• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/time/clock.h"
16 
17 #include "absl/base/attributes.h"
18 #include "absl/base/optimization.h"
19 
20 #ifdef _WIN32
21 #include <windows.h>
22 #endif
23 
24 #include <algorithm>
25 #include <atomic>
26 #include <cerrno>
27 #include <cstdint>
28 #include <ctime>
29 #include <limits>
30 
31 #include "absl/base/internal/spinlock.h"
32 #include "absl/base/internal/unscaledcycleclock.h"
33 #include "absl/base/macros.h"
34 #include "absl/base/port.h"
35 #include "absl/base/thread_annotations.h"
36 
37 namespace absl {
38 ABSL_NAMESPACE_BEGIN
Now()39 Time Now() {
40   // TODO(bww): Get a timespec instead so we don't have to divide.
41   int64_t n = absl::GetCurrentTimeNanos();
42   if (n >= 0) {
43     return time_internal::FromUnixDuration(
44         time_internal::MakeDuration(n / 1000000000, n % 1000000000 * 4));
45   }
46   return time_internal::FromUnixDuration(absl::Nanoseconds(n));
47 }
48 ABSL_NAMESPACE_END
49 }  // namespace absl
50 
51 // Decide if we should use the fast GetCurrentTimeNanos() algorithm
52 // based on the cyclecounter, otherwise just get the time directly
53 // from the OS on every call. This can be chosen at compile-time via
54 // -DABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS=[0|1]
55 #ifndef ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS
56 #if ABSL_USE_UNSCALED_CYCLECLOCK
57 #define ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS 1
58 #else
59 #define ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS 0
60 #endif
61 #endif
62 
63 #if defined(__APPLE__) || defined(_WIN32)
64 #include "absl/time/internal/get_current_time_chrono.inc"
65 #else
66 #include "absl/time/internal/get_current_time_posix.inc"
67 #endif
68 
69 // Allows override by test.
70 #ifndef GET_CURRENT_TIME_NANOS_FROM_SYSTEM
71 #define GET_CURRENT_TIME_NANOS_FROM_SYSTEM() \
72   ::absl::time_internal::GetCurrentTimeNanosFromSystem()
73 #endif
74 
75 #if !ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS
76 namespace absl {
77 ABSL_NAMESPACE_BEGIN
GetCurrentTimeNanos()78 int64_t GetCurrentTimeNanos() { return GET_CURRENT_TIME_NANOS_FROM_SYSTEM(); }
79 ABSL_NAMESPACE_END
80 }  // namespace absl
81 #else  // Use the cyclecounter-based implementation below.
82 
83 // Allows override by test.
84 #ifndef GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW
85 #define GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW() \
86   ::absl::time_internal::UnscaledCycleClockWrapperForGetCurrentTime::Now()
87 #endif
88 
89 namespace absl {
90 ABSL_NAMESPACE_BEGIN
91 namespace time_internal {
92 // This is a friend wrapper around UnscaledCycleClock::Now()
93 // (needed to access UnscaledCycleClock).
94 class UnscaledCycleClockWrapperForGetCurrentTime {
95  public:
Now()96   static int64_t Now() { return base_internal::UnscaledCycleClock::Now(); }
97 };
98 }  // namespace time_internal
99 
100 // uint64_t is used in this module to provide an extra bit in multiplications
101 
102 // ---------------------------------------------------------------------
103 // An implementation of reader-write locks that use no atomic ops in the read
104 // case.  This is a generalization of Lamport's method for reading a multiword
105 // clock.  Increment a word on each write acquisition, using the low-order bit
106 // as a spinlock; the word is the high word of the "clock".  Readers read the
107 // high word, then all other data, then the high word again, and repeat the
108 // read if the reads of the high words yields different answers, or an odd
109 // value (either case suggests possible interference from a writer).
110 // Here we use a spinlock to ensure only one writer at a time, rather than
111 // spinning on the bottom bit of the word to benefit from SpinLock
112 // spin-delay tuning.
113 
114 // Acquire seqlock (*seq) and return the value to be written to unlock.
