1 /*
2 * Copyright 2020 Google LLC
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "include/private/SkSLProgramElement.h"
9 #include "include/private/SkSLStatement.h"
10 #include "include/private/SkTArray.h"
11 #include "include/private/SkTPin.h"
12 #include "src/sksl/SkSLCompiler.h"
13 #include "src/sksl/SkSLOperators.h"
14 #include "src/sksl/codegen/SkSLCodeGenerator.h"
15 #include "src/sksl/codegen/SkSLVMCodeGenerator.h"
16 #include "src/sksl/ir/SkSLBinaryExpression.h"
17 #include "src/sksl/ir/SkSLBlock.h"
18 #include "src/sksl/ir/SkSLBoolLiteral.h"
19 #include "src/sksl/ir/SkSLBreakStatement.h"
20 #include "src/sksl/ir/SkSLConstructor.h"
21 #include "src/sksl/ir/SkSLConstructorArray.h"
22 #include "src/sksl/ir/SkSLConstructorDiagonalMatrix.h"
23 #include "src/sksl/ir/SkSLConstructorMatrixResize.h"
24 #include "src/sksl/ir/SkSLConstructorSplat.h"
25 #include "src/sksl/ir/SkSLConstructorStruct.h"
26 #include "src/sksl/ir/SkSLContinueStatement.h"
27 #include "src/sksl/ir/SkSLDoStatement.h"
28 #include "src/sksl/ir/SkSLExpressionStatement.h"
29 #include "src/sksl/ir/SkSLExternalFunctionCall.h"
30 #include "src/sksl/ir/SkSLExternalFunctionReference.h"
31 #include "src/sksl/ir/SkSLFieldAccess.h"
32 #include "src/sksl/ir/SkSLFloatLiteral.h"
33 #include "src/sksl/ir/SkSLForStatement.h"
34 #include "src/sksl/ir/SkSLFunctionCall.h"
35 #include "src/sksl/ir/SkSLFunctionDeclaration.h"
36 #include "src/sksl/ir/SkSLFunctionDefinition.h"
37 #include "src/sksl/ir/SkSLIfStatement.h"
38 #include "src/sksl/ir/SkSLIndexExpression.h"
39 #include "src/sksl/ir/SkSLIntLiteral.h"
40 #include "src/sksl/ir/SkSLPostfixExpression.h"
41 #include "src/sksl/ir/SkSLPrefixExpression.h"
42 #include "src/sksl/ir/SkSLReturnStatement.h"
43 #include "src/sksl/ir/SkSLSwitchStatement.h"
44 #include "src/sksl/ir/SkSLSwizzle.h"
45 #include "src/sksl/ir/SkSLTernaryExpression.h"
46 #include "src/sksl/ir/SkSLVarDeclarations.h"
47 #include "src/sksl/ir/SkSLVariableReference.h"
48
49 #include <algorithm>
50 #include <unordered_map>
51
52 namespace {
53 // sksl allows the optimizations of fast_mul(), so we want to use that most of the time.
54 // This little sneaky snippet of code lets us use ** as a fast multiply infix operator.
55 struct FastF32 { skvm::F32 val; };
operator *(skvm::F32 y)56 static FastF32 operator*(skvm::F32 y) { return {y}; }
operator *(skvm::F32 x,FastF32 y)57 static skvm::F32 operator*(skvm::F32 x, FastF32 y) { return fast_mul(x, y.val); }
operator *(float x,FastF32 y)58 static skvm::F32 operator*(float x, FastF32 y) { return fast_mul(x, y.val); }
59 }
60
61 namespace SkSL {
62
63 namespace {
64
65 // Holds scalars, vectors, or matrices
66 struct Value {
67 Value() = default;
ValueSkSL::__anon2fef52890211::Value68 explicit Value(size_t slots) {
69 fVals.resize(slots);
70 }
ValueSkSL::__anon2fef52890211::Value71 Value(skvm::F32 x) : fVals({ x.id }) {}
ValueSkSL::__anon2fef52890211::Value72 Value(skvm::I32 x) : fVals({ x.id }) {}
73
operator boolSkSL::__anon2fef52890211::Value74 explicit operator bool() const { return !fVals.empty(); }
75
slotsSkSL::__anon2fef52890211::Value76 size_t slots() const { return fVals.size(); }
77
78 struct ValRef {
ValRefSkSL::__anon2fef52890211::Value::ValRef79 ValRef(skvm::Val& val) : fVal(val) {}
80
operator =SkSL::__anon2fef52890211::Value::ValRef81 ValRef& operator=(ValRef v) { fVal = v.fVal; return *this; }
operator =SkSL::__anon2fef52890211::Value::ValRef82 ValRef& operator=(skvm::Val v) { fVal = v; return *this; }
operator =SkSL::__anon2fef52890211::Value::ValRef83 ValRef& operator=(skvm::F32 v) { fVal = v.id; return *this; }
operator =SkSL::__anon2fef52890211::Value::ValRef84 ValRef& operator=(skvm::I32 v) { fVal = v.id; return *this; }
85
operator skvm::ValSkSL::__anon2fef52890211::Value::ValRef86 operator skvm::Val() { return fVal; }
87
88 skvm::Val& fVal;
89 };
90
operator []SkSL::__anon2fef52890211::Value91 ValRef operator[](size_t i) {
92 // These redundant asserts work around what we think is a codegen bug in GCC 8.x for
93 // 32-bit x86 Debug builds.
94 SkASSERT(i < fVals.size());
95 return fVals[i];
96 }
operator []SkSL::__anon2fef52890211::Value97 skvm::Val operator[](size_t i) const {
98 // These redundant asserts work around what we think is a codegen bug in GCC 8.x for
99 // 32-bit x86 Debug builds.
100 SkASSERT(i < fVals.size());
101 return fVals[i];
102 }
103
asSpanSkSL::__anon2fef52890211::Value104 SkSpan<skvm::Val> asSpan() { return SkMakeSpan(fVals); }
105
106 private:
107 SkSTArray<4, skvm::Val, true> fVals;
108 };
109
110 } // namespace
111
112 class SkVMGenerator {
113 public:
114 SkVMGenerator(const Program& program,
115 skvm::Builder* builder,
116 SkSpan<skvm::Val> uniforms,
117 skvm::Coord device,
118 skvm::Coord local,
119 skvm::Color inputColor,
120 SampleChildFn sampleChild);
121
122 void writeFunction(const FunctionDefinition& function,
123 SkSpan<skvm::Val> arguments,
124 SkSpan<skvm::Val> outReturn);
125
126 private:
127 enum class Intrinsic {
128 // sksl_public.sksl declares these intrinsics (and defines some other inline)
129
130 // Angle & Trigonometry
131 kRadians,
132 kDegrees,
133 kSin,
134 kCos,
135 kTan,
136
137 kASin,
138 kACos,
139 kATan,
140
141 // Exponential
142 kPow,
143 kExp,
144 kLog,
145 kExp2,
146 kLog2,
147
148 kSqrt,
149 kInverseSqrt,
150
151 // Common
152 kAbs,
153 kSign,
154 kFloor,
155 kCeil,
156 kFract,
157 kMod,
158
159 kMin,
160 kMax,
161 kClamp,
162 kSaturate,
163 kMix,
164 kStep,
165 kSmoothstep,
166
167 // Geometric
168 kLength,
169 kDistance,
170 kDot,
171 kCross,
172 kNormalize,
173 kFaceforward,
174 kReflect,
175 kRefract,
176
177 // Matrix
178 kMatrixCompMult,
179 kInverse,
180
181 // Vector Relational
182 kLessThan,
183 kLessThanEqual,
184 kGreaterThan,
185 kGreaterThanEqual,
186 kEqual,
187 kNotEqual,
188
189 kAny,
190 kAll,
191 kNot,
192
193 // SkSL
194 kSample,
195 };
196
197 /**
198 * In SkSL, a Variable represents a named, typed value (along with qualifiers, etc).
199 * Every Variable is mapped to one (or several, contiguous) indices into our vector of
200 * skvm::Val. Those skvm::Val entries hold the current actual value of that variable.
201 *
202 * NOTE: Conceptually, each Variable is just mapped to a Value. We could implement it that way,
203 * (and eliminate the indirection), but it would add overhead for each Variable,
204 * and add additional (different) bookkeeping for things like lvalue-swizzles.
205 *
206 * Any time a variable appears in an expression, that's a VariableReference, which is a kind of
207 * Expression. Evaluating that VariableReference (or any other Expression) produces a Value,
208 * which is a set of skvm::Val. (This allows an Expression to produce a vector or matrix, in
209 * addition to a scalar).
210 *
211 * For a VariableReference, producing a Value is straightforward - we get the slot of the
212 * Variable (from fVariableMap), use that to look up the current skvm::Vals holding the
213 * variable's contents, and construct a Value with those ids.
214 */
215
216 /**
217 * Returns the slot holding v's Val(s). Allocates storage if this is first time 'v' is
218 * referenced. Compound variables (e.g. vectors) will consume more than one slot, with
219 * getSlot returning the start of the contiguous chunk of slots.
220 */
221 size_t getSlot(const Variable& v);
222
f32(skvm::Val id)223 skvm::F32 f32(skvm::Val id) { SkASSERT(id != skvm::NA); return {fBuilder, id}; }
i32(skvm::Val id)224 skvm::I32 i32(skvm::Val id) { SkASSERT(id != skvm::NA); return {fBuilder, id}; }
225
226 // Shorthand for scalars
f32(const Value & v)227 skvm::F32 f32(const Value& v) { SkASSERT(v.slots() == 1); return f32(v[0]); }
i32(const Value & v)228 skvm::I32 i32(const Value& v) { SkASSERT(v.slots() == 1); return i32(v[0]); }
229
230 template <typename Fn>
unary(const Value & v,Fn && fn)231 Value unary(const Value& v, Fn&& fn) {
232 Value result(v.slots());
233 for (size_t i = 0; i < v.slots(); ++i) {
234 result[i] = fn({fBuilder, v[i]});
235 }
236 return result;
237 }
238
mask()239 skvm::I32 mask() {
240 // As we encounter (possibly conditional) return statements, fReturned is updated to store
241 // the lanes that have already returned. For the remainder of the current function, those
242 // lanes should be disabled.
