• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2010 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "ueventd.h"
18 
19 #include <android/api-level.h>
20 #include <ctype.h>
21 #include <dirent.h>
22 #include <fcntl.h>
23 #include <signal.h>
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <string.h>
27 #include <sys/stat.h>
28 #include <sys/wait.h>
29 #include <unistd.h>
30 
31 #include <set>
32 #include <thread>
33 
34 #include <android-base/chrono_utils.h>
35 #include <android-base/logging.h>
36 #include <android-base/properties.h>
37 #include <fstab/fstab.h>
38 #include <selinux/android.h>
39 #include <selinux/selinux.h>
40 
41 #include "devices.h"
42 #include "firmware_handler.h"
43 #include "modalias_handler.h"
44 #include "selabel.h"
45 #include "selinux.h"
46 #include "uevent_handler.h"
47 #include "uevent_listener.h"
48 #include "ueventd_parser.h"
49 #include "util.h"
50 
51 // At a high level, ueventd listens for uevent messages generated by the kernel through a netlink
52 // socket.  When ueventd receives such a message it handles it by taking appropriate actions,
53 // which can typically be creating a device node in /dev, setting file permissions, setting selinux
54 // labels, etc.
55 // Ueventd also handles loading of firmware that the kernel requests, and creates symlinks for block
56 // and character devices.
57 
58 // When ueventd starts, it regenerates uevents for all currently registered devices by traversing
59 // /sys and writing 'add' to each 'uevent' file that it finds.  This causes the kernel to generate
60 // and resend uevent messages for all of the currently registered devices.  This is done, because
61 // ueventd would not have been running when these devices were registered and therefore was unable
62 // to receive their uevent messages and handle them appropriately.  This process is known as
63 // 'cold boot'.
64 
65 // 'init' currently waits synchronously on the cold boot process of ueventd before it continues
66 // its boot process.  For this reason, cold boot should be as quick as possible.  One way to achieve
67 // a speed up here is to parallelize the handling of ueventd messages, which consume the bulk of the
68 // time during cold boot.
69 
70 // Handling of uevent messages has two unique properties:
71 // 1) It can be done in isolation; it doesn't need to read or write any status once it is started.
72 // 2) It uses setegid() and setfscreatecon() so either care (aka locking) must be taken to ensure
73 //    that no file system operations are done while the uevent process has an abnormal egid or
74 //    fscreatecon or this handling must happen in a separate process.
75 // Given the above two properties, it is best to fork() subprocesses to handle the uevents.  This
76 // reduces the overhead and complexity that would be required in a solution with threads and locks.
77 // In testing, a racy multithreaded solution has the same performance as the fork() solution, so
78 // there is no reason to deal with the complexity of the former.
79 
80 // One other important caveat during the boot process is the handling of SELinux restorecon.
81 // Since many devices have child devices, calling selinux_android_restorecon() recursively for each
82 // device when its uevent is handled, results in multiple restorecon operations being done on a
83 // given file.  It is more efficient to simply do restorecon recursively on /sys during cold boot,
84 // than to do restorecon on each device as its uevent is handled.  This only applies to cold boot;
85 // once that has completed, restorecon is done for each device as its uevent is handled.
86 
87 // With all of the above considered, the cold boot process has the below steps:
88 // 1) ueventd regenerates uevents by doing the /sys traversal and listens to the netlink socket for
89 //    the generated uevents.  It writes these uevents into a queue represented by a vector.
90 //
91 // 2) ueventd forks 'n' separate uevent handler subprocesses and has each of them to handle the
92 //    uevents in the queue based on a starting offset (their process number) and a stride (the total
93 //    number of processes).  Note that no IPC happens at this point and only const functions from
94 //    DeviceHandler should be called from this context.
95 //
96 // 3) In parallel to the subprocesses handling the uevents, the main thread of ueventd calls
97 //    selinux_android_restorecon() recursively on /sys/class, /sys/block, and /sys/devices.
98 //
99 // 4) Once the restorecon operation finishes, the main thread calls waitpid() to wait for all
100 //    subprocess handlers to complete and exit.  Once this happens, it marks coldboot as having
101 //    completed.
102 //
103 // At this point, ueventd is single threaded, poll()'s and then handles any future uevents.
104 
105 // Lastly, it should be noted that uevents that occur during the coldboot process are handled
106 // without issue after the coldboot process completes.  This is because the uevent listener is
107 // paused while the uevent handler and restorecon actions take place.  Once coldboot completes,
108 // the uevent listener resumes in polling mode and will handle the uevents that occurred during
109 // coldboot.