SeqAcquire(std::atomic<uint64_t> * seq)115 static inline uint64_t SeqAcquire(std::atomic<uint64_t> *seq) {
116   uint64_t x = seq->fetch_add(1, std::memory_order_relaxed);
117 
118   // We put a release fence between update to *seq and writes to shared data.
119   // Thus all stores to shared data are effectively release operations and
120   // update to *seq above cannot be re-ordered past any of them.  Note that
121   // this barrier is not for the fetch_add above.  A release barrier for the
122   // fetch_add would be before it, not after.
123   std::atomic_thread_fence(std::memory_order_release);
124 
125   return x + 2;   // original word plus 2
126 }
127 
128 // Release seqlock (*seq) by writing x to it---a value previously returned by
129 // SeqAcquire.
SeqRelease(std::atomic<uint64_t> * seq,uint64_t x)130 static inline void SeqRelease(std::atomic<uint64_t> *seq, uint64_t x) {
131   // The unlock store to *seq must have release ordering so that all
132   // updates to shared data must finish before this store.
133   seq->store(x, std::memory_order_release);  // release lock for readers
134 }
135 
136 // ---------------------------------------------------------------------
137 
138 // "nsscaled" is unit of time equal to a (2**kScale)th of a nanosecond.
139 enum { kScale = 30 };
140 
141 // The minimum interval between samples of the time base.
142 // We pick enough time to amortize the cost of the sample,
143 // to get a reasonably accurate cycle counter rate reading,
144 // and not so much that calculations will overflow 64-bits.
145 static const uint64_t kMinNSBetweenSamples = 2000 << 20;
146 
147 // We require that kMinNSBetweenSamples shifted by kScale
148 // have at least a bit left over for 64-bit calculations.
149 static_assert(((kMinNSBetweenSamples << (kScale + 1)) >> (kScale + 1)) ==
150                kMinNSBetweenSamples,
151                "cannot represent kMaxBetweenSamplesNSScaled");
152 
153 // data from a sample of the kernel's time value
154 struct TimeSampleAtomic {
155   std::atomic<uint64_t> raw_ns{0};              // raw kernel time
156   std::atomic<uint64_t> base_ns{0};             // our estimate of time
157   std::atomic<uint64_t> base_cycles{0};         // cycle counter reading
158   std::atomic<uint64_t> nsscaled_per_cycle{0};  // cycle period
159   // cycles before we'll sample again (a scaled reciprocal of the period,
160   // to avoid a division on the fast path).
161   std::atomic<uint64_t> min_cycles_per_sample{0};
162 };
163 // Same again, but with non-atomic types
164 struct TimeSample {
165   uint64_t raw_ns = 0;                 // raw kernel time
166   uint64_t base_ns = 0;                // our estimate of time
167   uint64_t base_cycles = 0;            // cycle counter reading
168   uint64_t nsscaled_per_cycle = 0;     // cycle period
169   uint64_t min_cycles_per_sample = 0;  // approx cycles before next sample
170 };
171 
172 struct ABSL_CACHELINE_ALIGNED TimeState {
173   std::atomic<uint64_t> seq{0};
174   TimeSampleAtomic last_sample;  // the last sample; under seq
175 
176   // The following counters are used only by the test code.
177   int64_t stats_initializations{0};
178   int64_t stats_reinitializations{0};
179   int64_t stats_calibrations{0};
180   int64_t stats_slow_paths{0};
181   int64_t stats_fast_slow_paths{0};
182 
ABSL_GUARDED_BYabsl::TimeState183   uint64_t last_now_cycles ABSL_GUARDED_BY(lock){0};
184 
185   // Used by GetCurrentTimeNanosFromKernel().
186   // We try to read clock values at about the same time as the kernel clock.
187   // This value gets adjusted up or down as estimate of how long that should
188   // take, so we can reject attempts that take unusually long.
189   std::atomic<uint64_t> approx_syscall_time_in_cycles{10 * 1000};
190   // Number of times in a row we've seen a kernel time call take substantially
191   // less than approx_syscall_time_in_cycles.
192   std::atomic<uint32_t> kernel_time_seen_smaller{0};
193 
194   // A reader-writer lock protecting the static locations below.
195   // See SeqAcquire() and SeqRelease() above.