243 return fConditionMask & fLoopMask & ~currentFunction().fReturned;
244 }
245
246 size_t fieldSlotOffset(const FieldAccess& expr);
247 size_t indexSlotOffset(const IndexExpression& expr);
248
249 Value writeExpression(const Expression& expr);
250 Value writeBinaryExpression(const BinaryExpression& b);
251 Value writeAggregationConstructor(const AnyConstructor& c);
252 Value writeConstructorDiagonalMatrix(const ConstructorDiagonalMatrix& c);
253 Value writeConstructorMatrixResize(const ConstructorMatrixResize& c);
254 Value writeConstructorCast(const AnyConstructor& c);
255 Value writeConstructorSplat(const ConstructorSplat& c);
256 Value writeFunctionCall(const FunctionCall& c);
257 Value writeExternalFunctionCall(const ExternalFunctionCall& c);
258 Value writeFieldAccess(const FieldAccess& expr);
259 Value writeIndexExpression(const IndexExpression& expr);
260 Value writeIntrinsicCall(const FunctionCall& c);
261 Value writePostfixExpression(const PostfixExpression& p);
262 Value writePrefixExpression(const PrefixExpression& p);
263 Value writeSwizzle(const Swizzle& swizzle);
264 Value writeTernaryExpression(const TernaryExpression& t);
265 Value writeVariableExpression(const VariableReference& expr);
266
267 Value writeTypeConversion(const Value& src, Type::NumberKind srcKind, Type::NumberKind dstKind);
268
269 void writeStatement(const Statement& s);
270 void writeBlock(const Block& b);
271 void writeBreakStatement();
272 void writeContinueStatement();
273 void writeForStatement(const ForStatement& f);
274 void writeIfStatement(const IfStatement& stmt);
275 void writeReturnStatement(const ReturnStatement& r);
276 void writeVarDeclaration(const VarDeclaration& decl);
277
278 Value writeStore(const Expression& lhs, const Value& rhs);
279
280 Value writeMatrixInverse2x2(const Value& m);
281 Value writeMatrixInverse3x3(const Value& m);
282 Value writeMatrixInverse4x4(const Value& m);
283
284 //
285 // Global state for the lifetime of the generator:
286 //
287 const Program& fProgram;
288 skvm::Builder* fBuilder;
289
290 const skvm::Coord fLocalCoord;
291 const skvm::Color fInputColor;
292 const SampleChildFn fSampleChild;
293
294 // [Variable, first slot in fSlots]
295 std::unordered_map<const Variable*, size_t> fVariableMap;
296 std::vector<skvm::Val> fSlots;
297
298 // Conditional execution mask (managed by ScopedCondition, and tied to control-flow scopes)
299 skvm::I32 fConditionMask;
300
301 // Similar: loop execution masks. Each loop starts with all lanes active (fLoopMask).
302 // 'break' disables a lane in fLoopMask until the loop finishes
303 // 'continue' disables a lane in fLoopMask, and sets fContinueMask to be re-enabled on the next
304 // iteration
305 skvm::I32 fLoopMask;
306 skvm::I32 fContinueMask;
307
308 //
309 // State that's local to the generation of a single function:
310 //
311 struct Function {
312 const SkSpan<skvm::Val> fReturnValue;
313 skvm::I32 fReturned;
314 };
315 std::vector<Function> fFunctionStack;
currentFunction()316 Function& currentFunction() { return fFunctionStack.back(); }
317
318 class ScopedCondition {
319 public:
ScopedCondition(SkVMGenerator * generator,skvm::I32 mask)320 ScopedCondition(SkVMGenerator* generator, skvm::I32 mask)
321 : fGenerator(generator), fOldConditionMask(fGenerator->fConditionMask) {
322 fGenerator->fConditionMask &= mask;
323 }
324
~ScopedCondition()325 ~ScopedCondition() { fGenerator->fConditionMask = fOldConditionMask; }
326
327 private:
328 SkVMGenerator* fGenerator;
329 skvm::I32 fOldConditionMask;
330 };
331 };
332
base_number_kind(const Type & type)333 static Type::NumberKind base_number_kind(const Type& type) {
334 if (type.typeKind() == Type::TypeKind::kMatrix || type.typeKind() == Type::TypeKind::kVector) {
335 return base_number_kind(type.componentType());
336 }
337 return type.numberKind();
338 }
339
is_uniform(const SkSL::Variable & var)340 static inline bool is_uniform(const SkSL::Variable& var) {
341 return var.modifiers().fFlags & Modifiers::kUniform_Flag;
342 }
343
SkVMGenerator(const Program & program,skvm::Builder * builder,SkSpan<skvm::Val> uniforms,skvm::Coord device,skvm::Coord local,skvm::Color inputColor,SampleChildFn sampleChild)344 SkVMGenerator::SkVMGenerator(const Program& program,
345 skvm::Builder* builder,
346 SkSpan<skvm::Val> uniforms,
347 skvm::Coord device,
348 skvm::Coord local,
349 skvm::Color inputColor,
350 SampleChildFn sampleChild)
351 : fProgram(program)
352 , fBuilder(builder)
353 , fLocalCoord(local)
354 , fInputColor(inputColor)
355 , fSampleChild(std::move(sampleChild)) {
356 fConditionMask = fLoopMask = fBuilder->splat(0xffff'ffff);
357
358 // Now, add storage for each global variable (including uniforms) to fSlots, and entries in
359 // fVariableMap to remember where every variable is stored.
360 const skvm::Val* uniformIter = uniforms.begin();
361 size_t fpCount = 0;
362 for (const ProgramElement* e : fProgram.elements()) {
363 if (e->is<GlobalVarDeclaration>()) {
364 const GlobalVarDeclaration& gvd = e->as<GlobalVarDeclaration>();
365 const VarDeclaration& decl = gvd.declaration()->as<VarDeclaration>();
366 const Variable& var = decl.var();
367 SkASSERT(fVariableMap.find(&var) == fVariableMap.end());
368
369 // For most variables, fVariableMap stores an index into fSlots, but for children,
370 // fVariableMap stores the index to pass to fSampleChild().
371 if (var.type().isEffectChild()) {
372 fVariableMap[&var] = fpCount++;
373 continue;
374 }
375
376 // Opaque types include fragment processors, GL objects (samplers, textures, etc), and
377 // special types like 'void'. Of those, only fragment processors are legal variables.
378 SkASSERT(!var.type().isOpaque());
379
380 // getSlot() allocates space for the variable's value in fSlots, initializes it to zero,
381 // and populates fVariableMap.
382 size_t slot = this->getSlot(var),
383 nslots = var.type().slotCount();
384
385 if (int builtin = var.modifiers().fLayout.fBuiltin; builtin >= 0) {
386 // builtin variables are system-defined, with special semantics. The only builtin
387 // variable exposed to runtime effects is sk_FragCoord.
388 switch (builtin) {
389 case SK_FRAGCOORD_BUILTIN:
390 SkASSERT(nslots == 4);
391 fSlots[slot + 0] = device.x.id;
392 fSlots[slot + 1] = device.y.id;
393 fSlots[slot + 2] = fBuilder->splat(0.0f).id;
394 fSlots[slot + 3] = fBuilder->splat(1.0f).id;
395 break;
396 default:
397 SkDEBUGFAIL("Unsupported builtin");
398 }
399 } else if (is_uniform(var)) {
400 // For uniforms, copy the supplied IDs over
401 SkASSERT(uniformIter + nslots <= uniforms.end());
402 std::copy(uniformIter, uniformIter + nslots, fSlots.begin() + slot);
403 uniformIter += nslots;
404 } else if (decl.value()) {
405 // For other globals, populate with the initializer expression (if there is one)
406 Value val = this->writeExpression(*decl.value());
407 for (size_t i = 0; i < nslots; ++i) {
408 fSlots[slot + i] = val[i];
409 }
410 }
411 }
412 }
413 SkASSERT(uniformIter == uniforms.end());
414 }
415
writeFunction(const FunctionDefinition & function,SkSpan<skvm::Val> arguments,SkSpan<skvm::Val> outReturn)416 void SkVMGenerator::writeFunction(const FunctionDefinition& function,
417 SkSpan<skvm::Val> arguments,
418 SkSpan<skvm::Val> outReturn) {
419 const FunctionDeclaration& decl = function.declaration();
420 SkASSERT(decl.returnType().slotCount() == outReturn.size());
421
422 fFunctionStack.push_back({outReturn, /*returned=*/fBuilder->splat(0)});
423
424 // For all parameters, copy incoming argument IDs to our vector of (all) variable IDs
425 size_t argIdx = 0;
426 for (const Variable* p : decl.parameters()) {
427 size_t paramSlot = this->getSlot(*p),
428 nslots = p->type().slotCount();
429
430 for (size_t i = 0; i < nslots; ++i) {
431 fSlots[paramSlot + i] = arguments[argIdx + i];
432 }
433 argIdx += nslots;
434 }
435 SkASSERT(argIdx == arguments.size());
436
437 this->writeStatement(*function.body());
438
439 // Copy 'out' and 'inout' parameters back to their caller-supplied argument storage
440 argIdx = 0;
441 for (const Variable* p : decl.parameters()) {
442 size_t nslots = p->type().slotCount();
443
444 if (p->modifiers().fFlags & Modifiers::kOut_Flag) {
445 size_t paramSlot = this->getSlot(*p);
446 for (size_t i = 0; i < nslots; ++i) {
447 arguments[argIdx + i] = fSlots[paramSlot + i];
448 }
449 }
450 argIdx += nslots;
451 }
452 SkASSERT(argIdx == arguments.size());
453
454 fFunctionStack.pop_back();
455 }
456
getSlot(const Variable & v)457 size_t SkVMGenerator::getSlot(const Variable& v) {
458 auto entry = fVariableMap.find(&v);
459 if (entry != fVariableMap.end()) {
460 return entry->second;
461 }
462
463 size_t slot = fSlots.size(),
464 nslots = v.type().slotCount();
465 fSlots.resize(slot + nslots, fBuilder->splat(0.0f).id);
466 fVariableMap[&v] = slot;
467 return slot;
468 }
469
writeBinaryExpression(const BinaryExpression & b)470 Value SkVMGenerator::writeBinaryExpression(const BinaryExpression& b) {
471 const Expression& left = *b.left();
472 const Expression& right = *b.right();
473 Operator op = b.getOperator();
474 if (op.kind() == Token::Kind::TK_EQ) {
475 return this->writeStore(left, this->writeExpression(right));
476 }
477
478 const Type& lType = left.type();
479 const Type& rType = right.type();
480 bool lVecOrMtx = (lType.isVector() || lType.isMatrix());
481 bool rVecOrMtx = (rType.isVector() || rType.isMatrix());
482 bool isAssignment = op.isAssignment();
483 if (isAssignment) {
484 op = op.removeAssignment();
485 }
486 Type::NumberKind nk = base_number_kind(lType);
487
488 // A few ops require special treatment:
489 switch (op.kind()) {
490 case Token::Kind::TK_LOGICALAND: {
491 SkASSERT(!isAssignment);
492 SkASSERT(nk == Type::NumberKind::kBoolean);
493 skvm::I32 lVal = i32(this->writeExpression(left));
494 ScopedCondition shortCircuit(this, lVal);
495 skvm::I32 rVal = i32(this->writeExpression(right));
496 return lVal & rVal;
497 }
498 case Token::Kind::TK_LOGICALOR: {
499 SkASSERT(!isAssignment);
500 SkASSERT(nk == Type::NumberKind::kBoolean);
501 skvm::I32 lVal = i32(this->writeExpression(left));
502 ScopedCondition shortCircuit(this, ~lVal);
503 skvm::I32 rVal = i32(this->writeExpression(right));
504 return lVal | rVal;
505 }
506 case Token::Kind::TK_COMMA:
507 // We write the left side of the expression to preserve its side effects, even though we
508 // immediately discard the result.
