• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2014 Scott Mansell
3  * Copyright © 2014 Broadcom
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  */
24 
25 #include <inttypes.h>
26 #include "util/format/u_format.h"
27 #include "util/crc32.h"
28 #include "util/u_helpers.h"
29 #include "util/u_math.h"
30 #include "util/u_memory.h"
31 #include "util/ralloc.h"
32 #include "util/hash_table.h"
33 #include "tgsi/tgsi_dump.h"
34 #include "tgsi/tgsi_parse.h"
35 #include "compiler/nir/nir.h"
36 #include "compiler/nir/nir_builder.h"
37 #include "compiler/nir_types.h"
38 #include "nir/tgsi_to_nir.h"
39 #include "vc4_context.h"
40 #include "vc4_qpu.h"
41 #include "vc4_qir.h"
42 
43 static struct qreg
44 ntq_get_src(struct vc4_compile *c, nir_src src, int i);
45 static void
46 ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list);
47 
48 static int
type_size(const struct glsl_type * type,bool bindless)49 type_size(const struct glsl_type *type, bool bindless)
50 {
51    return glsl_count_attribute_slots(type, false);
52 }
53 
54 static void
resize_qreg_array(struct vc4_compile * c,struct qreg ** regs,uint32_t * size,uint32_t decl_size)55 resize_qreg_array(struct vc4_compile *c,
56                   struct qreg **regs,
57                   uint32_t *size,
58                   uint32_t decl_size)
59 {
60         if (*size >= decl_size)
61                 return;
62 
63         uint32_t old_size = *size;
64         *size = MAX2(*size * 2, decl_size);
65         *regs = reralloc(c, *regs, struct qreg, *size);
66         if (!*regs) {
67                 fprintf(stderr, "Malloc failure\n");
68                 abort();
69         }
70 
71         for (uint32_t i = old_size; i < *size; i++)
72                 (*regs)[i] = c->undef;
73 }
74 
75 static void
ntq_emit_thrsw(struct vc4_compile * c)76 ntq_emit_thrsw(struct vc4_compile *c)
77 {
78         if (!c->fs_threaded)
79                 return;
80 
81         /* Always thread switch after each texture operation for now.
82          *
83          * We could do better by batching a bunch of texture fetches up and
84          * then doing one thread switch and collecting all their results
85          * afterward.
86          */
87         qir_emit_nondef(c, qir_inst(QOP_THRSW, c->undef,
88                                     c->undef, c->undef));
89         c->last_thrsw_at_top_level = (c->execute.file == QFILE_NULL);
90 }
91 
92 static struct qreg
indirect_uniform_load(struct vc4_compile * c,nir_intrinsic_instr * intr)93 indirect_uniform_load(struct vc4_compile *c, nir_intrinsic_instr *intr)
94 {
95         struct qreg indirect_offset = ntq_get_src(c, intr->src[0], 0);
96 
97         /* Clamp to [0, array size).  Note that MIN/MAX are signed. */
98         uint32_t range = nir_intrinsic_range(intr);
99         indirect_offset = qir_MAX(c, indirect_offset, qir_uniform_ui(c, 0));
100         indirect_offset = qir_MIN_NOIMM(c, indirect_offset,
101                                         qir_uniform_ui(c, range - 4));
102 
103         qir_ADD_dest(c, qir_reg(QFILE_TEX_S_DIRECT, 0),
104                      indirect_offset,
105                      qir_uniform(c, QUNIFORM_UBO0_ADDR,
106                                  nir_intrinsic_base(intr)));
107 
108         c->num_texture_samples++;
109 
110         ntq_emit_thrsw(c);
111 
112         return qir_TEX_RESULT(c);
113 }
114 
115 static struct qreg
vc4_ubo_load(struct vc4_compile * c,nir_intrinsic_instr * intr)116 vc4_ubo_load(struct vc4_compile *c, nir_intrinsic_instr *intr)
117 {
118         ASSERTED int buffer_index = nir_src_as_uint(intr->src[0]);
119         assert(buffer_index == 1);
120         assert(c->stage == QSTAGE_FRAG);
121 
122         struct qreg offset = ntq_get_src(c, intr->src[1], 0);
123 
124         /* Clamp to [0, array size).  Note that MIN/MAX are signed. */
125         offset = qir_MAX(c, offset, qir_uniform_ui(c, 0));