110 
111 namespace android {
112 namespace init {
113 
114 class ColdBoot {
115   public:
ColdBoot(UeventListener & uevent_listener,std::vector<std::unique_ptr<UeventHandler>> & uevent_handlers,bool enable_parallel_restorecon)116     ColdBoot(UeventListener& uevent_listener,
117              std::vector<std::unique_ptr<UeventHandler>>& uevent_handlers,
118              bool enable_parallel_restorecon)
119         : uevent_listener_(uevent_listener),
120           uevent_handlers_(uevent_handlers),
121           num_handler_subprocesses_(std::thread::hardware_concurrency() ?: 4),
122           enable_parallel_restorecon_(enable_parallel_restorecon) {}
123 
124     void Run();
125 
126   private:
127     void UeventHandlerMain(unsigned int process_num, unsigned int total_processes);
128     void RegenerateUevents();
129     void ForkSubProcesses();
130     void WaitForSubProcesses();
131     void RestoreConHandler(unsigned int process_num, unsigned int total_processes);
132     void GenerateRestoreCon(const std::string& directory);
133 
134     UeventListener& uevent_listener_;
135     std::vector<std::unique_ptr<UeventHandler>>& uevent_handlers_;
136 
137     unsigned int num_handler_subprocesses_;
138     bool enable_parallel_restorecon_;
139 
140     std::vector<Uevent> uevent_queue_;
141 
142     std::set<pid_t> subprocess_pids_;
143 
144     std::vector<std::string> restorecon_queue_;
145 };
146 
UeventHandlerMain(unsigned int process_num,unsigned int total_processes)147 void ColdBoot::UeventHandlerMain(unsigned int process_num, unsigned int total_processes) {
148     for (unsigned int i = process_num; i < uevent_queue_.size(); i += total_processes) {
149         auto& uevent = uevent_queue_[i];
150 
151         for (auto& uevent_handler : uevent_handlers_) {
152             uevent_handler->HandleUevent(uevent);
153         }
154     }
155 }
156 
RestoreConHandler(unsigned int process_num,unsigned int total_processes)157 void ColdBoot::RestoreConHandler(unsigned int process_num, unsigned int total_processes) {
158     for (unsigned int i = process_num; i < restorecon_queue_.size(); i += total_processes) {
159         auto& dir = restorecon_queue_[i];
160 
161         selinux_android_restorecon(dir.c_str(), SELINUX_ANDROID_RESTORECON_RECURSE);
162     }
163 }
164 
GenerateRestoreCon(const std::string & directory)165 void ColdBoot::GenerateRestoreCon(const std::string& directory) {
166     std::unique_ptr<DIR, decltype(&closedir)> dir(opendir(directory.c_str()), &closedir);
167 
168     if (!dir) return;
169 
170     struct dirent* dent;
171     while ((dent = readdir(dir.get())) != NULL) {
172         if (strcmp(dent->d_name, ".") == 0 || strcmp(dent->d_name, "..") == 0) continue;
173 
174         struct stat st;
175         if (fstatat(dirfd(dir.get()), dent->d_name, &st, 0) == -1) continue;
176 
177         if (S_ISDIR(st.st_mode)) {
178             std::string fullpath = directory + "/" + dent->d_name;
179             if (fullpath != "/sys/devices") {
180                 restorecon_queue_.emplace_back(fullpath);
181             }
182         }
183     }
184 }
185 
RegenerateUevents()186 void ColdBoot::RegenerateUevents() {
187     uevent_listener_.RegenerateUevents([this](const Uevent& uevent) {
188         uevent_queue_.emplace_back(uevent);
189         return ListenerAction::kContinue;
190     });
191 }
192 
ForkSubProcesses()193 void ColdBoot::ForkSubProcesses() {
194     for (unsigned int i = 0; i < num_handler_subprocesses_; ++i) {
195         auto pid = fork();
196         if (pid < 0) {
197             PLOG(FATAL) << "fork() failed!";
198         }
199 
200         if (pid == 0) {
201             UeventHandlerMain(i, num_handler_subprocesses_);
202             if (enable_parallel_restorecon_) {
203                 RestoreConHandler(i, num_handler_subprocesses_);
204             }
205             _exit(EXIT_SUCCESS);
206         }
207 
208         subprocess_pids_.emplace(pid);
209     }
210 }
211 
WaitForSubProcesses()212 void ColdBoot::WaitForSubProcesses() {
213     // Treat subprocesses that crash or get stuck the same as if ueventd itself has crashed or gets
214     // stuck.
215     //
216     // When a subprocess crashes, we fatally abort from ueventd.  init will restart ueventd when
217     // init reaps it, and the cold boot process will start again.  If this continues to fail, then
218     // since ueventd is marked as a critical service, init will reboot to bootloader.
219     //
220     // When a subprocess gets stuck, keep ueventd spinning waiting for it.  init has a timeout for
221     // cold boot and will reboot to the bootloader if ueventd does not complete in time.
