounding mode being wrong (%s)\n", i, mem_flag_names[mem_flag_index] );
495                                         log_error( "       Actual values rounded by device: %d %d %d %d %d %d %d %d\n", deviceResults[ 0 ], deviceResults[ 1 ], deviceResults[ 2 ], deviceResults[ 3 ],
496                                                   deviceResults[ 4 ], deviceResults[ 5 ], deviceResults[ 6 ], deviceResults[ 7 ] );
497                                         log_error( "       Rounding mode of device appears to be %s\n", deviceRounding );
498                                         return 1;
499                                     }
500                                     log_error( "ERROR: Sample %d (%d,%d) did not validate!\n", (int)i, (int)x, (int)y );
501                                     switch(imageInfo->format->image_channel_data_type)
502                                     {
503                                         case CL_UNORM_INT8:
504                                         case CL_SNORM_INT8:
505                                         case CL_UNSIGNED_INT8:
506                                         case CL_SIGNED_INT8:
507                                             log_error( "    Expected: 0x%2.2x 0x%2.2x 0x%2.2x 0x%2.2x\n", ((cl_uchar*)resultBuffer)[0], ((cl_uchar*)resultBuffer)[1], ((cl_uchar*)resultBuffer)[2], ((cl_uchar*)resultBuffer)[3] );
508                                             log_error( "    Actual:   0x%2.2x 0x%2.2x 0x%2.2x 0x%2.2x\n", ((cl_uchar*)resultPtr)[0], ((cl_uchar*)resultPtr)[1], ((cl_uchar*)resultPtr)[2], ((cl_uchar*)resultPtr)[3] );
509                                             log_error( "    Error:    %f %f %f %f\n", errors[0], errors[1], errors[2], errors[3] );
510                                             break;
511                                         case CL_UNORM_INT16:
512                                         case CL_SNORM_INT16:
513                                         case CL_UNSIGNED_INT16:
514                                         case CL_SIGNED_INT16:
515 #ifdef CL_SFIXED14_APPLE
516                                         case CL_SFIXED14_APPLE:
517 #endif
518                                             log_error( "    Expected: 0x%4.4x 0x%4.4x 0x%4.4x 0x%4.4x\n", ((cl_ushort*)resultBuffer)[0], ((cl_ushort*)resultBuffer)[1], ((cl_ushort*)resultBuffer)[2], ((cl_ushort*)resultBuffer)[3] );
519                                             log_error( "    Actual:   0x%4.4x 0x%4.4x 0x%4.4x 0x%4.4x\n", ((cl_ushort*)resultPtr)[0], ((cl_ushort*)resultPtr)[1], ((cl_ushort*)resultPtr)[2], ((cl_ushort*)resultPtr)[3] );
520                                             log_error( "    Error:    %f %f %f %f\n", errors[0], errors[1], errors[2], errors[3] );
521                                             break;
522                                         case CL_HALF_FLOAT:
523                                             log_error(
524                                                 "    Expected: 0x%4.4x 0x%4.4x "
525                                                 "0x%4.4x 0x%4.4x\n",
526                                                 ((cl_half *)resultBuffer)[0],
527                                                 ((cl_half *)resultBuffer)[1],
528                                                 ((cl_half *)resultBuffer)[2],
529                                                 ((cl_half *)resultBuffer)[3]);
530                                             log_error(
531                                                 "    Actual:   0x%4.4x 0x%4.4x "
532                                                 "0x%4.4x 0x%4.4x\n",
533                                                 ((cl_half *)resultPtr)[0],
534                                                 ((cl_half *)resultPtr)[1],
535                                                 ((cl_half *)resultPtr)[2],
536                                                 ((cl_half *)resultPtr)[3]);
537                                             log_error( "    Ulps:     %f %f %f %f\n", errors[0], errors[1], errors[2], errors[3] );
538                                             break;
539                                         case CL_UNSIGNED_INT32:
540                                         case CL_SIGNED_INT32:
541                                             log_error( "    Expected: 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x\n", ((cl_uint*)resultBuffer)[0], ((cl_uint*)resultBuffer)[1], ((cl_uint*)resultBuffer)[2], ((cl_uint*)resultBuffer)[3] );
542                                             log_error( "    Actual:   0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x\n", ((cl_uint*)resultPtr)[0], ((cl_uint*)resultPtr)[1], ((cl_uint*)resultPtr)[2], ((cl_uint*)resultPtr)[3] );
543                                             break;
544                                         case CL_FLOAT:
545                                             log_error( "    Expected: %a %a %a %a\n", ((cl_float*)resultBuffer)[0], ((cl_float*)resultBuffer)[1], ((cl_float*)resultBuffer)[2], ((cl_float*)resultBuffer)[3] );
546                                             log_error( "    Actual:   %a %a %a %a\n", ((cl_float*)resultPtr)[0], ((cl_float*)resultPtr)[1], ((cl_float*)resultPtr)[2], ((cl_float*)resultPtr)[3] );
547                                             log_error( "    Ulps:     %f %f %f %f\n", errors[0], errors[1], errors[2], errors[3] );
548                                             break;
549                                     }
550 
551                                     float *v = (float *)(char *)imagePtr;
552                                     log_error( "   src: %g %g %g %g\n", v[ 0 ], v[ 1], v[ 2 ], v[ 3 ] );
553                                     log_error( "      : %a %a %a %a\n", v[ 0 ], v[ 1], v[ 2 ], v[ 3 ] );
554                                     log_error( "   src: %12.24f %12.24f %12.24f %12.24f\n", v[0 ], v[  1], v[ 2 ], v[ 3 ] );
555 
556                                     if( ( --numTries ) == 0 )
557                                         return 1;
558                                 }
559                             }
560                         }
561                         imagePtr += get_explicit_type_size( inputType ) * 4;
562                         resultPtr += get_pixel_size( imageInfo->format );
563                     }
564                 }
565             }
566             {
567                 nextLevelOffset += width_lod * height_lod * depth_lod * pixelSize;
568                 width_lod = ( width_lod >> 1 ) ? ( width_lod >> 1 ) : 1;
569                 height_lod = ( height_lod >> 1 ) ? ( height_lod >> 1 ) : 1;
570                 depth_lod = ( depth_lod >> 1 ) ? ( depth_lod >> 1 ) : 1;
571             }
572         }
573     }
574     // All done!