126         offset = qir_MIN_NOIMM(c, offset,
127                                qir_uniform_ui(c, c->fs_key->ubo_1_size - 4));
128 
129         qir_ADD_dest(c, qir_reg(QFILE_TEX_S_DIRECT, 0),
130                      offset,
131                      qir_uniform(c, QUNIFORM_UBO1_ADDR, 0));
132 
133         c->num_texture_samples++;
134 
135         ntq_emit_thrsw(c);
136 
137         return qir_TEX_RESULT(c);
138 }
139 
140 nir_ssa_def *
vc4_nir_get_swizzled_channel(nir_builder * b,nir_ssa_def ** srcs,int swiz)141 vc4_nir_get_swizzled_channel(nir_builder *b, nir_ssa_def **srcs, int swiz)
142 {
143         switch (swiz) {
144         default:
145         case PIPE_SWIZZLE_NONE:
146                 fprintf(stderr, "warning: unknown swizzle\n");
147                 /* FALLTHROUGH */
148         case PIPE_SWIZZLE_0:
149                 return nir_imm_float(b, 0.0);
150         case PIPE_SWIZZLE_1:
151                 return nir_imm_float(b, 1.0);
152         case PIPE_SWIZZLE_X:
153         case PIPE_SWIZZLE_Y:
154         case PIPE_SWIZZLE_Z:
155         case PIPE_SWIZZLE_W:
156                 return srcs[swiz];
157         }
158 }
159 
160 static struct qreg *
ntq_init_ssa_def(struct vc4_compile * c,nir_ssa_def * def)161 ntq_init_ssa_def(struct vc4_compile *c, nir_ssa_def *def)
162 {
163         struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
164                                           def->num_components);
165         _mesa_hash_table_insert(c->def_ht, def, qregs);
166         return qregs;
167 }
168 
169 /**
170  * This function is responsible for getting QIR results into the associated
171  * storage for a NIR instruction.
172  *
173  * If it's a NIR SSA def, then we just set the associated hash table entry to
174  * the new result.
175  *
176  * If it's a NIR reg, then we need to update the existing qreg assigned to the
177  * NIR destination with the incoming value.  To do that without introducing
178  * new MOVs, we require that the incoming qreg either be a uniform, or be
179  * SSA-defined by the previous QIR instruction in the block and rewritable by
180  * this function.  That lets us sneak ahead and insert the SF flag beforehand
181  * (knowing that the previous instruction doesn't depend on flags) and rewrite
182  * its destination to be the NIR reg's destination
183  */
184 static void
ntq_store_dest(struct vc4_compile * c,nir_dest * dest,int chan,struct qreg result)185 ntq_store_dest(struct vc4_compile *c, nir_dest *dest, int chan,
186                struct qreg result)
187 {
188         struct qinst *last_inst = NULL;
189         if (!list_is_empty(&c->cur_block->instructions))
190                 last_inst = (struct qinst *)c->cur_block->instructions.prev;
191 
192         assert(result.file == QFILE_UNIF ||
193                (result.file == QFILE_TEMP &&
194                 last_inst && last_inst == c->defs[result.index]));
195 
196         if (dest->is_ssa) {
197                 assert(chan < dest->ssa.num_components);
198 
199                 struct qreg *qregs;
200                 struct hash_entry *entry =
201                         _mesa_hash_table_search(c->def_ht, &dest->ssa);
202 
203                 if (entry)
204                         qregs = entry->data;
205                 else
206                         qregs = ntq_init_ssa_def(c, &dest->ssa);
207 
208                 qregs[chan] = result;
209         } else {
210                 nir_register *reg = dest->reg.reg;
211                 assert(dest->reg.base_offset == 0);
212                 assert(reg->num_array_elems == 0);
213                 struct hash_entry *entry =
214                         _mesa_hash_table_search(c->def_ht, reg);
215                 struct qreg *qregs = entry->data;
216 
217                 /* Insert a MOV if the source wasn't an SSA def in the
218                  * previous instruction.