196   absl::base_internal::SpinLock lock{absl::kConstInit,
197                                      base_internal::SCHEDULE_KERNEL_ONLY};
198 };
199 ABSL_CONST_INIT static TimeState time_state{};
200 
201 // Return the time in ns as told by the kernel interface.  Place in *cycleclock
202 // the value of the cycleclock at about the time of the syscall.
203 // This call represents the time base that this module synchronizes to.
204 // Ensures that *cycleclock does not step back by up to (1 << 16) from
205 // last_cycleclock, to discard small backward counter steps.  (Larger steps are
206 // assumed to be complete resyncs, which shouldn't happen.  If they do, a full
207 // reinitialization of the outer algorithm should occur.)
GetCurrentTimeNanosFromKernel(uint64_t last_cycleclock,uint64_t * cycleclock)208 static int64_t GetCurrentTimeNanosFromKernel(uint64_t last_cycleclock,
209                                              uint64_t *cycleclock)
210     ABSL_EXCLUSIVE_LOCKS_REQUIRED(time_state.lock) {
211   uint64_t local_approx_syscall_time_in_cycles =  // local copy
212       time_state.approx_syscall_time_in_cycles.load(std::memory_order_relaxed);
213 
214   int64_t current_time_nanos_from_system;
215   uint64_t before_cycles;
216   uint64_t after_cycles;
217   uint64_t elapsed_cycles;
218   int loops = 0;
219   do {
220     before_cycles = GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW();
221     current_time_nanos_from_system = GET_CURRENT_TIME_NANOS_FROM_SYSTEM();
222     after_cycles = GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW();
223     // elapsed_cycles is unsigned, so is large on overflow
224     elapsed_cycles = after_cycles - before_cycles;
225     if (elapsed_cycles >= local_approx_syscall_time_in_cycles &&
226         ++loops == 20) {  // clock changed frequencies?  Back off.
227       loops = 0;
228       if (local_approx_syscall_time_in_cycles < 1000 * 1000) {
229         local_approx_syscall_time_in_cycles =
230             (local_approx_syscall_time_in_cycles + 1) << 1;
231       }
232       time_state.approx_syscall_time_in_cycles.store(
233           local_approx_syscall_time_in_cycles, std::memory_order_relaxed);
234     }
235   } while (elapsed_cycles >= local_approx_syscall_time_in_cycles ||
236            last_cycleclock - after_cycles < (static_cast<uint64_t>(1) << 16));
237 
238   // Adjust approx_syscall_time_in_cycles to be within a factor of 2
239   // of the typical time to execute one iteration of the loop above.
240   if ((local_approx_syscall_time_in_cycles >> 1) < elapsed_cycles) {
241     // measured time is no smaller than half current approximation
242     time_state.kernel_time_seen_smaller.store(0, std::memory_order_relaxed);
243   } else if (time_state.kernel_time_seen_smaller.fetch_add(
244                  1, std::memory_order_relaxed) >= 3) {
245     // smaller delays several times in a row; reduce approximation by 12.5%
246     const uint64_t new_approximation =
247         local_approx_syscall_time_in_cycles -
248         (local_approx_syscall_time_in_cycles >> 3);
249     time_state.approx_syscall_time_in_cycles.store(new_approximation,
250                                                    std::memory_order_relaxed);
251     time_state.kernel_time_seen_smaller.store(0, std::memory_order_relaxed);
252   }
253 
254   *cycleclock = after_cycles;
255   return current_time_nanos_from_system;
256 }
257 
258 static int64_t GetCurrentTimeNanosSlowPath() ABSL_ATTRIBUTE_COLD;
259 
260 // Read the contents of *atomic into *sample.
261 // Each field is read atomically, but to maintain atomicity between fields,
262 // the access must be done under a lock.