509 this->writeExpression(left);
510 return this->writeExpression(right);
511 default:
512 break;
513 }
514
515 // All of the other ops always evaluate both sides of the expression
516 Value lVal = this->writeExpression(left),
517 rVal = this->writeExpression(right);
518
519 // Special case for M*V, V*M, M*M (but not V*V!)
520 if (op.kind() == Token::Kind::TK_STAR
521 && lVecOrMtx && rVecOrMtx && !(lType.isVector() && rType.isVector())) {
522 int rCols = rType.columns(),
523 rRows = rType.rows(),
524 lCols = lType.columns(),
525 lRows = lType.rows();
526 // M*V treats the vector as a column
527 if (rType.isVector()) {
528 std::swap(rCols, rRows);
529 }
530 SkASSERT(lCols == rRows);
531 SkASSERT(b.type().slotCount() == static_cast<size_t>(lRows * rCols));
532 Value result(lRows * rCols);
533 size_t resultIdx = 0;
534 for (int c = 0; c < rCols; ++c)
535 for (int r = 0; r < lRows; ++r) {
536 skvm::F32 sum = fBuilder->splat(0.0f);
537 for (int j = 0; j < lCols; ++j) {
538 sum += f32(lVal[j*lRows + r]) * f32(rVal[c*rRows + j]);
539 }
540 result[resultIdx++] = sum;
541 }
542 SkASSERT(resultIdx == result.slots());
543 return isAssignment ? this->writeStore(left, result) : result;
544 }
545
546 size_t nslots = std::max(lVal.slots(), rVal.slots());
547
548 auto binary = [&](auto&& f_fn, auto&& i_fn) {
549 Value result(nslots);
550 for (size_t i = 0; i < nslots; ++i) {
551 // If one side is scalar, replicate it to all channels
552 skvm::Val L = lVal.slots() == 1 ? lVal[0] : lVal[i],
553 R = rVal.slots() == 1 ? rVal[0] : rVal[i];
554 if (nk == Type::NumberKind::kFloat) {
555 result[i] = f_fn(f32(L), f32(R));
556 } else {
557 result[i] = i_fn(i32(L), i32(R));
558 }
559 }
560 return isAssignment ? this->writeStore(left, result) : result;
561 };
562
563 auto unsupported_f = [&](skvm::F32, skvm::F32) {
564 SkDEBUGFAIL("Unsupported operator");
565 return skvm::F32{};
566 };
567
568 switch (op.kind()) {
569 case Token::Kind::TK_EQEQ: {
570 SkASSERT(!isAssignment);
571 Value cmp = binary([](skvm::F32 x, skvm::F32 y) { return x == y; },
572 [](skvm::I32 x, skvm::I32 y) { return x == y; });
573 skvm::I32 folded = i32(cmp[0]);
574 for (size_t i = 1; i < nslots; ++i) {
575 folded &= i32(cmp[i]);
576 }
577 return folded;
578 }
579 case Token::Kind::TK_NEQ: {
580 SkASSERT(!isAssignment);
581 Value cmp = binary([](skvm::F32 x, skvm::F32 y) { return x != y; },
582 [](skvm::I32 x, skvm::I32 y) { return x != y; });
583 skvm::I32 folded = i32(cmp[0]);
584 for (size_t i = 1; i < nslots; ++i) {
585 folded |= i32(cmp[i]);
586 }
587 return folded;
588 }
589 case Token::Kind::TK_GT:
590 return binary([](skvm::F32 x, skvm::F32 y) { return x > y; },
591 [](skvm::I32 x, skvm::I32 y) { return x > y; });
592 case Token::Kind::TK_GTEQ:
593 return binary([](skvm::F32 x, skvm::F32 y) { return x >= y; },
594 [](skvm::I32 x, skvm::I32 y) { return x >= y; });
595 case Token::Kind::TK_LT:
596 return binary([](skvm::F32 x, skvm::F32 y) { return x < y; },
597 [](skvm::I32 x, skvm::I32 y) { return x < y; });
598 case Token::Kind::TK_LTEQ:
599 return binary([](skvm::F32 x, skvm::F32 y) { return x <= y; },
600 [](skvm::I32 x, skvm::I32 y) { return x <= y; });
601
602 case Token::Kind::TK_PLUS:
603 return binary([](skvm::F32 x, skvm::F32 y) { return x + y; },
604 [](skvm::I32 x, skvm::I32 y) { return x + y; });
605 case Token::Kind::TK_MINUS:
606 return binary([](skvm::F32 x, skvm::F32 y) { return x - y; },
607 [](skvm::I32 x, skvm::I32 y) { return x - y; });
608 case Token::Kind::TK_STAR:
609 return binary([](skvm::F32 x, skvm::F32 y) { return x ** y; },
610 [](skvm::I32 x, skvm::I32 y) { return x * y; });
611 case Token::Kind::TK_SLASH:
612 // Minimum spec (GLSL ES 1.0) has very loose requirements for integer operations.
613 // (Low-end GPUs may not have integer ALUs). Given that, we are allowed to do floating
614 // point division plus rounding. Section 10.28 of the spec even clarifies that the
615 // rounding mode is undefined (but round-towards-zero is the obvious/common choice).
616 return binary([](skvm::F32 x, skvm::F32 y) { return x / y; },
617 [](skvm::I32 x, skvm::I32 y) {
618 return skvm::trunc(skvm::to_F32(x) / skvm::to_F32(y));
619 });
620
621 case Token::Kind::TK_BITWISEXOR:
622 case Token::Kind::TK_LOGICALXOR:
623 return binary(unsupported_f, [](skvm::I32 x, skvm::I32 y) { return x ^ y; });
624 case Token::Kind::TK_BITWISEAND:
625 return binary(unsupported_f, [](skvm::I32 x, skvm::I32 y) { return x & y; });
626 case Token::Kind::TK_BITWISEOR:
627 return binary(unsupported_f, [](skvm::I32 x, skvm::I32 y) { return x | y; });
628
629 // These three operators are all 'reserved' (illegal) in our minimum spec, but will require
630 // implementation in the future.
631 case Token::Kind::TK_PERCENT:
632 case Token::Kind::TK_SHL:
633 case Token::Kind::TK_SHR:
634 default:
635 SkDEBUGFAIL("Unsupported operator");
636 return {};
637 }
638 }
639
writeAggregationConstructor(const AnyConstructor & c)640 Value SkVMGenerator::writeAggregationConstructor(const AnyConstructor& c) {
641 Value result(c.type().slotCount());
642 size_t resultIdx = 0;
643 for (const auto &arg : c.argumentSpan()) {
644 Value tmp = this->writeExpression(*arg);
645 for (size_t tmpSlot = 0; tmpSlot < tmp.slots(); ++tmpSlot) {
646 result[resultIdx++] = tmp[tmpSlot];
647 }
648 }
649 return result;
650 }
651
writeTypeConversion(const Value & src,Type::NumberKind srcKind,Type::NumberKind dstKind)652 Value SkVMGenerator::writeTypeConversion(const Value& src,
653 Type::NumberKind srcKind,
654 Type::NumberKind dstKind) {
655 // Conversion among "similar" types (floatN <-> halfN), (shortN <-> intN), etc. is a no-op.
656 if (srcKind == dstKind) {
657 return src;
658 }
659
660 // TODO: Handle signed vs. unsigned. GLSL ES 1.0 only has 'int', so no problem yet.
661 Value dst(src.slots());
662 switch (dstKind) {
663 case Type::NumberKind::kFloat:
664 if (srcKind == Type::NumberKind::kSigned) {
665 // int -> float
666 for (size_t i = 0; i < src.slots(); ++i) {
667 dst[i] = skvm::to_F32(i32(src[i]));
668 }
669 return dst;
670 }
671 if (srcKind == Type::NumberKind::kBoolean) {
672 // bool -> float
673 for (size_t i = 0; i < src.slots(); ++i) {
674 dst[i] = skvm::select(i32(src[i]), 1.0f, 0.0f);
675 }
676 return dst;
677 }
678 break;
679
680 case Type::NumberKind::kSigned:
681 if (srcKind == Type::NumberKind::kFloat) {
682 // float -> int
683 for (size_t i = 0; i < src.slots(); ++i) {
684 dst[i] = skvm::trunc(f32(src[i]));
685 }
686 return dst;
687 }
688 if (srcKind == Type::NumberKind::kBoolean) {
689 // bool -> int
690 for (size_t i = 0; i < src.slots(); ++i) {
691 dst[i] = skvm::select(i32(src[i]), 1, 0);
692 }
693 return dst;
694 }
695 break;
696
697 case Type::NumberKind::kBoolean:
698 if (srcKind == Type::NumberKind::kSigned) {
699 // int -> bool
700 for (size_t i = 0; i < src.slots(); ++i) {
701 dst[i] = i32(src[i]) != 0;
702 }
703 return dst;
704 }
705 if (srcKind == Type::NumberKind::kFloat) {
706 // float -> bool
707 for (size_t i = 0; i < src.slots(); ++i) {
708 dst[i] = f32(src[i]) != 0.0;
709 }
710 return dst;
711 }
712 break;
713
714 default:
715 break;
716 }
717 SkDEBUGFAILF("Unsupported type conversion: %d -> %d", srcKind, dstKind);
718 return {};
719 }
720
writeConstructorCast(const AnyConstructor & c)721 Value SkVMGenerator::writeConstructorCast(const AnyConstructor& c) {
722 auto arguments = c.argumentSpan();
723 SkASSERT(arguments.size() == 1);
724 const Expression& argument = *arguments.front();
725
726 const Type& srcType = argument.type();
727 const Type& dstType = c.type();
728 Type::NumberKind srcKind = base_number_kind(srcType);
729 Type::NumberKind dstKind = base_number_kind(dstType);
730 Value src = this->writeExpression(argument);
731 return this->writeTypeConversion(src, srcKind, dstKind);
732 }
733
writeConstructorSplat(const ConstructorSplat & c)734 Value SkVMGenerator::writeConstructorSplat(const ConstructorSplat& c) {
735 SkASSERT(c.type().isVector());
736 SkASSERT(c.argument()->type().isScalar());
737 int columns = c.type().columns();
738
739 // Splat the argument across all components of a vector.