219                  */
220                 if (result.file == QFILE_UNIF) {
221                         result = qir_MOV(c, result);
222                         last_inst = c->defs[result.index];
223                 }
224 
225                 /* We know they're both temps, so just rewrite index. */
226                 c->defs[last_inst->dst.index] = NULL;
227                 last_inst->dst.index = qregs[chan].index;
228 
229                 /* If we're in control flow, then make this update of the reg
230                  * conditional on the execution mask.
231                  */
232                 if (c->execute.file != QFILE_NULL) {
233                         last_inst->dst.index = qregs[chan].index;
234 
235                         /* Set the flags to the current exec mask.  To insert
236                          * the SF, we temporarily remove our SSA instruction.
237                          */
238                         list_del(&last_inst->link);
239                         qir_SF(c, c->execute);
240                         list_addtail(&last_inst->link,
241                                      &c->cur_block->instructions);
242 
243                         last_inst->cond = QPU_COND_ZS;
244                         last_inst->cond_is_exec_mask = true;
245                 }
246         }
247 }
248 
249 static struct qreg *
ntq_get_dest(struct vc4_compile * c,nir_dest * dest)250 ntq_get_dest(struct vc4_compile *c, nir_dest *dest)
251 {
252         if (dest->is_ssa) {
253                 struct qreg *qregs = ntq_init_ssa_def(c, &dest->ssa);
254                 for (int i = 0; i < dest->ssa.num_components; i++)
255                         qregs[i] = c->undef;
256                 return qregs;
257         } else {
258                 nir_register *reg = dest->reg.reg;
259                 assert(dest->reg.base_offset == 0);
260                 assert(reg->num_array_elems == 0);
261                 struct hash_entry *entry =
262                         _mesa_hash_table_search(c->def_ht, reg);
263                 return entry->data;
264         }
265 }
266 
267 static struct qreg
ntq_get_src(struct vc4_compile * c,nir_src src,int i)268 ntq_get_src(struct vc4_compile *c, nir_src src, int i)
269 {
270         struct hash_entry *entry;
271         if (src.is_ssa) {
272                 entry = _mesa_hash_table_search(c->def_ht, src.ssa);
273                 assert(i < src.ssa->num_components);
274         } else {
275                 nir_register *reg = src.reg.reg;
276                 entry = _mesa_hash_table_search(c->def_ht, reg);
277                 assert(reg->num_array_elems == 0);
278                 assert(src.reg.base_offset == 0);
279                 assert(i < reg->num_components);
280         }
281 
282         struct qreg *qregs = entry->data;
283         return qregs[i];
284 }
285 
286 static struct qreg
ntq_get_alu_src(struct vc4_compile * c,nir_alu_instr * instr,unsigned src)287 ntq_get_alu_src(struct vc4_compile *c, nir_alu_instr *instr,
288                 unsigned src)
289 {
290         assert(util_is_power_of_two_or_zero(instr->dest.write_mask));
291         unsigned chan = ffs(instr->dest.write_mask) - 1;
292         struct qreg r = ntq_get_src(c, instr->src[src].src,
293                                     instr->src[src].swizzle[chan]);
294 
295         assert(!instr->src[src].abs);
296         assert(!instr->src[src].negate);
297 
298         return r;
299 };
300 
301 static inline struct qreg
qir_SAT(struct vc4_compile * c,struct qreg val)302 qir_SAT(struct vc4_compile *c, struct qreg val)
303 {
304         return qir_FMAX(c,
305                         qir_FMIN(c, val, qir_uniform_f(c, 1.0)),
306                         qir_uniform_f(c, 0.0));
307 }
308 
309 static struct qreg
ntq_rcp(struct vc4_compile * c,struct qreg x)310 ntq_rcp(struct vc4_compile *c, struct qreg x)
311 {
312         struct qreg r = qir_RCP(c, x);
313 
314         /* Apply a Newton-Raphson step to improve the accuracy. */
315         r = qir_FMUL(c, r, qir_FSUB(c,
316                                     qir_uniform_f(c, 2.0),
317                                     qir_FMUL(c, x, r)));
318 
319         return r;
320 }
321 
322 static struct qreg
ntq_rsq(struct vc4_compile * c,struct qreg x)323 ntq_rsq(struct vc4_compile *c, struct qreg x)
324 {
325         struct qreg r = qir_RSQ(c, x);
326 
327         /* Apply a Newton-Raphson step to improve the accuracy. */
328         r = qir_FMUL(c, r, qir_FSUB(c,
329                                     qir_uniform_f(c, 1.5),
330                                     qir_FMUL(c,
331                                              qir_uniform_f(c, 0.5),
332                                              qir_FMUL(c, x,
333                                                       qir_FMUL(c, r, r)))));
334 
335         return r;
336 }
337 
338 static struct qreg