ReadTimeSampleAtomic(const struct TimeSampleAtomic * atomic,struct TimeSample * sample)263 static void ReadTimeSampleAtomic(const struct TimeSampleAtomic *atomic,
264                                  struct TimeSample *sample) {
265   sample->base_ns = atomic->base_ns.load(std::memory_order_relaxed);
266   sample->base_cycles = atomic->base_cycles.load(std::memory_order_relaxed);
267   sample->nsscaled_per_cycle =
268       atomic->nsscaled_per_cycle.load(std::memory_order_relaxed);
269   sample->min_cycles_per_sample =
270       atomic->min_cycles_per_sample.load(std::memory_order_relaxed);
271   sample->raw_ns = atomic->raw_ns.load(std::memory_order_relaxed);
272 }
273 
274 // Public routine.
275 // Algorithm:  We wish to compute real time from a cycle counter.  In normal
276 // operation, we construct a piecewise linear approximation to the kernel time
277 // source, using the cycle counter value.  The start of each line segment is at
278 // the same point as the end of the last, but may have a different slope (that
279 // is, a different idea of the cycle counter frequency).  Every couple of
280 // seconds, the kernel time source is sampled and compared with the current
281 // approximation.  A new slope is chosen that, if followed for another couple
282 // of seconds, will correct the error at the current position.  The information
283 // for a sample is in the "last_sample" struct.  The linear approximation is
284 //   estimated_time = last_sample.base_ns +
285 //     last_sample.ns_per_cycle * (counter_reading - last_sample.base_cycles)
286 // (ns_per_cycle is actually stored in different units and scaled, to avoid
287 // overflow).  The base_ns of the next linear approximation is the
288 // estimated_time using the last approximation; the base_cycles is the cycle
289 // counter value at that time; the ns_per_cycle is the number of ns per cycle
290 // measured since the last sample, but adjusted so that most of the difference
291 // between the estimated_time and the kernel time will be corrected by the
292 // estimated time to the next sample.  In normal operation, this algorithm
293 // relies on:
294 // - the cycle counter and kernel time rates not changing a lot in a few
295 //   seconds.
296 // - the client calling into the code often compared to a couple of seconds, so
297 //   the time to the next correction can be estimated.
298 // Any time ns_per_cycle is not known, a major error is detected, or the
299 // assumption about frequent calls is violated, the implementation returns the
300 // kernel time.  It records sufficient data that a linear approximation can
301 // resume a little later.
302 
GetCurrentTimeNanos()303 int64_t GetCurrentTimeNanos() {
304   // read the data from the "last_sample" struct (but don't need raw_ns yet)
305   // The reads of "seq" and test of the values emulate a reader lock.
306   uint64_t base_ns;
307   uint64_t base_cycles;
308   uint64_t nsscaled_per_cycle;
309   uint64_t min_cycles_per_sample;
310   uint64_t seq_read0;
311   uint64_t seq_read1;
312 
313   // If we have enough information to interpolate, the value returned will be
314   // derived from this cycleclock-derived time estimate.  On some platforms
315   // (POWER) the function to retrieve this value has enough complexity to
316   // contribute to register pressure - reading it early before initializing
317   // the other pieces of the calculation minimizes spill/restore instructions,
318   // minimizing icache cost.
319   uint64_t now_cycles = GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW();
320 
321   // Acquire pairs with the barrier in SeqRelease - if this load sees that
322   // store, the shared-data reads necessarily see that SeqRelease's updates
323   // to the same shared data.
324   seq_read0 = time_state.seq.load(std::memory_order_acquire);
325 
326   base_ns = time_state.last_sample.base_ns.load(std::memory_order_relaxed);
327   base_cycles =
328       time_state.last_sample.base_cycles.load(std::memory_order_relaxed);
329   nsscaled_per_cycle =
330       time_state.last_sample.nsscaled_per_cycle.load(std::memory_order_relaxed);
331   min_cycles_per_sample = time_state.last_sample.min_cycles_per_sample.load(
332       std::memory_order_relaxed);
333 
334   // This acquire fence pairs with the release fence in SeqAcquire.  Since it
335   // is sequenced between reads of shared data and seq_read1, the reads of
336   // shared data are effectively acquiring.
337   std::atomic_thread_fence(std::memory_order_acquire);
338 
339   // The shared-data reads are effectively acquire ordered, and the
340   // shared-data writes are effectively release ordered. Therefore if our
341   // shared-data reads see any of a particular update's shared-data writes,
342   // seq_read1 is guaranteed to see that update's SeqAcquire.