740 Value src = this->writeExpression(*c.argument());
741 Value dst(columns);
742 for (int i = 0; i < columns; ++i) {
743 dst[i] = src[0];
744 }
745 return dst;
746 }
747
writeConstructorDiagonalMatrix(const ConstructorDiagonalMatrix & c)748 Value SkVMGenerator::writeConstructorDiagonalMatrix(const ConstructorDiagonalMatrix& c) {
749 const Type& dstType = c.type();
750 SkASSERT(dstType.isMatrix());
751 SkASSERT(c.argument()->type() == dstType.componentType());
752
753 Value src = this->writeExpression(*c.argument());
754 Value dst(dstType.rows() * dstType.columns());
755 size_t dstIndex = 0;
756
757 // Matrix-from-scalar builds a diagonal scale matrix
758 for (int c = 0; c < dstType.columns(); ++c) {
759 for (int r = 0; r < dstType.rows(); ++r) {
760 dst[dstIndex++] = (c == r ? f32(src) : fBuilder->splat(0.0f));
761 }
762 }
763
764 SkASSERT(dstIndex == dst.slots());
765 return dst;
766 }
767
writeConstructorMatrixResize(const ConstructorMatrixResize & c)768 Value SkVMGenerator::writeConstructorMatrixResize(const ConstructorMatrixResize& c) {
769 const Type& srcType = c.argument()->type();
770 const Type& dstType = c.type();
771 Value src = this->writeExpression(*c.argument());
772 Value dst(dstType.rows() * dstType.columns());
773
774 // Matrix-from-matrix uses src where it overlaps, and fills in missing fields with identity.
775 size_t dstIndex = 0;
776 for (int c = 0; c < dstType.columns(); ++c) {
777 for (int r = 0; r < dstType.rows(); ++r) {
778 if (c < srcType.columns() && r < srcType.rows()) {
779 dst[dstIndex++] = src[c * srcType.rows() + r];
780 } else {
781 dst[dstIndex++] = fBuilder->splat(c == r ? 1.0f : 0.0f);
782 }
783 }
784 }
785
786 SkASSERT(dstIndex == dst.slots());
787 return dst;
788 }
789
fieldSlotOffset(const FieldAccess & expr)790 size_t SkVMGenerator::fieldSlotOffset(const FieldAccess& expr) {
791 size_t offset = 0;
792 for (int i = 0; i < expr.fieldIndex(); ++i) {
793 offset += (*expr.base()->type().fields()[i].fType).slotCount();
794 }
795 return offset;
796 }
797
writeFieldAccess(const FieldAccess & expr)798 Value SkVMGenerator::writeFieldAccess(const FieldAccess& expr) {
799 Value base = this->writeExpression(*expr.base());
800 Value field(expr.type().slotCount());
801 size_t offset = this->fieldSlotOffset(expr);
802 for (size_t i = 0; i < field.slots(); ++i) {
803 field[i] = base[offset + i];
804 }
805 return field;
806 }
807
indexSlotOffset(const IndexExpression & expr)808 size_t SkVMGenerator::indexSlotOffset(const IndexExpression& expr) {
809 Value index = this->writeExpression(*expr.index());
810 int indexValue = -1;
811 SkAssertResult(fBuilder->allImm(index[0], &indexValue));
812
813 // When indexing by a literal, the front-end guarantees that we don't go out of bounds.
814 // But when indexing by a loop variable, it's possible to generate out-of-bounds access.
815 // The GLSL spec leaves that behavior undefined - we'll just clamp everything here.
816 indexValue = SkTPin(indexValue, 0, expr.base()->type().columns() - 1);
817
818 size_t stride = expr.type().slotCount();
819 return indexValue * stride;
820 }
821
writeIndexExpression(const IndexExpression & expr)822 Value SkVMGenerator::writeIndexExpression(const IndexExpression& expr) {
823 Value base = this->writeExpression(*expr.base());
824 Value element(expr.type().slotCount());
825 size_t offset = this->indexSlotOffset(expr);
826 for (size_t i = 0; i < element.slots(); ++i) {
827 element[i] = base[offset + i];
828 }
829 return element;
830 }
831
writeVariableExpression(const VariableReference & expr)832 Value SkVMGenerator::writeVariableExpression(const VariableReference& expr) {
833 size_t slot = this->getSlot(*expr.variable());
834 Value val(expr.type().slotCount());
835 for (size_t i = 0; i < val.slots(); ++i) {
836 val[i] = fSlots[slot + i];
837 }
838 return val;
839 }
840
writeMatrixInverse2x2(const Value & m)841 Value SkVMGenerator::writeMatrixInverse2x2(const Value& m) {
842 SkASSERT(m.slots() == 4);
843 skvm::F32 a = f32(m[0]),
844 b = f32(m[1]),
845 c = f32(m[2]),
846 d = f32(m[3]);
847 skvm::F32 idet = 1.0f / (a*d - b*c);
848
849 Value result(m.slots());
850 result[0] = ( d ** idet);
851 result[1] = (-b ** idet);
852 result[2] = (-c ** idet);
853 result[3] = ( a ** idet);
854 return result;
855 }
856
writeMatrixInverse3x3(const Value & m)857 Value SkVMGenerator::writeMatrixInverse3x3(const Value& m) {
858 SkASSERT(m.slots() == 9);
859 skvm::F32 a11 = f32(m[0]), a12 = f32(m[3]), a13 = f32(m[6]),
860 a21 = f32(m[1]), a22 = f32(m[4]), a23 = f32(m[7]),
861 a31 = f32(m[2]), a32 = f32(m[5]), a33 = f32(m[8]);
862 skvm::F32 idet = 1.0f / (a11*a22*a33 + a12*a23*a31 + a13*a21*a32 -
863 a11*a23*a32 - a12*a21*a33 - a13*a22*a31);
864
865 Value result(m.slots());
866 result[0] = ((a22**a33 - a23**a32) ** idet);
867 result[1] = ((a23**a31 - a21**a33) ** idet);
868 result[2] = ((a21**a32 - a22**a31) ** idet);
869 result[3] = ((a13**a32 - a12**a33) ** idet);
870 result[4] = ((a11**a33 - a13**a31) ** idet);
871 result[5] = ((a12**a31 - a11**a32) ** idet);
872 result[6] = ((a12**a23 - a13**a22) ** idet);
873 result[7] = ((a13**a21 - a11**a23) ** idet);
874 result[8] = ((a11**a22 - a12**a21) ** idet);
875 return result;
876 }
877
writeMatrixInverse4x4(const Value & m)878 Value SkVMGenerator::writeMatrixInverse4x4(const Value& m) {
879 SkASSERT(m.slots() == 16);
880 skvm::F32 a00 = f32(m[0]), a10 = f32(m[4]), a20 = f32(m[ 8]), a30 = f32(m[12]),
881 a01 = f32(m[1]), a11 = f32(m[5]), a21 = f32(m[ 9]), a31 = f32(m[13]),
882 a02 = f32(m[2]), a12 = f32(m[6]), a22 = f32(m[10]), a32 = f32(m[14]),
883 a03 = f32(m[3]), a13 = f32(m[7]), a23 = f32(m[11]), a33 = f32(m[15]);
884
885 skvm::F32 b00 = a00**a11 - a01**a10,
886 b01 = a00**a12 - a02**a10,
887 b02 = a00**a13 - a03**a10,
888 b03 = a01**a12 - a02**a11,
889 b04 = a01**a13 - a03**a11,
890 b05 = a02**a13 - a03**a12,
891 b06 = a20**a31 - a21**a30,
892 b07 = a20**a32 - a22**a30,
893 b08 = a20**a33 - a23**a30,
894 b09 = a21**a32 - a22**a31,
895 b10 = a21**a33 - a23**a31,
896 b11 = a22**a33 - a23**a32;
897
898 skvm::F32 idet = 1.0f / (b00**b11 - b01**b10 + b02**b09 + b03**b08 - b04**b07 + b05**b06);
899
900 b00 *= idet;
901 b01 *= idet;
902 b02 *= idet;
903 b03 *= idet;
904 b04 *= idet;
905 b05 *= idet;
906 b06 *= idet;
907 b07 *= idet;
908 b08 *= idet;
909 b09 *= idet;
910 b10 *= idet;
911 b11 *= idet;
912
913 Value result(m.slots());
914 result[ 0] = (a11*b11 - a12*b10 + a13*b09);
915 result[ 1] = (a02*b10 - a01*b11 - a03*b09);
916 result[ 2] = (a31*b05 - a32*b04 + a33*b03);
917 result[ 3] = (a22*b04 - a21*b05 - a23*b03);
918 result[ 4] = (a12*b08 - a10*b11 - a13*b07);
919 result[ 5] = (a00*b11 - a02*b08 + a03*b07);
920 result[ 6] = (a32*b02 - a30*b05 - a33*b01);
921 result[ 7] = (a20*b05 - a22*b02 + a23*b01);
922 result[ 8] = (a10*b10 - a11*b08 + a13*b06);
923 result[ 9] = (a01*b08 - a00*b10 - a03*b06);
924 result[10] = (a30*b04 - a31*b02 + a33*b00);
925 result[11] = (a21*b02 - a20*b04 - a23*b00);
926 result[12] = (a11*b07 - a10*b09 - a12*b06);
927 result[13] = (a00*b09 - a01*b07 + a02*b06);
928 result[14] = (a31*b01 - a30*b03 - a32*b00);
929 result[15] = (a20*b03 - a21*b01 + a22*b00);
930 return result;
931 }
932
writeIntrinsicCall(const FunctionCall & c)933 Value SkVMGenerator::writeIntrinsicCall(const FunctionCall& c) {
934 IntrinsicKind intrinsicKind = c.function().intrinsicKind();
935 SkASSERT(intrinsicKind != kNotIntrinsic);
936
937 const size_t nargs = c.arguments().size();
938
939 if (intrinsicKind == k_sample_IntrinsicKind) {
940 // Sample is very special, the first argument is a child (shader/colorFilter), which can't
941 // be evaluated
942 SkASSERT(nargs == 2);
943 const Expression* child = c.arguments()[0].get();
944 SkASSERT(child->type().isEffectChild());
945 SkASSERT(child->is<VariableReference>());
946
947 auto fp_it = fVariableMap.find(child->as<VariableReference>().variable());
948 SkASSERT(fp_it != fVariableMap.end());
949
950 // Shaders require a coordinate argument. Color filters require a color argument.