ntq_umul(struct vc4_compile * c,struct qreg src0,struct qreg src1)339 ntq_umul(struct vc4_compile *c, struct qreg src0, struct qreg src1)
340 {
341         struct qreg src0_hi = qir_SHR(c, src0,
342                                       qir_uniform_ui(c, 24));
343         struct qreg src1_hi = qir_SHR(c, src1,
344                                       qir_uniform_ui(c, 24));
345 
346         struct qreg hilo = qir_MUL24(c, src0_hi, src1);
347         struct qreg lohi = qir_MUL24(c, src0, src1_hi);
348         struct qreg lolo = qir_MUL24(c, src0, src1);
349 
350         return qir_ADD(c, lolo, qir_SHL(c,
351                                         qir_ADD(c, hilo, lohi),
352                                         qir_uniform_ui(c, 24)));
353 }
354 
355 static struct qreg
ntq_scale_depth_texture(struct vc4_compile * c,struct qreg src)356 ntq_scale_depth_texture(struct vc4_compile *c, struct qreg src)
357 {
358         struct qreg depthf = qir_ITOF(c, qir_SHR(c, src,
359                                                  qir_uniform_ui(c, 8)));
360         return qir_FMUL(c, depthf, qir_uniform_f(c, 1.0f/0xffffff));
361 }
362 
363 /**
364  * Emits a lowered TXF_MS from an MSAA texture.
365  *
366  * The addressing math has been lowered in NIR, and now we just need to read
367  * it like a UBO.
368  */
369 static void
ntq_emit_txf(struct vc4_compile * c,nir_tex_instr * instr)370 ntq_emit_txf(struct vc4_compile *c, nir_tex_instr *instr)
371 {
372         uint32_t tile_width = 32;
373         uint32_t tile_height = 32;
374         uint32_t tile_size = (tile_height * tile_width *
375                               VC4_MAX_SAMPLES * sizeof(uint32_t));
376 
377         unsigned unit = instr->texture_index;
378         uint32_t w = align(c->key->tex[unit].msaa_width, tile_width);
379         uint32_t w_tiles = w / tile_width;
380         uint32_t h = align(c->key->tex[unit].msaa_height, tile_height);
381         uint32_t h_tiles = h / tile_height;
382         uint32_t size = w_tiles * h_tiles * tile_size;
383 
384         struct qreg addr;
385         assert(instr->num_srcs == 1);
386         assert(instr->src[0].src_type == nir_tex_src_coord);
387         addr = ntq_get_src(c, instr->src[0].src, 0);
388 
389         /* Perform the clamping required by kernel validation. */
390         addr = qir_MAX(c, addr, qir_uniform_ui(c, 0));
391         addr = qir_MIN_NOIMM(c, addr, qir_uniform_ui(c, size - 4));
392 
393         qir_ADD_dest(c, qir_reg(QFILE_TEX_S_DIRECT, 0),
394                      addr, qir_uniform(c, QUNIFORM_TEXTURE_MSAA_ADDR, unit));
395 
396         ntq_emit_thrsw(c);
397 
398         struct qreg tex = qir_TEX_RESULT(c);
399         c->num_texture_samples++;
400 
401         enum pipe_format format = c->key->tex[unit].format;
402         if (util_format_is_depth_or_stencil(format)) {
403                 struct qreg scaled = ntq_scale_depth_texture(c, tex);
404                 for (int i = 0; i < 4; i++)
405                         ntq_store_dest(c, &instr->dest, i, qir_MOV(c, scaled));
406         } else {
407                 for (int i = 0; i < 4; i++)
408                         ntq_store_dest(c, &instr->dest, i,
409                                        qir_UNPACK_8_F(c, tex, i));
410         }
411 }
412 
413 static void
ntq_emit_tex(struct vc4_compile * c,nir_tex_instr * instr)414 ntq_emit_tex(struct vc4_compile *c, nir_tex_instr *instr)
415 {
416         struct qreg s, t, r, lod, compare;
417         bool is_txb = false, is_txl = false;
418         unsigned unit = instr->texture_index;
419 
420         if (instr->op == nir_texop_txf) {
421                 ntq_emit_txf(c, instr);
422                 return;
423         }
424 
425         for (unsigned i = 0; i < instr->num_srcs; i++) {
426                 switch (instr->src[i].src_type) {
427                 case nir_tex_src_coord:
428                         s = ntq_get_src(c, instr->src[i].src, 0);
429                         if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D)
430                                 t = qir_uniform_f(c, 0.5);
431                         else
432                                 t = ntq_get_src(c, instr->src[i].src, 1);
433                         if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
434                                 r = ntq_get_src(c, instr->src[i].src, 2);
435                         break;
436                 case nir_tex_src_bias:
437                         lod = ntq_get_src(c, instr->src[i].src, 0);
438                         is_txb = true;
439                         break;
440                 case nir_tex_src_lod:
441                         lod = ntq_get_src(c, instr->src[i].src, 0);
442                         is_txl = true;
443                         break;
444                 case nir_tex_src_comparator:
