1 /*
2 * Copyright 2004 The WebRTC Project Authors. All rights reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <stdint.h>
12
13 #if defined(WEBRTC_POSIX)
14 #include <sys/time.h>
15 #if defined(WEBRTC_MAC)
16 #include <mach/mach_time.h>
17 #endif
18 #endif
19
20 #if defined(WEBRTC_WIN)
21 // clang-format off
22 // clang formatting would put <windows.h> last,
23 // which leads to compilation failure.
24 #include <windows.h>
25 #include <mmsystem.h>
26 #include <sys/timeb.h>
27 // clang-format on
28 #endif
29
30 #include "rtc_base/checks.h"
31 #include "rtc_base/numerics/safe_conversions.h"
32 #include "rtc_base/time_utils.h"
33
34 namespace rtc {
35
36 ClockInterface* g_clock = nullptr;
37
SetClockForTesting(ClockInterface * clock)38 ClockInterface* SetClockForTesting(ClockInterface* clock) {
39 ClockInterface* prev = g_clock;
40 g_clock = clock;
41 return prev;
42 }
43
GetClockForTesting()44 ClockInterface* GetClockForTesting() {
45 return g_clock;
46 }
47
48 #if defined(WINUWP)
49
50 namespace {
51
52 class TimeHelper final {
53 public:
54 TimeHelper(const TimeHelper&) = delete;
55
56 // Resets the clock based upon an NTP server. This routine must be called
57 // prior to the main system start-up to ensure all clocks are based upon
58 // an NTP server time if NTP synchronization is required. No critical
59 // section is used thus this method must be called prior to any clock
60 // routines being used.
SyncWithNtp(int64_t ntp_server_time_ms)61 static void SyncWithNtp(int64_t ntp_server_time_ms) {
62 auto& singleton = Singleton();
63 TIME_ZONE_INFORMATION time_zone;
64 GetTimeZoneInformation(&time_zone);
65 int64_t time_zone_bias_ns =
66 rtc::dchecked_cast<int64_t>(time_zone.Bias) * 60 * 1000 * 1000 * 1000;
67 singleton.app_start_time_ns_ =
68 (ntp_server_time_ms - kNTPTimeToUnixTimeEpochOffset) * 1000000 -
69 time_zone_bias_ns;
70 singleton.UpdateReferenceTime();
71 }
72
73 // Returns the number of nanoseconds that have passed since unix epoch.
TicksNs()74 static int64_t TicksNs() {
75 auto& singleton = Singleton();
76 int64_t result = 0;
77 LARGE_INTEGER qpcnt;
78 QueryPerformanceCounter(&qpcnt);
79 result = rtc::dchecked_cast<int64_t>(
80 (rtc::dchecked_cast<uint64_t>(qpcnt.QuadPart) * 100000 /
81 rtc::dchecked_cast<uint64_t>(singleton.os_ticks_per_second_)) *
82 10000);
83 result = singleton.app_start_time_ns_ + result -
84 singleton.time_since_os_start_ns_;
85 return result;
86 }
87
88 private:
TimeHelper()89 TimeHelper() {
90 TIME_ZONE_INFORMATION time_zone;
91 GetTimeZoneInformation(&time_zone);
92 int64_t time_zone_bias_ns =
93 rtc::dchecked_cast<int64_t>(time_zone.Bias) * 60 * 1000 * 1000 * 1000;
94 FILETIME ft;
95 // This will give us system file in UTC format.