951 // When we call sampleChild, the other value remains the incoming default.
952 skvm::Color inColor = fInputColor;
953 skvm::Coord coord = fLocalCoord;
954 const Expression* arg = c.arguments()[1].get();
955 Value argVal = this->writeExpression(*arg);
956
957 if (child->type().typeKind() == Type::TypeKind::kShader) {
958 SkASSERT(arg->type() == *fProgram.fContext->fTypes.fFloat2);
959 coord = {f32(argVal[0]), f32(argVal[1])};
960 } else {
961 SkASSERT(child->type().typeKind() == Type::TypeKind::kColorFilter);
962 SkASSERT(arg->type() == *fProgram.fContext->fTypes.fHalf4 ||
963 arg->type() == *fProgram.fContext->fTypes.fFloat4);
964 inColor = {f32(argVal[0]), f32(argVal[1]), f32(argVal[2]), f32(argVal[3])};
965 }
966
967 skvm::Color color = fSampleChild(fp_it->second, coord, inColor);
968 Value result(4);
969 result[0] = color.r;
970 result[1] = color.g;
971 result[2] = color.b;
972 result[3] = color.a;
973 return result;
974 }
975
976 const size_t kMaxArgs = 3; // eg: clamp, mix, smoothstep
977 Value args[kMaxArgs];
978 SkASSERT(nargs >= 1 && nargs <= SK_ARRAY_COUNT(args));
979
980 // All other intrinsics have at most three args, and those can all be evaluated up front:
981 for (size_t i = 0; i < nargs; ++i) {
982 args[i] = this->writeExpression(*c.arguments()[i]);
983 }
984 Type::NumberKind nk = base_number_kind(c.arguments()[0]->type());
985
986 auto binary = [&](auto&& fn) {
987 // Binary intrinsics are (vecN, vecN), (vecN, float), or (float, vecN)
988 size_t nslots = std::max(args[0].slots(), args[1].slots());
989 Value result(nslots);
990 SkASSERT(args[0].slots() == nslots || args[0].slots() == 1);
991 SkASSERT(args[1].slots() == nslots || args[1].slots() == 1);
992
993 for (size_t i = 0; i < nslots; ++i) {
994 result[i] = fn({fBuilder, args[0][args[0].slots() == 1 ? 0 : i]},
995 {fBuilder, args[1][args[1].slots() == 1 ? 0 : i]});
996 }
997 return result;
998 };
999
1000 auto ternary = [&](auto&& fn) {
1001 // Ternary intrinsics are some combination of vecN and float
1002 size_t nslots = std::max({args[0].slots(), args[1].slots(), args[2].slots()});
1003 Value result(nslots);
1004 SkASSERT(args[0].slots() == nslots || args[0].slots() == 1);
1005 SkASSERT(args[1].slots() == nslots || args[1].slots() == 1);
1006 SkASSERT(args[2].slots() == nslots || args[2].slots() == 1);
1007
1008 for (size_t i = 0; i < nslots; ++i) {
1009 result[i] = fn({fBuilder, args[0][args[0].slots() == 1 ? 0 : i]},
1010 {fBuilder, args[1][args[1].slots() == 1 ? 0 : i]},
1011 {fBuilder, args[2][args[2].slots() == 1 ? 0 : i]});
1012 }
1013 return result;
1014 };
1015
1016 auto dot = [&](const Value& x, const Value& y) {
1017 SkASSERT(x.slots() == y.slots());
1018 skvm::F32 result = f32(x[0]) * f32(y[0]);
1019 for (size_t i = 1; i < x.slots(); ++i) {
1020 result += f32(x[i]) * f32(y[i]);
1021 }
1022 return result;
1023 };
1024
1025 switch (intrinsicKind) {
1026 case k_radians_IntrinsicKind:
1027 return unary(args[0], [](skvm::F32 deg) { return deg * (SK_FloatPI / 180); });
1028 case k_degrees_IntrinsicKind:
1029 return unary(args[0], [](skvm::F32 rad) { return rad * (180 / SK_FloatPI); });
1030
1031 case k_sin_IntrinsicKind: return unary(args[0], skvm::approx_sin);
1032 case k_cos_IntrinsicKind: return unary(args[0], skvm::approx_cos);
1033 case k_tan_IntrinsicKind: return unary(args[0], skvm::approx_tan);
1034
1035 case k_asin_IntrinsicKind: return unary(args[0], skvm::approx_asin);
1036 case k_acos_IntrinsicKind: return unary(args[0], skvm::approx_acos);
1037
1038 case k_atan_IntrinsicKind: return nargs == 1 ? unary(args[0], skvm::approx_atan)
1039 : binary(skvm::approx_atan2);
1040
1041 case k_pow_IntrinsicKind:
1042 return binary([](skvm::F32 x, skvm::F32 y) { return skvm::approx_powf(x, y); });
1043 case k_exp_IntrinsicKind: return unary(args[0], skvm::approx_exp);
1044 case k_log_IntrinsicKind: return unary(args[0], skvm::approx_log);
1045 case k_exp2_IntrinsicKind: return unary(args[0], skvm::approx_pow2);
1046 case k_log2_IntrinsicKind: return unary(args[0], skvm::approx_log2);
1047
1048 case k_sqrt_IntrinsicKind: return unary(args[0], skvm::sqrt);
1049 case k_inversesqrt_IntrinsicKind:
1050 return unary(args[0], [](skvm::F32 x) { return 1.0f / skvm::sqrt(x); });
1051
1052 case k_abs_IntrinsicKind: return unary(args[0], skvm::abs);
1053 case k_sign_IntrinsicKind:
1054 return unary(args[0], [](skvm::F32 x) { return select(x < 0, -1.0f,
1055 select(x > 0, +1.0f, 0.0f)); });
1056 case k_floor_IntrinsicKind: return unary(args[0], skvm::floor);
1057 case k_ceil_IntrinsicKind: return unary(args[0], skvm::ceil);
1058 case k_fract_IntrinsicKind: return unary(args[0], skvm::fract);
1059 case k_mod_IntrinsicKind:
1060 return binary([](skvm::F32 x, skvm::F32 y) { return x - y*skvm::floor(x / y); });
1061
1062 case k_min_IntrinsicKind:
1063 return binary([](skvm::F32 x, skvm::F32 y) { return skvm::min(x, y); });
1064 case k_max_IntrinsicKind:
1065 return binary([](skvm::F32 x, skvm::F32 y) { return skvm::max(x, y); });
1066 case k_clamp_IntrinsicKind:
1067 return ternary(
1068 [](skvm::F32 x, skvm::F32 lo, skvm::F32 hi) { return skvm::clamp(x, lo, hi); });
1069 case k_saturate_IntrinsicKind:
1070 return unary(args[0], [](skvm::F32 x) { return skvm::clamp01(x); });
1071 case k_mix_IntrinsicKind:
1072 return ternary(
1073 [](skvm::F32 x, skvm::F32 y, skvm::F32 t) { return skvm::lerp(x, y, t); });
1074 case k_step_IntrinsicKind:
1075 return binary([](skvm::F32 edge, skvm::F32 x) { return select(x < edge, 0.0f, 1.0f); });
1076 case k_smoothstep_IntrinsicKind:
1077 return ternary([](skvm::F32 edge0, skvm::F32 edge1, skvm::F32 x) {
1078 skvm::F32 t = skvm::clamp01((x - edge0) / (edge1 - edge0));
1079 return t ** t ** (3 - 2 ** t);
1080 });
1081
1082 case k_length_IntrinsicKind: return skvm::sqrt(dot(args[0], args[0]));
1083 case k_distance_IntrinsicKind: {
1084 Value vec = binary([](skvm::F32 x, skvm::F32 y) { return x - y; });
1085 return skvm::sqrt(dot(vec, vec));
1086 }
1087 case k_dot_IntrinsicKind: return dot(args[0], args[1]);
1088 case k_cross_IntrinsicKind: {
1089 skvm::F32 ax = f32(args[0][0]), ay = f32(args[0][1]), az = f32(args[0][2]),
1090 bx = f32(args[1][0]), by = f32(args[1][1]), bz = f32(args[1][2]);
1091 Value result(3);
1092 result[0] = ay**bz - az**by;
1093 result[1] = az**bx - ax**bz;
1094 result[2] = ax**by - ay**bx;
1095 return result;
1096 }
1097 case k_normalize_IntrinsicKind: {
1098 skvm::F32 invLen = 1.0f / skvm::sqrt(dot(args[0], args[0]));
1099 return unary(args[0], [&](skvm::F32 x) { return x ** invLen; });
1100 }
1101 case k_faceforward_IntrinsicKind: {
1102 const Value &N = args[0],
1103 &I = args[1],
1104 &Nref = args[2];
1105
1106 skvm::F32 dotNrefI = dot(Nref, I);
1107 return unary(N, [&](skvm::F32 n) { return select(dotNrefI<0, n, -n); });
1108 }
1109 case k_reflect_IntrinsicKind: {
1110 const Value &I = args[0],
1111 &N = args[1];
1112
1113 skvm::F32 dotNI = dot(N, I);
1114 return binary([&](skvm::F32 i, skvm::F32 n) {
1115 return i - 2**dotNI**n;
1116 });
1117 }
1118 case k_refract_IntrinsicKind: {
1119 const Value &I = args[0],
1120 &N = args[1];
1121 skvm::F32 eta = f32(args[2]);
1122
1123 skvm::F32 dotNI = dot(N, I),
1124 k = 1 - eta**eta**(1 - dotNI**dotNI);
1125 return binary([&](skvm::F32 i, skvm::F32 n) {
1126 return select(k<0, 0.0f, eta**i - (eta**dotNI + sqrt(k))**n);
1127 });
1128 }
1129
1130 case k_matrixCompMult_IntrinsicKind:
1131 return binary([](skvm::F32 x, skvm::F32 y) { return x ** y; });
1132 case k_inverse_IntrinsicKind: {
1133 switch (args[0].slots()) {
1134 case 4: return this->writeMatrixInverse2x2(args[0]);
1135 case 9: return this->writeMatrixInverse3x3(args[0]);
1136 case 16: return this->writeMatrixInverse4x4(args[0]);
1137 default:
1138 SkDEBUGFAIL("Invalid call to inverse");
1139 return {};
1140 }
1141 }
1142
1143 case k_lessThan_IntrinsicKind:
1144 return nk == Type::NumberKind::kFloat
1145 ? binary([](skvm::F32 x, skvm::F32 y) { return x < y; })
1146 : binary([](skvm::I32 x, skvm::I32 y) { return x < y; });
1147 case k_lessThanEqual_IntrinsicKind:
1148 return nk == Type::NumberKind::kFloat
1149 ? binary([](skvm::F32 x, skvm::F32 y) { return x <= y; })
1150 : binary([](skvm::I32 x, skvm::I32 y) { return x <= y; });
1151 case k_greaterThan_IntrinsicKind:
1152 return nk == Type::NumberKind::kFloat
1153 ? binary([](skvm::F32 x, skvm::F32 y) { return x > y; })