445                         compare = ntq_get_src(c, instr->src[i].src, 0);
446                         break;
447                 default:
448                         unreachable("unknown texture source");
449                 }
450         }
451 
452         if (c->stage != QSTAGE_FRAG && !is_txl) {
453                 /* From the GLSL 1.20 spec:
454                  *
455                  *     "If it is mip-mapped and running on the vertex shader,
456                  *      then the base texture is used."
457                  */
458                 is_txl = true;
459                 lod = qir_uniform_ui(c, 0);
460         }
461 
462         if (c->key->tex[unit].force_first_level) {
463                 lod = qir_uniform(c, QUNIFORM_TEXTURE_FIRST_LEVEL, unit);
464                 is_txl = true;
465                 is_txb = false;
466         }
467 
468         struct qreg texture_u[] = {
469                 qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P0, unit),
470                 qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P1, unit),
471                 qir_uniform(c, QUNIFORM_CONSTANT, 0),
472                 qir_uniform(c, QUNIFORM_CONSTANT, 0),
473         };
474         uint32_t next_texture_u = 0;
475 
476         /* There is no native support for GL texture rectangle coordinates, so
477          * we have to rescale from ([0, width], [0, height]) to ([0, 1], [0,
478          * 1]).
479          */
480         if (instr->sampler_dim == GLSL_SAMPLER_DIM_RECT) {
481                 s = qir_FMUL(c, s,
482                              qir_uniform(c, QUNIFORM_TEXRECT_SCALE_X, unit));
483                 t = qir_FMUL(c, t,
484                              qir_uniform(c, QUNIFORM_TEXRECT_SCALE_Y, unit));
485         }
486 
487         if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE || is_txl) {
488                 texture_u[2] = qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P2,
489                                            unit | (is_txl << 16));
490         }
491 
492         struct qinst *tmu;
493         if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
494                 tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_R, 0), r);
495                 tmu->src[qir_get_tex_uniform_src(tmu)] =
496                         texture_u[next_texture_u++];
497         } else if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
498                    c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP ||
499                    c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
500                    c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
501                 tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_R, 0),
502                                    qir_uniform(c, QUNIFORM_TEXTURE_BORDER_COLOR,
503                                                unit));
504                 tmu->src[qir_get_tex_uniform_src(tmu)] =
505                         texture_u[next_texture_u++];
506         }
507 
508         if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP) {
509                 s = qir_SAT(c, s);
510         }
511 
512         if (c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
513                 t = qir_SAT(c, t);
514         }
515 
516         tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_T, 0), t);
517         tmu->src[qir_get_tex_uniform_src(tmu)] =
518                 texture_u[next_texture_u++];
519 
520         if (is_txl || is_txb) {
521                 tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_B, 0), lod);
522                 tmu->src[qir_get_tex_uniform_src(tmu)] =
523                         texture_u[next_texture_u++];
524         }
525 
526         tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_S, 0), s);
527         tmu->src[qir_get_tex_uniform_src(tmu)] = texture_u[next_texture_u++];
528 
529         c->num_texture_samples++;
530 
531         ntq_emit_thrsw(c);
532 
533         struct qreg tex = qir_TEX_RESULT(c);
534 
535         enum pipe_format format = c->key->tex[unit].format;
536 
537         struct qreg *dest = ntq_get_dest(c, &instr->dest);
538         if (util_format_is_depth_or_stencil(format)) {
539                 struct qreg normalized = ntq_scale_depth_texture(c, tex);
540                 struct qreg depth_output;
541 
542                 struct qreg u0 = qir_uniform_f(c, 0.0f);
543                 struct qreg u1 = qir_uniform_f(c, 1.0f);
544                 if (c->key->tex[unit].compare_mode) {
545                         /* From the GL_ARB_shadow spec:
546                          *
547                          *     "Let Dt (D subscript t) be the depth texture
548                          *      value, in the range [0, 1].  Let R be the
549                          *      interpolated texture coordinate clamped to the
550                          *      range [0, 1]."