575     return totalErrors;
576 }
577 
578 
test_write_image_3D_set(cl_device_id device,cl_context context,cl_command_queue queue,const cl_image_format * format,ExplicitType inputType,MTdata d)579 int test_write_image_3D_set(cl_device_id device, cl_context context,
580                             cl_command_queue queue,
581                             const cl_image_format *format,
582                             ExplicitType inputType, MTdata d)
583 {
584     char programSrc[10240];
585     const char *ptr;
586     const char *readFormat;
587     clProgramWrapper program;
588     clKernelWrapper kernel;
589     const char *KernelSourcePattern = NULL;
590 
591     int error;
592 
593     // Get our operating parameters
594     size_t maxWidth, maxHeight, maxDepth;
595     cl_ulong maxAllocSize, memSize;
596 
597     image_descriptor imageInfo = { 0x0 };
598 
599     imageInfo.format = format;
600     imageInfo.type = CL_MEM_OBJECT_IMAGE3D;
601 
602     error = clGetDeviceInfo( device, CL_DEVICE_IMAGE3D_MAX_WIDTH, sizeof( maxWidth ), &maxWidth, NULL );
603     error |= clGetDeviceInfo( device, CL_DEVICE_IMAGE3D_MAX_HEIGHT, sizeof( maxHeight ), &maxHeight, NULL );
604     error |= clGetDeviceInfo( device, CL_DEVICE_IMAGE3D_MAX_DEPTH, sizeof( maxDepth ), &maxDepth, NULL );
605     error |= clGetDeviceInfo( device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof( maxAllocSize ), &maxAllocSize, NULL );
606     error |= clGetDeviceInfo( device, CL_DEVICE_GLOBAL_MEM_SIZE, sizeof( memSize ), &memSize, NULL );
607     test_error( error, "Unable to get max image 3D size from device" );
608 
609     if (memSize > (cl_ulong)SIZE_MAX) {
610       memSize = (cl_ulong)SIZE_MAX;
611     }
612 
613     // Determine types
614     if( inputType == kInt )
615         readFormat = "i";
616     else if( inputType == kUInt )
617         readFormat = "ui";
618     else // kFloat
619         readFormat = "f";
620 
621     if(gtestTypesToRun & kWriteTests)
622     {
623         KernelSourcePattern = write3DKernelSourcePattern;
624     }
625     else
626     {
627         KernelSourcePattern = readwrite3DKernelSourcePattern;
628     }
629 
630     // Construct the source
631     sprintf( programSrc,
632              KernelSourcePattern,
633              gTestMipmaps ? "" : khr3DWritesPragma,
634              get_explicit_type_name( inputType ),
635              gTestMipmaps ? ", int lod" : "",
636              gTestMipmaps ? offset3DLodSource : offset3DSource,
637              readFormat,
638              gTestMipmaps ? ", lod" : "" );
639 
640     ptr = programSrc;
641     error = create_single_kernel_helper(context, &program, &kernel, 1, &ptr,
642                                         "sample_kernel");
643     test_error( error, "Unable to create testing kernel" );
644 
645     // Run tests
646     if( gTestSmallImages )
647     {
648         for( imageInfo.width = 1; imageInfo.width < 13; imageInfo.width++ )
649         {
650             imageInfo.rowPitch = imageInfo.width * get_pixel_size( imageInfo.format );
651             for( imageInfo.height = 1; imageInfo.height < 9; imageInfo.height++ )
652             {
653                 imageInfo.slicePitch = imageInfo.height * imageInfo.rowPitch;
654                 for( imageInfo.depth = 2; imageInfo.depth < 7; imageInfo.depth++ )
655                 {
656                     if (gTestMipmaps)
657                         imageInfo.num_mip_levels = (size_t) random_in_range(2,(compute_max_mip_levels(imageInfo.width, imageInfo.height, imageInfo.depth) - 1), d);
658 
659                     if( gDebugTrace )
660                         log_info( "   at size %d,%d,%d\n", (int)imageInfo.width, (int)imageInfo.height, (int)imageInfo.depth );
661                     int retCode = test_write_image_3D( device, context, queue, kernel, &imageInfo, inputType, d );
662                     if( retCode )
663                         return retCode;
664                 }
665             }
666         }
667     }
668     else if( gTestMaxImages )
669     {
670         // Try a specific set of maximum sizes
671         size_t numbeOfSizes;
672         size_t sizes[100][3];
673 