343   seq_read1 = time_state.seq.load(std::memory_order_relaxed);
344 
345   // Fast path.  Return if min_cycles_per_sample has not yet elapsed since the
346   // last sample, and we read a consistent sample.  The fast path activates
347   // only when min_cycles_per_sample is non-zero, which happens when we get an
348   // estimate for the cycle time.  The predicate will fail if now_cycles <
349   // base_cycles, or if some other thread is in the slow path.
350   //
351   // Since we now read now_cycles before base_ns, it is possible for now_cycles
352   // to be less than base_cycles (if we were interrupted between those loads and
353   // last_sample was updated). This is harmless, because delta_cycles will wrap
354   // and report a time much much bigger than min_cycles_per_sample. In that case
355   // we will take the slow path.
356   uint64_t delta_cycles;
357   if (seq_read0 == seq_read1 && (seq_read0 & 1) == 0 &&
358       (delta_cycles = now_cycles - base_cycles) < min_cycles_per_sample) {
359     return base_ns + ((delta_cycles * nsscaled_per_cycle) >> kScale);
360   }
361   return GetCurrentTimeNanosSlowPath();
362 }
363 
364 // Return (a << kScale)/b.
365 // Zero is returned if b==0.   Scaling is performed internally to
366 // preserve precision without overflow.
SafeDivideAndScale(uint64_t a,uint64_t b)367 static uint64_t SafeDivideAndScale(uint64_t a, uint64_t b) {
368   // Find maximum safe_shift so that
369   //  0 <= safe_shift <= kScale  and  (a << safe_shift) does not overflow.
370   int safe_shift = kScale;
371   while (((a << safe_shift) >> safe_shift) != a) {
372     safe_shift--;
373   }
374   uint64_t scaled_b = b >> (kScale - safe_shift);
375   uint64_t quotient = 0;
376   if (scaled_b != 0) {
377     quotient = (a << safe_shift) / scaled_b;
378   }
379   return quotient;
380 }
381 
382 static uint64_t UpdateLastSample(
383     uint64_t now_cycles, uint64_t now_ns, uint64_t delta_cycles,
384     const struct TimeSample *sample) ABSL_ATTRIBUTE_COLD;
385 
386 // The slow path of GetCurrentTimeNanos().  This is taken while gathering
387 // initial samples, when enough time has elapsed since the last sample, and if
388 // any other thread is writing to last_sample.
389 //
390 // Manually mark this 'noinline' to minimize stack frame size of the fast
391 // path.  Without this, sometimes a compiler may inline this big block of code
392 // into the fast path.  That causes lots of register spills and reloads that
393 // are unnecessary unless the slow path is taken.
394 //
395 // TODO(absl-team): Remove this attribute when our compiler is smart enough
396 // to do the right thing.
397 ABSL_ATTRIBUTE_NOINLINE
GetCurrentTimeNanosSlowPath()398 static int64_t GetCurrentTimeNanosSlowPath()
399     ABSL_LOCKS_EXCLUDED(time_state.lock) {
400   // Serialize access to slow-path.  Fast-path readers are not blocked yet, and
401   // code below must not modify last_sample until the seqlock is acquired.
402   time_state.lock.Lock();
403 
404   // Sample the kernel time base.  This is the definition of
405   // "now" if we take the slow path.
406   uint64_t now_cycles;
407   uint64_t now_ns =
408       GetCurrentTimeNanosFromKernel(time_state.last_now_cycles, &now_cycles);
409   time_state.last_now_cycles = now_cycles;
410 
411   uint64_t estimated_base_ns;
412 
413   // ----------
414   // Read the "last_sample" values again; this time holding the write lock.
415   struct TimeSample sample;
416   ReadTimeSampleAtomic(&time_state.last_sample, &sample);
417 
418   // ----------
419   // Try running the fast path again; another thread may have updated the
420   // sample between our run of the fast path and the sample we just read.
421   uint64_t delta_cycles = now_cycles - sample.base_cycles;
422   if (delta_cycles < sample.min_cycles_per_sample) {
423     // Another thread updated the sample.  This path does not take the seqlock
424     // so that blocked readers can make progress without blocking new readers.