551                          */
552                         compare = qir_SAT(c, compare);
553 
554                         switch (c->key->tex[unit].compare_func) {
555                         case PIPE_FUNC_NEVER:
556                                 depth_output = qir_uniform_f(c, 0.0f);
557                                 break;
558                         case PIPE_FUNC_ALWAYS:
559                                 depth_output = u1;
560                                 break;
561                         case PIPE_FUNC_EQUAL:
562                                 qir_SF(c, qir_FSUB(c, compare, normalized));
563                                 depth_output = qir_SEL(c, QPU_COND_ZS, u1, u0);
564                                 break;
565                         case PIPE_FUNC_NOTEQUAL:
566                                 qir_SF(c, qir_FSUB(c, compare, normalized));
567                                 depth_output = qir_SEL(c, QPU_COND_ZC, u1, u0);
568                                 break;
569                         case PIPE_FUNC_GREATER:
570                                 qir_SF(c, qir_FSUB(c, compare, normalized));
571                                 depth_output = qir_SEL(c, QPU_COND_NC, u1, u0);
572                                 break;
573                         case PIPE_FUNC_GEQUAL:
574                                 qir_SF(c, qir_FSUB(c, normalized, compare));
575                                 depth_output = qir_SEL(c, QPU_COND_NS, u1, u0);
576                                 break;
577                         case PIPE_FUNC_LESS:
578                                 qir_SF(c, qir_FSUB(c, compare, normalized));
579                                 depth_output = qir_SEL(c, QPU_COND_NS, u1, u0);
580                                 break;
581                         case PIPE_FUNC_LEQUAL:
582                                 qir_SF(c, qir_FSUB(c, normalized, compare));
583                                 depth_output = qir_SEL(c, QPU_COND_NC, u1, u0);
584                                 break;
585                         }
586                 } else {
587                         depth_output = normalized;
588                 }
589 
590                 for (int i = 0; i < 4; i++)
591                         dest[i] = depth_output;
592         } else {
593                 for (int i = 0; i < 4; i++)
594                         dest[i] = qir_UNPACK_8_F(c, tex, i);
595         }
596 }
597 
598 /**
599  * Computes x - floor(x), which is tricky because our FTOI truncates (rounds
600  * to zero).
601  */
602 static struct qreg
ntq_ffract(struct vc4_compile * c,struct qreg src)603 ntq_ffract(struct vc4_compile *c, struct qreg src)
604 {
605         struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src));
606         struct qreg diff = qir_FSUB(c, src, trunc);
607         qir_SF(c, diff);
608 
609         qir_FADD_dest(c, diff,
610                       diff, qir_uniform_f(c, 1.0))->cond = QPU_COND_NS;
611 
612         return qir_MOV(c, diff);
613 }
614 
615 /**
616  * Computes floor(x), which is tricky because our FTOI truncates (rounds to
617  * zero).
618  */
619 static struct qreg
ntq_ffloor(struct vc4_compile * c,struct qreg src)620 ntq_ffloor(struct vc4_compile *c, struct qreg src)
621 {
622         struct qreg result = qir_ITOF(c, qir_FTOI(c, src));
623 
624         /* This will be < 0 if we truncated and the truncation was of a value
625          * that was < 0 in the first place.