1154 : binary([](skvm::I32 x, skvm::I32 y) { return x > y; });
1155 case k_greaterThanEqual_IntrinsicKind:
1156 return nk == Type::NumberKind::kFloat
1157 ? binary([](skvm::F32 x, skvm::F32 y) { return x >= y; })
1158 : binary([](skvm::I32 x, skvm::I32 y) { return x >= y; });
1159
1160 case k_equal_IntrinsicKind:
1161 return nk == Type::NumberKind::kFloat
1162 ? binary([](skvm::F32 x, skvm::F32 y) { return x == y; })
1163 : binary([](skvm::I32 x, skvm::I32 y) { return x == y; });
1164 case k_notEqual_IntrinsicKind:
1165 return nk == Type::NumberKind::kFloat
1166 ? binary([](skvm::F32 x, skvm::F32 y) { return x != y; })
1167 : binary([](skvm::I32 x, skvm::I32 y) { return x != y; });
1168
1169 case k_any_IntrinsicKind: {
1170 skvm::I32 result = i32(args[0][0]);
1171 for (size_t i = 1; i < args[0].slots(); ++i) {
1172 result |= i32(args[0][i]);
1173 }
1174 return result;
1175 }
1176 case k_all_IntrinsicKind: {
1177 skvm::I32 result = i32(args[0][0]);
1178 for (size_t i = 1; i < args[0].slots(); ++i) {
1179 result &= i32(args[0][i]);
1180 }
1181 return result;
1182 }
1183 case k_not_IntrinsicKind: return unary(args[0], [](skvm::I32 x) { return ~x; });
1184
1185 default:
1186 SkDEBUGFAILF("unsupported intrinsic %s", c.function().description().c_str());
1187 return {};
1188 }
1189 SkUNREACHABLE;
1190 }
1191
writeFunctionCall(const FunctionCall & f)1192 Value SkVMGenerator::writeFunctionCall(const FunctionCall& f) {
1193 if (f.function().isIntrinsic() && !f.function().definition()) {
1194 return this->writeIntrinsicCall(f);
1195 }
1196
1197 const FunctionDeclaration& decl = f.function();
1198
1199 // Evaluate all arguments, gather the results into a contiguous list of IDs
1200 std::vector<skvm::Val> argVals;
1201 for (const auto& arg : f.arguments()) {
1202 Value v = this->writeExpression(*arg);
1203 for (size_t i = 0; i < v.slots(); ++i) {
1204 argVals.push_back(v[i]);
1205 }
1206 }
1207
1208 // Create storage for the return value
1209 size_t nslots = f.type().slotCount();
1210 Value result(nslots);
1211 for (size_t i = 0; i < nslots; ++i) {
1212 result[i] = fBuilder->splat(0.0f);
1213 }
1214
1215 {
1216 // This merges currentFunction().fReturned into fConditionMask. Lanes that conditionally
1217 // returned in the current function would otherwise resume execution within the child.
1218 ScopedCondition m(this, ~currentFunction().fReturned);
1219 SkASSERTF(f.function().definition(), "no definition for function '%s'",
1220 f.function().description().c_str());
1221 this->writeFunction(*f.function().definition(), SkMakeSpan(argVals), result.asSpan());
1222 }
1223
1224 // Propagate new values of any 'out' params back to the original arguments
1225 const std::unique_ptr<Expression>* argIter = f.arguments().begin();
1226 size_t valIdx = 0;
1227 for (const Variable* p : decl.parameters()) {
1228 size_t nslots = p->type().slotCount();
1229 if (p->modifiers().fFlags & Modifiers::kOut_Flag) {
1230 Value v(nslots);
1231 for (size_t i = 0; i < nslots; ++i) {
1232 v[i] = argVals[valIdx + i];
1233 }
1234 const std::unique_ptr<Expression>& arg = *argIter;
1235 this->writeStore(*arg, v);
1236 }
1237 valIdx += nslots;
1238 argIter++;
1239 }
1240
1241 return result;
1242 }
1243
writeExternalFunctionCall(const ExternalFunctionCall & c)1244 Value SkVMGenerator::writeExternalFunctionCall(const ExternalFunctionCall& c) {
1245 // Evaluate all arguments, gather the results into a contiguous list of F32
1246 std::vector<skvm::F32> args;
1247 for (const auto& arg : c.arguments()) {
1248 Value v = this->writeExpression(*arg);
1249 for (size_t i = 0; i < v.slots(); ++i) {
1250 args.push_back(f32(v[i]));
1251 }
1252 }
1253
1254 // Create storage for the return value
1255 size_t nslots = c.type().slotCount();
1256 std::vector<skvm::F32> result(nslots, fBuilder->splat(0.0f));
1257
1258 c.function().call(fBuilder, args.data(), result.data(), this->mask());
1259
1260 // Convert from 'vector of F32' to Value
1261 Value resultVal(nslots);
1262 for (size_t i = 0; i < nslots; ++i) {
1263 resultVal[i] = result[i];
1264 }
1265
1266 return resultVal;
1267 }
1268
writePrefixExpression(const PrefixExpression & p)1269 Value SkVMGenerator::writePrefixExpression(const PrefixExpression& p) {
1270 Value val = this->writeExpression(*p.operand());
1271
1272 switch (p.getOperator().kind()) {
1273 case Token::Kind::TK_PLUSPLUS:
1274 case Token::Kind::TK_MINUSMINUS: {
1275 bool incr = p.getOperator().kind() == Token::Kind::TK_PLUSPLUS;
1276
1277 switch (base_number_kind(p.type())) {
1278 case Type::NumberKind::kFloat:
1279 val = f32(val) + fBuilder->splat(incr ? 1.0f : -1.0f);
1280 break;
1281 case Type::NumberKind::kSigned:
1282 val = i32(val) + fBuilder->splat(incr ? 1 : -1);
1283 break;
1284 default:
1285 SkASSERT(false);
1286 return {};
1287 }
1288 return this->writeStore(*p.operand(), val);
1289 }
1290 case Token::Kind::TK_MINUS: {
1291 switch (base_number_kind(p.type())) {
1292 case Type::NumberKind::kFloat:
1293 return this->unary(val, [](skvm::F32 x) { return -x; });
1294 case Type::NumberKind::kSigned:
1295 return this->unary(val, [](skvm::I32 x) { return -x; });
1296 default:
1297 SkASSERT(false);
1298 return {};
1299 }
1300 }
1301 case Token::Kind::TK_LOGICALNOT:
1302 case Token::Kind::TK_BITWISENOT:
1303 return this->unary(val, [](skvm::I32 x) { return ~x; });
1304 default:
1305 SkASSERT(false);
1306 return {};
1307 }
1308 }
1309
writePostfixExpression(const PostfixExpression & p)1310 Value SkVMGenerator::writePostfixExpression(const PostfixExpression& p) {
1311 switch (p.getOperator().kind()) {
1312 case Token::Kind::TK_PLUSPLUS:
1313 case Token::Kind::TK_MINUSMINUS: {
1314 Value old = this->writeExpression(*p.operand()),
1315 val = old;
1316 SkASSERT(val.slots() == 1);
1317 bool incr = p.getOperator().kind() == Token::Kind::TK_PLUSPLUS;
1318
1319 switch (base_number_kind(p.type())) {
1320 case Type::NumberKind::kFloat:
1321 val = f32(val) + fBuilder->splat(incr ? 1.0f : -1.0f);
1322 break;
1323 case Type::NumberKind::kSigned:
1324 val = i32(val) + fBuilder->splat(incr ? 1 : -1);
1325 break;
1326 default:
1327 SkASSERT(false);
1328 return {};
1329 }
1330 this->writeStore(*p.operand(), val);
1331 return old;
1332 }
1333 default:
1334 SkASSERT(false);
1335 return {};
1336 }
1337 }
1338
writeSwizzle(const Swizzle & s)1339 Value SkVMGenerator::writeSwizzle(const Swizzle& s) {
1340 Value base = this->writeExpression(*s.base());
1341 Value swizzled(s.components().size());
1342 for (size_t i = 0; i < s.components().size(); ++i) {
1343 swizzled[i] = base[s.components()[i]];
1344 }
1345 return swizzled;
1346 }
1347
writeTernaryExpression(const TernaryExpression & t)1348 Value SkVMGenerator::writeTernaryExpression(const TernaryExpression& t) {
1349 skvm::I32 test = i32(this->writeExpression(*t.test()));
1350 Value ifTrue, ifFalse;
1351
1352 {
1353 ScopedCondition m(this, test);
1354 ifTrue = this->writeExpression(*t.ifTrue());
1355 }
1356 {
1357 ScopedCondition m(this, ~test);
1358 ifFalse = this->writeExpression(*t.ifFalse());
1359 }
1360
1361 size_t nslots = ifTrue.slots();
1362 SkASSERT(nslots == ifFalse.slots());
1363
1364 Value result(nslots);
1365 for (size_t i = 0; i < nslots; ++i) {
1366 result[i] = skvm::select(test, i32(ifTrue[i]), i32(ifFalse[i]));
1367 }
1368 return result;
1369 }
1370
writeExpression(const Expression & e)1371 Value SkVMGenerator::writeExpression(const Expression& e) {
1372 switch (e.kind()) {
1373 case Expression::Kind::kBinary:
1374 return this->writeBinaryExpression(e.as<BinaryExpression>());
1375 case Expression::Kind::kBoolLiteral:
1376 return fBuilder->splat(e.as<BoolLiteral>().value() ? ~0 : 0);
1377 case Expression::Kind::kConstructorArray:
1378 case Expression::Kind::kConstructorCompound:
1379 case Expression::Kind::kConstructorStruct:
1380 return this->writeAggregationConstructor(e.asAnyConstructor());
1381 case Expression::Kind::kConstructorDiagonalMatrix:
1382 return this->writeConstructorDiagonalMatrix(e.as<ConstructorDiagonalMatrix>());
1383 case Expression::Kind::kConstructorMatrixResize:
1384 return this->writeConstructorMatrixResize(e.as<ConstructorMatrixResize>());
1385 case Expression::Kind::kConstructorScalarCast:
1386 case Expression::Kind::kConstructorCompoundCast:
1387 return this->writeConstructorCast(e.asAnyConstructor());
1388 case Expression::Kind::kConstructorSplat:
1389 return this->writeConstructorSplat(e.as<ConstructorSplat>());