674         get_max_sizes(&numbeOfSizes, 100, sizes, maxWidth, maxHeight, maxDepth, 1, maxAllocSize, memSize, CL_MEM_OBJECT_IMAGE3D, imageInfo.format, CL_TRUE);
675 
676         for( size_t idx = 0; idx < numbeOfSizes; idx++ )
677         {
678             imageInfo.width = sizes[ idx ][ 0 ];
679             imageInfo.height = sizes[ idx ][ 1 ];
680             imageInfo.depth = sizes[ idx ][ 2 ];
681             imageInfo.rowPitch = imageInfo.width * get_pixel_size( imageInfo.format );
682             imageInfo.slicePitch = imageInfo.height * imageInfo.rowPitch;
683             if (gTestMipmaps)
684                 imageInfo.num_mip_levels = (size_t) random_in_range(2,(compute_max_mip_levels(imageInfo.width, imageInfo.height, imageInfo.depth) - 1), d);
685             log_info("Testing %d x %d x %d\n", (int)imageInfo.width, (int)imageInfo.height, (int)imageInfo.depth);
686             int retCode = test_write_image_3D( device, context, queue, kernel, &imageInfo, inputType, d );
687             if( retCode )
688                 return retCode;
689         }
690     }
691     else if( gTestRounding )
692     {
693         size_t typeRange = 1 << ( get_format_type_size( imageInfo.format ) * 8 );
694         imageInfo.height = typeRange / 256;
695         imageInfo.width = (size_t)( typeRange / (cl_ulong)imageInfo.height );
696         imageInfo.depth = 1;
697 
698         imageInfo.rowPitch = imageInfo.width * get_pixel_size( imageInfo.format );
699         imageInfo.slicePitch = imageInfo.height * imageInfo.rowPitch;
700         int retCode = test_write_image_3D( device, context, queue, kernel, &imageInfo, inputType, d );
701         if( retCode )
702             return retCode;
703     }
704     else
705     {
706         for( int i = 0; i < NUM_IMAGE_ITERATIONS; i++ )
707         {
708             cl_ulong size;
709             // Loop until we get a size that a) will fit in the max alloc size and b) that an allocation of that
710             // image, the result array, plus offset arrays, will fit in the global ram space
711             do
712             {
713                 imageInfo.width = reduceImageSizeRange(maxWidth, d );
714                 imageInfo.height = reduceImageSizeRange(maxHeight, d );
715                 imageInfo.depth = reduceImageDepth(maxDepth, d );
716 
717                 if(gTestMipmaps)
718                 {
719                     imageInfo.num_mip_levels = (size_t) random_in_range(2,(compute_max_mip_levels(imageInfo.width, imageInfo.height, imageInfo.depth) - 1), d);
720                     //Need to take into account the input buffer size, otherwise we will end up with input buffer that is exceeding MaxAlloc
721                     size = 4 * compute_mipmapped_image_size(imageInfo) * get_explicit_type_size( inputType );
722                 }
723                 else
724                 {
725                     imageInfo.rowPitch = imageInfo.width * get_pixel_size( imageInfo.format );
726                     imageInfo.slicePitch = imageInfo.height * imageInfo.rowPitch;
727                     if( gEnablePitch )
728                     {
729                         size_t extraWidth = (int)random_log_in_range( 0, 64, d );
730                         imageInfo.rowPitch += extraWidth * get_pixel_size( imageInfo.format );
731 
732                         imageInfo.slicePitch = imageInfo.height * imageInfo.rowPitch;
733                         extraWidth = (int)random_log_in_range( 0, 64, d );
734                         imageInfo.slicePitch += extraWidth * imageInfo.rowPitch;
735                     }
736 
737                     size = (size_t)imageInfo.slicePitch * (size_t)imageInfo.depth * 4;
738                 }
739             } while(  size > maxAllocSize || ( size * 3 ) > memSize );
740 
741             if( gDebugTrace )
742                 log_info( "   at size %ld,%ld,%ld (pitch %ld, slice %ld) out of %ld,%ld,%ld\n", imageInfo.width, imageInfo.height, imageInfo.depth,
743                          imageInfo.rowPitch, imageInfo.slicePitch, maxWidth, maxHeight, maxDepth );
744 
745             int retCode = test_write_image_3D( device, context, queue, kernel, &imageInfo, inputType, d );
746             if( retCode )
747                 return retCode;
748         }
749     }
750 
751     return 0;
752 }
753