96 GetSystemTimeAsFileTime(&ft);
97 LARGE_INTEGER li;
98 li.HighPart = ft.dwHighDateTime;
99 li.LowPart = ft.dwLowDateTime;
100
101 app_start_time_ns_ = (li.QuadPart - kFileTimeToUnixTimeEpochOffset) * 100 -
102 time_zone_bias_ns;
103
104 UpdateReferenceTime();
105 }
106
Singleton()107 static TimeHelper& Singleton() {
108 static TimeHelper singleton;
109 return singleton;
110 }
111
UpdateReferenceTime()112 void UpdateReferenceTime() {
113 LARGE_INTEGER qpfreq;
114 QueryPerformanceFrequency(&qpfreq);
115 os_ticks_per_second_ = rtc::dchecked_cast<int64_t>(qpfreq.QuadPart);
116
117 LARGE_INTEGER qpcnt;
118 QueryPerformanceCounter(&qpcnt);
119 time_since_os_start_ns_ = rtc::dchecked_cast<int64_t>(
120 (rtc::dchecked_cast<uint64_t>(qpcnt.QuadPart) * 100000 /
121 rtc::dchecked_cast<uint64_t>(os_ticks_per_second_)) *
122 10000);
123 }
124
125 private:
126 static constexpr uint64_t kFileTimeToUnixTimeEpochOffset =
127 116444736000000000ULL;
128 static constexpr uint64_t kNTPTimeToUnixTimeEpochOffset = 2208988800000L;
129
130 // The number of nanoseconds since unix system epoch
131 int64_t app_start_time_ns_;
132 // The number of nanoseconds since the OS started
133 int64_t time_since_os_start_ns_;
134 // The OS calculated ticks per second
135 int64_t os_ticks_per_second_;
136 };
137
138 } // namespace
139
SyncWithNtp(int64_t time_from_ntp_server_ms)140 void SyncWithNtp(int64_t time_from_ntp_server_ms) {
141 TimeHelper::SyncWithNtp(time_from_ntp_server_ms);
142 }
143
144 #endif // defined(WINUWP)
145
SystemTimeNanos()146 int64_t SystemTimeNanos() {
147 int64_t ticks;
148 #if defined(WEBRTC_MAC)
149 static mach_timebase_info_data_t timebase;
150 if (timebase.denom == 0) {
151 // Get the timebase if this is the first time we run.
152 // Recommended by Apple's QA1398.
153 if (mach_timebase_info(&timebase) != KERN_SUCCESS) {
154 RTC_NOTREACHED();
155 }
156 }
157 // Use timebase to convert absolute time tick units into nanoseconds.
158 const auto mul = [](uint64_t a, uint32_t b) -> int64_t {
159 RTC_DCHECK_NE(b, 0);
160 RTC_DCHECK_LE(a, std::numeric_limits<int64_t>::max() / b)
161 << "The multiplication " << a << " * " << b << " overflows";
162 return rtc::dchecked_cast<int64_t>(a * b);
163 };
164 ticks = mul(mach_absolute_time(), timebase.numer) / timebase.denom;
165 #elif defined(WEBRTC_POSIX)
166 struct timespec ts;
167 // TODO(deadbeef): Do we need to handle the case when CLOCK_MONOTONIC is not
168 // supported?
169 clock_gettime(CLOCK_MONOTONIC, &ts);
170 ticks = kNumNanosecsPerSec * static_cast<int64_t>(ts.tv_sec) +
171 static_cast<int64_t>(ts.tv_nsec);
172 #elif defined(WINUWP)
173 ticks = TimeHelper::TicksNs();
174 #elif defined(WEBRTC_WIN)
175 static volatile LONG last_timegettime = 0;
176 static volatile int64_t num_wrap_timegettime = 0;
177 volatile LONG* last_timegettime_ptr = &last_timegettime;
178 DWORD now = timeGetTime();
179 // Atomically update the last gotten time
180 DWORD old = InterlockedExchange(last_timegettime_ptr, now);
181 if (now < old) {
182 // If now is earlier than old, there may have been a race between threads.
183 // 0x0fffffff ~3.1 days, the code will not take that long to execute
184 // so it must have been a wrap around.
185 if (old > 0xf0000000 && now < 0x0fffffff) {
186 num_wrap_timegettime++;
187 }
188 }
189 ticks = now + (num_wrap_timegettime << 32);
190 // TODO(deadbeef): Calculate with nanosecond precision. Otherwise, we're
191 // just wasting a multiply and divide when doing Time() on Windows.
192 ticks = ticks * kNumNanosecsPerMillisec;
193 #else
194 #error Unsupported platform.