425     estimated_base_ns = sample.base_ns +
426         ((delta_cycles * sample.nsscaled_per_cycle) >> kScale);
427     time_state.stats_fast_slow_paths++;
428   } else {
429     estimated_base_ns =
430         UpdateLastSample(now_cycles, now_ns, delta_cycles, &sample);
431   }
432 
433   time_state.lock.Unlock();
434 
435   return estimated_base_ns;
436 }
437 
438 // Main part of the algorithm.  Locks out readers, updates the approximation
439 // using the new sample from the kernel, and stores the result in last_sample
440 // for readers.  Returns the new estimated time.
UpdateLastSample(uint64_t now_cycles,uint64_t now_ns,uint64_t delta_cycles,const struct TimeSample * sample)441 static uint64_t UpdateLastSample(uint64_t now_cycles, uint64_t now_ns,
442                                  uint64_t delta_cycles,
443                                  const struct TimeSample *sample)
444     ABSL_EXCLUSIVE_LOCKS_REQUIRED(time_state.lock) {
445   uint64_t estimated_base_ns = now_ns;
446   uint64_t lock_value =
447       SeqAcquire(&time_state.seq);  // acquire seqlock to block readers
448 
449   // The 5s in the next if-statement limits the time for which we will trust
450   // the cycle counter and our last sample to give a reasonable result.
451   // Errors in the rate of the source clock can be multiplied by the ratio
452   // between this limit and kMinNSBetweenSamples.
453   if (sample->raw_ns == 0 ||  // no recent sample, or clock went backwards
454       sample->raw_ns + static_cast<uint64_t>(5) * 1000 * 1000 * 1000 < now_ns ||
455       now_ns < sample->raw_ns || now_cycles < sample->base_cycles) {
456     // record this sample, and forget any previously known slope.
457     time_state.last_sample.raw_ns.store(now_ns, std::memory_order_relaxed);
458     time_state.last_sample.base_ns.store(estimated_base_ns,
459                                          std::memory_order_relaxed);
460     time_state.last_sample.base_cycles.store(now_cycles,
461                                              std::memory_order_relaxed);
462     time_state.last_sample.nsscaled_per_cycle.store(0,
463                                                     std::memory_order_relaxed);
464     time_state.last_sample.min_cycles_per_sample.store(
465         0, std::memory_order_relaxed);
466     time_state.stats_initializations++;
467   } else if (sample->raw_ns + 500 * 1000 * 1000 < now_ns &&
468              sample->base_cycles + 50 < now_cycles) {
469     // Enough time has passed to compute the cycle time.
470     if (sample->nsscaled_per_cycle != 0) {  // Have a cycle time estimate.
471       // Compute time from counter reading, but avoiding overflow
472       // delta_cycles may be larger than on the fast path.
473       uint64_t estimated_scaled_ns;
474       int s = -1;
475       do {
476         s++;
477         estimated_scaled_ns = (delta_cycles >> s) * sample->nsscaled_per_cycle;
478       } while (estimated_scaled_ns / sample->nsscaled_per_cycle !=
479                (delta_cycles >> s));
480       estimated_base_ns = sample->base_ns +
481                           (estimated_scaled_ns >> (kScale - s));
482     }
483 
484     // Compute the assumed cycle time kMinNSBetweenSamples ns into the future
485     // assuming the cycle counter rate stays the same as the last interval.
486     uint64_t ns = now_ns - sample->raw_ns;
487     uint64_t measured_nsscaled_per_cycle = SafeDivideAndScale(ns, delta_cycles);
488 
489     uint64_t assumed_next_sample_delta_cycles =
490         SafeDivideAndScale(kMinNSBetweenSamples, measured_nsscaled_per_cycle);
491 
492     int64_t diff_ns = now_ns - estimated_base_ns;  // estimate low by this much
493 
494     // We want to set nsscaled_per_cycle so that our estimate of the ns time
495     // at the assumed cycle time is the assumed ns time.