1390 case Expression::Kind::kFieldAccess:
1391 return this->writeFieldAccess(e.as<FieldAccess>());
1392 case Expression::Kind::kIndex:
1393 return this->writeIndexExpression(e.as<IndexExpression>());
1394 case Expression::Kind::kVariableReference:
1395 return this->writeVariableExpression(e.as<VariableReference>());
1396 case Expression::Kind::kFloatLiteral:
1397 return fBuilder->splat(e.as<FloatLiteral>().value());
1398 case Expression::Kind::kFunctionCall:
1399 return this->writeFunctionCall(e.as<FunctionCall>());
1400 case Expression::Kind::kExternalFunctionCall:
1401 return this->writeExternalFunctionCall(e.as<ExternalFunctionCall>());
1402 case Expression::Kind::kIntLiteral:
1403 return fBuilder->splat(static_cast<int>(e.as<IntLiteral>().value()));
1404 case Expression::Kind::kPrefix:
1405 return this->writePrefixExpression(e.as<PrefixExpression>());
1406 case Expression::Kind::kPostfix:
1407 return this->writePostfixExpression(e.as<PostfixExpression>());
1408 case Expression::Kind::kSwizzle:
1409 return this->writeSwizzle(e.as<Swizzle>());
1410 case Expression::Kind::kTernary:
1411 return this->writeTernaryExpression(e.as<TernaryExpression>());
1412 case Expression::Kind::kExternalFunctionReference:
1413 default:
1414 SkDEBUGFAIL("Unsupported expression");
1415 return {};
1416 }
1417 }
1418
writeStore(const Expression & lhs,const Value & rhs)1419 Value SkVMGenerator::writeStore(const Expression& lhs, const Value& rhs) {
1420 SkASSERTF(rhs.slots() == lhs.type().slotCount(),
1421 "lhs=%s (%s)\nrhs=%d slot",
1422 lhs.type().description().c_str(), lhs.description().c_str(), rhs.slots());
1423
1424 // We need to figure out the collection of slots that we're storing into. The l-value (lhs)
1425 // is always a VariableReference, possibly wrapped by one or more Swizzle, FieldAccess, or
1426 // IndexExpressions. The underlying VariableReference has a range of slots for its storage,
1427 // and each expression wrapped around that selects a sub-set of those slots (Field/Index),
1428 // or rearranges them (Swizzle).
1429 SkSTArray<4, size_t, true> slots;
1430 slots.resize(rhs.slots());
1431
1432 // Start with the identity slot map - this basically says that the values from rhs belong in
1433 // slots [0, 1, 2 ... N] of the lhs.
1434 for (size_t i = 0; i < slots.size(); ++i) {
1435 slots[i] = i;
1436 }
1437
1438 // Now, as we peel off each outer expression, adjust 'slots' to be the locations relative to
1439 // the next (inner) expression:
1440 const Expression* expr = &lhs;
1441 while (!expr->is<VariableReference>()) {
1442 switch (expr->kind()) {
1443 case Expression::Kind::kFieldAccess: {
1444 const FieldAccess& fld = expr->as<FieldAccess>();
1445 size_t offset = this->fieldSlotOffset(fld);
1446 for (size_t& s : slots) {
1447 s += offset;
1448 }
1449 expr = fld.base().get();
1450 } break;
1451 case Expression::Kind::kIndex: {
1452 const IndexExpression& idx = expr->as<IndexExpression>();
1453 size_t offset = this->indexSlotOffset(idx);
1454 for (size_t& s : slots) {
1455 s += offset;
1456 }
1457 expr = idx.base().get();
1458 } break;
1459 case Expression::Kind::kSwizzle: {
1460 const Swizzle& swz = expr->as<Swizzle>();
1461 for (size_t& s : slots) {
1462 s = swz.components()[s];
1463 }
1464 expr = swz.base().get();
1465 } break;
1466 default:
1467 // No other kinds of expressions are valid in lvalues. (see Analysis::IsAssignable)
1468 SkDEBUGFAIL("Invalid expression type");
1469 return {};
1470 }
1471 }
1472
1473 // When we get here, 'slots' are all relative to the first slot holding 'var's storage
1474 const Variable& var = *expr->as<VariableReference>().variable();
1475 size_t varSlot = this->getSlot(var);
1476 skvm::I32 mask = this->mask();
1477 for (size_t i = rhs.slots(); i --> 0;) {
1478 SkASSERT(slots[i] < var.type().slotCount());
1479 skvm::F32 curr = f32(fSlots[varSlot + slots[i]]),
1480 next = f32(rhs[i]);
1481 fSlots[varSlot + slots[i]] = select(mask, next, curr).id;
1482 }
1483 return rhs;
1484 }
1485
writeBlock(const Block & b)1486 void SkVMGenerator::writeBlock(const Block& b) {
1487 for (const std::unique_ptr<Statement>& stmt : b.children()) {
1488 this->writeStatement(*stmt);
1489 }
1490 }
1491
writeBreakStatement()1492 void SkVMGenerator::writeBreakStatement() {
1493 // Any active lanes stop executing for the duration of the current loop
1494 fLoopMask &= ~this->mask();
1495 }
1496
writeContinueStatement()1497 void SkVMGenerator::writeContinueStatement() {
1498 // Any active lanes stop executing for the current iteration.
1499 // Remember them in fContinueMask, to be re-enabled later.
1500 skvm::I32 mask = this->mask();
1501 fLoopMask &= ~mask;
1502 fContinueMask |= mask;
1503 }
1504
writeForStatement(const ForStatement & f)1505 void SkVMGenerator::writeForStatement(const ForStatement& f) {
1506 // We require that all loops be ES2-compliant (unrollable), and actually unroll them here
1507 Analysis::UnrollableLoopInfo loop;
1508 SkAssertResult(Analysis::ForLoopIsValidForES2(f.fOffset, f.initializer().get(), f.test().get(),
1509 f.next().get(), f.statement().get(), &loop,
1510 /*errors=*/nullptr));
1511 SkASSERT(loop.fIndex->type().slotCount() == 1);
1512
1513 size_t indexSlot = this->getSlot(*loop.fIndex);
1514 double val = loop.fStart;
1515
1516 skvm::I32 oldLoopMask = fLoopMask,
1517 oldContinueMask = fContinueMask;
1518
1519 for (int i = 0; i < loop.fCount; ++i) {
1520 fSlots[indexSlot] = loop.fIndex->type().isInteger()
1521 ? fBuilder->splat(static_cast<int>(val)).id
1522 : fBuilder->splat(static_cast<float>(val)).id;
1523
1524 fContinueMask = fBuilder->splat(0);
1525 this->writeStatement(*f.statement());
1526 fLoopMask |= fContinueMask;
1527
1528 val += loop.fDelta;
1529 }
1530
1531 fLoopMask = oldLoopMask;
1532 fContinueMask = oldContinueMask;
1533 }
1534
writeIfStatement(const IfStatement & i)1535 void SkVMGenerator::writeIfStatement(const IfStatement& i) {
1536 Value test = this->writeExpression(*i.test());
1537 {
1538 ScopedCondition ifTrue(this, i32(test));
1539 this->writeStatement(*i.ifTrue());
1540 }
1541 if (i.ifFalse()) {
1542 ScopedCondition ifFalse(this, ~i32(test));
1543 this->writeStatement(*i.ifFalse());
1544 }
1545 }
1546
writeReturnStatement(const ReturnStatement & r)1547 void SkVMGenerator::writeReturnStatement(const ReturnStatement& r) {
1548 skvm::I32 returnsHere = this->mask();
1549
1550 if (r.expression()) {
1551 Value val = this->writeExpression(*r.expression());
1552
1553 int i = 0;
1554 for (skvm::Val& slot : currentFunction().fReturnValue) {
1555 slot = select(returnsHere, f32(val[i]), f32(slot)).id;
1556 i++;
1557 }
1558 }
1559
1560 currentFunction().fReturned |= returnsHere;
1561 }
1562
writeVarDeclaration(const VarDeclaration & decl)1563 void SkVMGenerator::writeVarDeclaration(const VarDeclaration& decl) {
1564 size_t slot = this->getSlot(decl.var()),
1565 nslots = decl.var().type().slotCount();
1566
1567 Value val = decl.value() ? this->writeExpression(*decl.value()) : Value{};
1568 for (size_t i = 0; i < nslots; ++i) {
1569 fSlots[slot + i] = val ? val[i] : fBuilder->splat(0.0f).id;
1570 }
1571 }
1572
writeStatement(const Statement & s)1573 void SkVMGenerator::writeStatement(const Statement& s) {
1574 switch (s.kind()) {
1575 case Statement::Kind::kBlock:
1576 this->writeBlock(s.as<Block>());
1577 break;
1578 case Statement::Kind::kBreak:
1579 this->writeBreakStatement();
1580 break;
1581 case Statement::Kind::kContinue:
1582 this->writeContinueStatement();
1583 break;
1584 case Statement::Kind::kExpression:
1585 this->writeExpression(*s.as<ExpressionStatement>().expression());
1586 break;
1587 case Statement::Kind::kFor:
1588 this->writeForStatement(s.as<ForStatement>());
1589 break;
1590 case Statement::Kind::kIf:
1591 this->writeIfStatement(s.as<IfStatement>());
1592 break;
1593 case Statement::Kind::kReturn:
1594 this->writeReturnStatement(s.as<ReturnStatement>());
1595 break;
1596 case Statement::Kind::kVarDeclaration:
1597 this->writeVarDeclaration(s.as<VarDeclaration>());
1598 break;
1599 case Statement::Kind::kDiscard:
1600 case Statement::Kind::kDo:
1601 case Statement::Kind::kSwitch:
1602 SkDEBUGFAIL("Unsupported control flow");
1603 break;
1604 case Statement::Kind::kInlineMarker:
1605 case Statement::Kind::kNop:
1606 break;
1607 default:
1608 SkASSERT(false);
1609 }
1610 }
1611