222     while (!subprocess_pids_.empty()) {
223         int status;
224         pid_t pid = TEMP_FAILURE_RETRY(waitpid(-1, &status, 0));
225         if (pid == -1) {
226             PLOG(ERROR) << "waitpid() failed";
227             continue;
228         }
229 
230         auto it = std::find(subprocess_pids_.begin(), subprocess_pids_.end(), pid);
231         if (it == subprocess_pids_.end()) continue;
232 
233         if (WIFEXITED(status)) {
234             if (WEXITSTATUS(status) == EXIT_SUCCESS) {
235                 subprocess_pids_.erase(it);
236             } else {
237                 LOG(FATAL) << "subprocess exited with status " << WEXITSTATUS(status);
238             }
239         } else if (WIFSIGNALED(status)) {
240             LOG(FATAL) << "subprocess killed by signal " << WTERMSIG(status);
241         }
242     }
243 }
244 
Run()245 void ColdBoot::Run() {
246     android::base::Timer cold_boot_timer;
247 
248     RegenerateUevents();
249 
250     if (enable_parallel_restorecon_) {
251         selinux_android_restorecon("/sys", 0);
252         selinux_android_restorecon("/sys/devices", 0);
253         GenerateRestoreCon("/sys");
254         // takes long time for /sys/devices, parallelize it
255         GenerateRestoreCon("/sys/devices");
256     }
257 
258     ForkSubProcesses();
259 
260     if (!enable_parallel_restorecon_) {
261         selinux_android_restorecon("/sys", SELINUX_ANDROID_RESTORECON_RECURSE);
262     }
263 
264     WaitForSubProcesses();
265 
266     android::base::SetProperty(kColdBootDoneProp, "true");
267     LOG(INFO) << "Coldboot took " << cold_boot_timer.duration().count() / 1000.0f << " seconds";
268 }
269 
GetConfiguration()270 static UeventdConfiguration GetConfiguration() {
271     // TODO: Remove these legacy paths once Android S is no longer supported.
272     if (android::base::GetIntProperty("ro.product.first_api_level", 10000) <= __ANDROID_API_S__) {
273         auto hardware = android::base::GetProperty("ro.hardware", "");
274         return ParseConfig({"/system/etc/ueventd.rc", "/vendor/ueventd.rc", "/odm/ueventd.rc",
275                             "/ueventd." + hardware + ".rc"});
276     }
277 
278     return ParseConfig({"/system/etc/ueventd.rc"});
279 }
280 
ueventd_main(int argc,char ** argv)281 int ueventd_main(int argc, char** argv) {
282     /*
283      * init sets the umask to 077 for forked processes. We need to
284      * create files with exact permissions, without modification by
285      * the umask.
286      */
287     umask(000);
288 
289     android::base::InitLogging(argv, &android::base::KernelLogger);
290 
291     LOG(INFO) << "ueventd started!";
292 
293     SelinuxSetupKernelLogging();
294     SelabelInitialize();
295 
296     std::vector<std::unique_ptr<UeventHandler>> uevent_handlers;
297 
298     auto ueventd_configuration = GetConfiguration();
299 
300     uevent_handlers.emplace_back(std::make_unique<DeviceHandler>(
301             std::move(ueventd_configuration.dev_permissions),
302             std::move(ueventd_configuration.sysfs_permissions),
303             std::move(ueventd_configuration.subsystems), android::fs_mgr::GetBootDevices(), true));
304     uevent_handlers.emplace_back(std::make_unique<FirmwareHandler>(
305             std::move(ueventd_configuration.firmware_directories),
306             std::move(ueventd_configuration.external_firmware_handlers)));
307 
308     if (ueventd_configuration.enable_modalias_handling) {
309         std::vector<std::string> base_paths = {"/odm/lib/modules", "/vendor/lib/modules"};
310         uevent_handlers.emplace_back(std::make_unique<ModaliasHandler>(base_paths));
311     }
312     UeventListener uevent_listener(ueventd_configuration.uevent_socket_rcvbuf_size);
313 
314     if (!android::base::GetBoolProperty(kColdBootDoneProp, false)) {
315         ColdBoot cold_boot(uevent_listener, uevent_handlers,
316                            ueventd_configuration.enable_parallel_restorecon);
317         cold_boot.Run();
318     }
319 
320     for (auto& uevent_handler : uevent_handlers) {
321         uevent_handler->ColdbootDone();
322     }
323 
324     // We use waitpid() in ColdBoot, so we can't ignore SIGCHLD until now.
325     signal(SIGCHLD, SIG_IGN);
326     // Reap and pending children that exited between the last call to waitpid() and setting SIG_IGN
327     // for SIGCHLD above.
328     while (waitpid(-1, nullptr, WNOHANG) > 0) {
329     }
330 
331     // Restore prio before main loop
332     setpriority(PRIO_PROCESS, 0, 0);
333     uevent_listener.Poll([&uevent_handlers](const Uevent& uevent) {
334         for (auto& uevent_handler : uevent_handlers) {
335             uevent_handler->HandleUevent(uevent);
336         }
337         return ListenerAction::kContinue;
338     });
339 
340     return 0;
341 }
342 
343 }  // namespace init
344 }  // namespace android
345