496     // That is, we want to set nsscaled_per_cycle so:
497     //  kMinNSBetweenSamples + diff_ns  ==
498     //  (assumed_next_sample_delta_cycles * nsscaled_per_cycle) >> kScale
499     // But we wish to damp oscillations, so instead correct only most
500     // of our current error, by solving:
501     //  kMinNSBetweenSamples + diff_ns - (diff_ns / 16) ==
502     //  (assumed_next_sample_delta_cycles * nsscaled_per_cycle) >> kScale
503     ns = kMinNSBetweenSamples + diff_ns - (diff_ns / 16);
504     uint64_t new_nsscaled_per_cycle =
505         SafeDivideAndScale(ns, assumed_next_sample_delta_cycles);
506     if (new_nsscaled_per_cycle != 0 &&
507         diff_ns < 100 * 1000 * 1000 && -diff_ns < 100 * 1000 * 1000) {
508       // record the cycle time measurement
509       time_state.last_sample.nsscaled_per_cycle.store(
510           new_nsscaled_per_cycle, std::memory_order_relaxed);
511       uint64_t new_min_cycles_per_sample =
512           SafeDivideAndScale(kMinNSBetweenSamples, new_nsscaled_per_cycle);
513       time_state.last_sample.min_cycles_per_sample.store(
514           new_min_cycles_per_sample, std::memory_order_relaxed);
515       time_state.stats_calibrations++;
516     } else {  // something went wrong; forget the slope
517       time_state.last_sample.nsscaled_per_cycle.store(
518           0, std::memory_order_relaxed);
519       time_state.last_sample.min_cycles_per_sample.store(
520           0, std::memory_order_relaxed);
521       estimated_base_ns = now_ns;
522       time_state.stats_reinitializations++;
523     }
524     time_state.last_sample.raw_ns.store(now_ns, std::memory_order_relaxed);
525     time_state.last_sample.base_ns.store(estimated_base_ns,
526                                          std::memory_order_relaxed);
527     time_state.last_sample.base_cycles.store(now_cycles,
528                                              std::memory_order_relaxed);
529   } else {
530     // have a sample, but no slope; waiting for enough time for a calibration
531     time_state.stats_slow_paths++;
532   }
533 
534   SeqRelease(&time_state.seq, lock_value);  // release the readers
535 
536   return estimated_base_ns;
537 }
538 ABSL_NAMESPACE_END
539 }  // namespace absl
540 #endif  // ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS
541 
542 namespace absl {
543 ABSL_NAMESPACE_BEGIN
544 namespace {
545 
546 // Returns the maximum duration that SleepOnce() can sleep for.
MaxSleep()547 constexpr absl::Duration MaxSleep() {
548 #ifdef _WIN32
549   // Windows Sleep() takes unsigned long argument in milliseconds.
550   return absl::Milliseconds(
551       std::numeric_limits<unsigned long>::max());  // NOLINT(runtime/int)
552 #else
553   return absl::Seconds(std::numeric_limits<time_t>::max());
554 #endif
555 }
556 
557 // Sleeps for the given duration.
558 // REQUIRES: to_sleep <= MaxSleep().
SleepOnce(absl::Duration to_sleep)559 void SleepOnce(absl::Duration to_sleep) {
560 #ifdef _WIN32
561   Sleep(to_sleep / absl::Milliseconds(1));
562 #else
563   struct timespec sleep_time = absl::ToTimespec(to_sleep);
564   while (nanosleep(&sleep_time, &sleep_time) != 0 && errno == EINTR) {
565     // Ignore signals and wait for the full interval to elapse.
566   }
567 #endif
568 }
569 
570 }  // namespace
571 ABSL_NAMESPACE_END
572 }  // namespace absl
573 
574 extern "C" {
575 
ABSL_INTERNAL_C_SYMBOL(AbslInternalSleepFor)576 ABSL_ATTRIBUTE_WEAK void ABSL_INTERNAL_C_SYMBOL(AbslInternalSleepFor)(
577     absl::Duration duration) {
578   while (duration > absl::ZeroDuration()) {
579     absl::Duration to_sleep = std::min(duration, absl::MaxSleep());
580     absl::SleepOnce(to_sleep);
581     duration -= to_sleep;
582   }
583 }
584 
585 }  // extern "C"
586