195 #endif
196 return ticks;
197 }
198
SystemTimeMillis()199 int64_t SystemTimeMillis() {
200 return static_cast<int64_t>(SystemTimeNanos() / kNumNanosecsPerMillisec);
201 }
202
TimeNanos()203 int64_t TimeNanos() {
204 if (g_clock) {
205 return g_clock->TimeNanos();
206 }
207 return SystemTimeNanos();
208 }
209
Time32()210 uint32_t Time32() {
211 return static_cast<uint32_t>(TimeNanos() / kNumNanosecsPerMillisec);
212 }
213
TimeMillis()214 int64_t TimeMillis() {
215 return TimeNanos() / kNumNanosecsPerMillisec;
216 }
217
TimeMicros()218 int64_t TimeMicros() {
219 return TimeNanos() / kNumNanosecsPerMicrosec;
220 }
221
TimeAfter(int64_t elapsed)222 int64_t TimeAfter(int64_t elapsed) {
223 RTC_DCHECK_GE(elapsed, 0);
224 return TimeMillis() + elapsed;
225 }
226
TimeDiff32(uint32_t later,uint32_t earlier)227 int32_t TimeDiff32(uint32_t later, uint32_t earlier) {
228 return later - earlier;
229 }
230
TimeDiff(int64_t later,int64_t earlier)231 int64_t TimeDiff(int64_t later, int64_t earlier) {
232 return later - earlier;
233 }
234
TimestampWrapAroundHandler()235 TimestampWrapAroundHandler::TimestampWrapAroundHandler()
236 : last_ts_(0), num_wrap_(-1) {}
237
Unwrap(uint32_t ts)238 int64_t TimestampWrapAroundHandler::Unwrap(uint32_t ts) {
239 if (num_wrap_ == -1) {
240 last_ts_ = ts;
241 num_wrap_ = 0;
242 return ts;
243 }
244
245 if (ts < last_ts_) {
246 if (last_ts_ >= 0xf0000000 && ts < 0x0fffffff)
247 ++num_wrap_;
248 } else if ((ts - last_ts_) > 0xf0000000) {
249 // Backwards wrap. Unwrap with last wrap count and don't update last_ts_.
250 return ts + (num_wrap_ - 1) * (int64_t{1} << 32);
251 }
252
253 last_ts_ = ts;
254 return ts + (num_wrap_ << 32);
255 }
256
TmToSeconds(const tm & tm)257 int64_t TmToSeconds(const tm& tm) {
258 static short int mdays[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
259 static short int cumul_mdays[12] = {0, 31, 59, 90, 120, 151,
260 181, 212, 243, 273, 304, 334};
261 int year = tm.tm_year + 1900;
262 int month = tm.tm_mon;
263 int day = tm.tm_mday - 1; // Make 0-based like the rest.
264 int hour = tm.tm_hour;
265 int min = tm.tm_min;
266 int sec = tm.tm_sec;
267
268 bool expiry_in_leap_year =
269 (year % 4 == 0 && (year % 100 != 0 || year % 400 == 0));
270
271 if (year < 1970)
272 return -1;
273 if (month < 0 || month > 11)
274 return -1;
275 if (day < 0 || day >= mdays[month] + (expiry_in_leap_year && month == 2 - 1))
276 return -1;
277 if (hour < 0 || hour > 23)
278 return -1;
279 if (min < 0 || min > 59)
280 return -1;
281 if (sec < 0 || sec > 59)
282 return -1;
283
284 day += cumul_mdays[month];
285
286 // Add number of leap days between 1970 and the expiration year, inclusive.
287 day += ((year / 4 - 1970 / 4) - (year / 100 - 1970 / 100) +
288 (year / 400 - 1970 / 400));
289
290 // We will have added one day too much above if expiration is during a leap
291 // year, and expiration is in January or February.
292 if (expiry_in_leap_year && month <= 2 - 1) // |month| is zero based.
293 day -= 1;
294
295 // Combine all variables into seconds from 1970-01-01 00:00 (except |month|
296 // which was accumulated into |day| above).
297 return (((static_cast<int64_t>(year - 1970) * 365 + day) * 24 + hour) * 60 +
298 min) *
299 60 +
300 sec;
301 }
302
TimeUTCMicros()303 int64_t TimeUTCMicros() {
304 if (g_clock) {
305 return g_clock->TimeNanos() / kNumNanosecsPerMicrosec;
306 }
307 #if defined(WEBRTC_POSIX)
308 struct timeval time;
309 gettimeofday(&time, nullptr);
310 // Convert from second (1.0) and microsecond (1e-6).
311 return (static_cast<int64_t>(time.tv_sec) * rtc::kNumMicrosecsPerSec +
312 time.tv_usec);
313
314 #elif defined(WEBRTC_WIN)
315 struct _timeb time;
316 _ftime(&time);
317 // Convert from second (1.0) and milliseconds (1e-3).
318 return (static_cast<int64_t>(time.time) * rtc::kNumMicrosecsPerSec +
319 static_cast<int64_t>(time.millitm) * rtc::kNumMicrosecsPerMillisec);
320 #endif
321 }
322
TimeUTCMillis()323 int64_t TimeUTCMillis() {
324 return TimeUTCMicros() / kNumMicrosecsPerMillisec;
325 }
326
327 } // namespace rtc
328