ProgramToSkVM(const Program & program,const FunctionDefinition & function,skvm::Builder * builder,SkSpan<skvm::Val> uniforms,skvm::Coord device,skvm::Coord local,skvm::Color inputColor,SampleChildFn sampleChild)1612 skvm::Color ProgramToSkVM(const Program& program,
1613 const FunctionDefinition& function,
1614 skvm::Builder* builder,
1615 SkSpan<skvm::Val> uniforms,
1616 skvm::Coord device,
1617 skvm::Coord local,
1618 skvm::Color inputColor,
1619 SampleChildFn sampleChild) {
1620 skvm::Val zero = builder->splat(0.0f).id;
1621 skvm::Val result[4] = {zero,zero,zero,zero};
1622
1623 skvm::Val args[6]; // At most 6 arguments (float2 coords, half4 inColor)
1624 size_t argSlots = 0;
1625 for (const SkSL::Variable* param : function.declaration().parameters()) {
1626 switch (param->modifiers().fLayout.fBuiltin) {
1627 case SK_MAIN_COORDS_BUILTIN:
1628 SkASSERT(param->type().slotCount() == 2);
1629 args[argSlots++] = local.x.id;
1630 args[argSlots++] = local.y.id;
1631 break;
1632 case SK_INPUT_COLOR_BUILTIN:
1633 SkASSERT(param->type().slotCount() == 4);
1634 args[argSlots++] = inputColor.r.id;
1635 args[argSlots++] = inputColor.g.id;
1636 args[argSlots++] = inputColor.b.id;
1637 args[argSlots++] = inputColor.a.id;
1638 break;
1639 default:
1640 SkDEBUGFAIL("Invalid parameter to main()");
1641 return {};
1642 }
1643 }
1644 SkASSERT(argSlots <= SK_ARRAY_COUNT(args));
1645
1646 SkVMGenerator generator(
1647 program, builder, uniforms, device, local, inputColor, std::move(sampleChild));
1648 generator.writeFunction(function, {args, argSlots}, SkMakeSpan(result));
1649
1650 return skvm::Color{{builder, result[0]},
1651 {builder, result[1]},
1652 {builder, result[2]},
1653 {builder, result[3]}};
1654 }
1655
ProgramToSkVM(const Program & program,const FunctionDefinition & function,skvm::Builder * b,SkSpan<skvm::Val> uniforms,SkVMSignature * outSignature)1656 bool ProgramToSkVM(const Program& program,
1657 const FunctionDefinition& function,
1658 skvm::Builder* b,
1659 SkSpan<skvm::Val> uniforms,
1660 SkVMSignature* outSignature) {
1661 SkVMSignature ignored,
1662 *signature = outSignature ? outSignature : &ignored;
1663
1664 std::vector<skvm::Ptr> argPtrs;
1665 std::vector<skvm::Val> argVals;
1666
1667 for (const Variable* p : function.declaration().parameters()) {
1668 size_t slots = p->type().slotCount();
1669 signature->fParameterSlots += slots;
1670 for (size_t i = 0; i < slots; ++i) {
1671 argPtrs.push_back(b->varying<float>());
1672 argVals.push_back(b->loadF(argPtrs.back()).id);
1673 }
1674 }
1675
1676 std::vector<skvm::Ptr> returnPtrs;
1677 std::vector<skvm::Val> returnVals;
1678
1679 signature->fReturnSlots = function.declaration().returnType().slotCount();
1680 for (size_t i = 0; i < signature->fReturnSlots; ++i) {
1681 returnPtrs.push_back(b->varying<float>());
1682 returnVals.push_back(b->splat(0.0f).id);
1683 }
1684
1685 skvm::F32 zero = b->splat(0.0f);
1686 skvm::Coord zeroCoord = {zero, zero};
1687 skvm::Color zeroColor = {zero, zero, zero, zero};
1688 SkVMGenerator generator(program, b, uniforms, /*device=*/zeroCoord, /*local=*/zeroCoord,
1689 /*inputColor=*/zeroColor, /*sampleChild=*/{});
1690 generator.writeFunction(function, SkMakeSpan(argVals), SkMakeSpan(returnVals));
1691
1692 // generateCode has updated the contents of 'argVals' for any 'out' or 'inout' parameters.
1693 // Propagate those changes back to our varying buffers:
1694 size_t argIdx = 0;
1695 for (const Variable* p : function.declaration().parameters()) {
1696 size_t nslots = p->type().slotCount();
1697 if (p->modifiers().fFlags & Modifiers::kOut_Flag) {
1698 for (size_t i = 0; i < nslots; ++i) {
1699 b->storeF(argPtrs[argIdx + i], skvm::F32{b, argVals[argIdx + i]});
1700 }
1701 }
1702 argIdx += nslots;
1703 }
1704
1705 // It's also updated the contents of 'returnVals' with the return value of the entry point.
1706 // Store that as well:
1707 for (size_t i = 0; i < signature->fReturnSlots; ++i) {
1708 b->storeF(returnPtrs[i], skvm::F32{b, returnVals[i]});
1709 }
1710
1711 return true;
1712 }
1713
Program_GetFunction(const Program & program,const char * function)1714 const FunctionDefinition* Program_GetFunction(const Program& program, const char* function) {
1715 for (const ProgramElement* e : program.elements()) {
1716 if (e->is<FunctionDefinition>() &&
1717 e->as<FunctionDefinition>().declaration().name() == function) {
1718 return &e->as<FunctionDefinition>();
1719 }
1720 }
1721 return nullptr;
1722 }
1723
gather_uniforms(UniformInfo * info,const Type & type,const String & name)1724 static void gather_uniforms(UniformInfo* info, const Type& type, const String& name) {
1725 switch (type.typeKind()) {
1726 case Type::TypeKind::kStruct:
1727 for (const auto& f : type.fields()) {
1728 gather_uniforms(info, *f.fType, name + "." + f.fName);
1729 }
1730 break;
1731 case Type::TypeKind::kArray:
1732 for (int i = 0; i < type.columns(); ++i) {
1733 gather_uniforms(info, type.componentType(),
1734 String::printf("%s[%d]", name.c_str(), i));
1735 }
1736 break;
1737 case Type::TypeKind::kScalar:
1738 case Type::TypeKind::kVector:
1739 case Type::TypeKind::kMatrix:
1740 info->fUniforms.push_back({name, base_number_kind(type), type.rows(), type.columns(),
1741 info->fUniformSlotCount});
1742 info->fUniformSlotCount += type.columns() * type.rows();
1743 break;
1744 default:
1745 break;
1746 }
1747 }
1748
Program_GetUniformInfo(const Program & program)1749 std::unique_ptr<UniformInfo> Program_GetUniformInfo(const Program& program) {
1750 auto info = std::make_unique<UniformInfo>();
1751 for (const ProgramElement* e : program.elements()) {
1752 if (!e->is<GlobalVarDeclaration>()) {
1753 continue;
1754 }
1755 const GlobalVarDeclaration& decl = e->as<GlobalVarDeclaration>();
1756 const Variable& var = decl.declaration()->as<VarDeclaration>().var();
1757 if (var.modifiers().fFlags & Modifiers::kUniform_Flag) {
1758 gather_uniforms(info.get(), var.type(), var.name());
1759 }
1760 }
1761 return info;
1762 }
1763
1764 /*
1765 * Testing utility function that emits program's "main" with a minimal harness. Used to create
1766 * representative skvm op sequences for SkSL tests.
1767 */
testingOnly_ProgramToSkVMShader(const Program & program,skvm::Builder * builder)1768 bool testingOnly_ProgramToSkVMShader(const Program& program, skvm::Builder* builder) {
1769 const SkSL::FunctionDefinition* main = Program_GetFunction(program, "main");
1770 if (!main) {
1771 return false;
1772 }
1773
1774 size_t uniformSlots = 0;
1775 int childSlots = 0;
1776 for (const SkSL::ProgramElement* e : program.elements()) {
1777 if (e->is<GlobalVarDeclaration>()) {
1778 const GlobalVarDeclaration& decl = e->as<GlobalVarDeclaration>();
1779 const Variable& var = decl.declaration()->as<VarDeclaration>().var();
1780 if (var.type().isEffectChild()) {
1781 childSlots++;
1782 } else if (is_uniform(var)) {
1783 uniformSlots += var.type().slotCount();
1784 }
1785 }
1786 }
1787
1788 skvm::Uniforms uniforms(builder->uniform(), 0);
1789
1790 auto new_uni = [&]() { return builder->uniformF(uniforms.pushF(0.0f)); };
1791
1792 // Assume identity CTM
1793 skvm::Coord device = {pun_to_F32(builder->index()), new_uni()};
1794 skvm::Coord local = device;
1795
1796 struct Child {
1797 skvm::Uniform addr;
1798 skvm::I32 rowBytesAsPixels;
1799 };
1800
1801 std::vector<Child> children;
1802 for (int i = 0; i < childSlots; ++i) {
1803 children.push_back({uniforms.pushPtr(nullptr), builder->uniform32(uniforms.push(0))});
1804 }
1805
1806 auto sampleChild = [&](int i, skvm::Coord coord, skvm::Color) {
1807 skvm::PixelFormat pixelFormat = skvm::SkColorType_to_PixelFormat(kRGBA_F32_SkColorType);
1808 skvm::I32 index = trunc(coord.x);
1809 index += trunc(coord.y) * children[i].rowBytesAsPixels;
1810 return gather(pixelFormat, children[i].addr, index);
1811 };
1812
1813 std::vector<skvm::Val> uniformVals;
1814 for (size_t i = 0; i < uniformSlots; ++i) {
1815 uniformVals.push_back(new_uni().id);
1816 }
1817
1818 skvm::Color inColor = builder->uniformColor(SkColors::kWhite, &uniforms);
1819
1820 skvm::Color result = SkSL::ProgramToSkVM(
1821 program, *main, builder, SkMakeSpan(uniformVals), device, local, inColor, sampleChild);
1822
1823 storeF(builder->varying<float>(), result.r);
1824 storeF(builder->varying<float>(), result.g);
1825 storeF(builder->varying<float>(), result.b);
1826 storeF(builder->varying<float>(), result.a);
1827
1828 return true;
1829
1830 }
1831
1832 } // namespace SkSL
1833