626          */
627         qir_SF(c, qir_FSUB(c, src, result));
628 
629         struct qinst *sub = qir_FSUB_dest(c, result,
630                                           result, qir_uniform_f(c, 1.0));
631         sub->cond = QPU_COND_NS;
632 
633         return qir_MOV(c, result);
634 }
635 
636 /**
637  * Computes ceil(x), which is tricky because our FTOI truncates (rounds to
638  * zero).
639  */
640 static struct qreg
ntq_fceil(struct vc4_compile * c,struct qreg src)641 ntq_fceil(struct vc4_compile *c, struct qreg src)
642 {
643         struct qreg result = qir_ITOF(c, qir_FTOI(c, src));
644 
645         /* This will be < 0 if we truncated and the truncation was of a value
646          * that was > 0 in the first place.
647          */
648         qir_SF(c, qir_FSUB(c, result, src));
649 
650         qir_FADD_dest(c, result,
651                       result, qir_uniform_f(c, 1.0))->cond = QPU_COND_NS;
652 
653         return qir_MOV(c, result);
654 }
655 
656 static struct qreg
ntq_shrink_sincos_input_range(struct vc4_compile * c,struct qreg x)657 ntq_shrink_sincos_input_range(struct vc4_compile *c, struct qreg x)
658 {
659         /* Since we're using a Taylor approximation, we want to have a small
660          * number of coefficients and take advantage of sin/cos repeating
661          * every 2pi.  We keep our x as close to 0 as we can, since the series
662          * will be less accurate as |x| increases.  (Also, be careful of
663          * shifting the input x value to be tricky with sin/cos relations,
664          * because getting accurate values for x==0 is very important for SDL
665          * rendering)
666          */
667         struct qreg scaled_x =
668                 qir_FMUL(c, x,
669                          qir_uniform_f(c, 1.0f / (M_PI * 2.0f)));
670         /* Note: FTOI truncates toward 0. */
671         struct qreg x_frac = qir_FSUB(c, scaled_x,
672                                       qir_ITOF(c, qir_FTOI(c, scaled_x)));
673         /* Map [0.5, 1] to [-0.5, 0] */
674         qir_SF(c, qir_FSUB(c, x_frac, qir_uniform_f(c, 0.5)));
675         qir_FSUB_dest(c, x_frac, x_frac, qir_uniform_f(c, 1.0))->cond = QPU_COND_NC;
676         /* Map [-1, -0.5] to [0, 0.5] */
677         qir_SF(c, qir_FADD(c, x_frac, qir_uniform_f(c, 0.5)));
678         qir_FADD_dest(c, x_frac, x_frac, qir_uniform_f(c, 1.0))->cond = QPU_COND_NS;
679 
680         return x_frac;
681 }
682 
683 static struct qreg
ntq_fsin(struct vc4_compile * c,struct qreg src)684 ntq_fsin(struct vc4_compile *c, struct qreg src)
685 {
686         float coeff[] = {
687                 2.0 * M_PI,
688                 -pow(2.0 * M_PI, 3) / (3 * 2 * 1),
689                 pow(2.0 * M_PI, 5) / (5 * 4 * 3 * 2 * 1),
690                 -pow(2.0 * M_PI, 7) / (7 * 6 * 5 * 4 * 3 * 2 * 1),
691                 pow(2.0 * M_PI, 9) / (9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
692         };
693 
694         struct qreg x = ntq_shrink_sincos_input_range(c, src);
695         struct qreg x2 = qir_FMUL(c, x, x);
696         struct qreg sum = qir_FMUL(c, x, qir_uniform_f(c, coeff[0]));
697         for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
698                 x = qir_FMUL(c, x, x2);
699                 sum = qir_FADD(c,
700                                sum,
701                                qir_FMUL(c,
702                                         x,
703                                         qir_uniform_f(c, coeff[i])));
704         }
705         return sum;
706 }
707 
708 static struct qreg
ntq_fcos(struct vc4_compile * c,struct qreg src)709 ntq_fcos(struct vc4_compile *c, struct qreg src)
710 {
711         float coeff[] = {
712                 1.0f,
713                 -pow(2.0 * M_PI, 2) / (2 * 1),
714                 pow(2.0 * M_PI, 4) / (4 * 3 * 2 * 1),
715                 -pow(2.0 * M_PI, 6) / (6 * 5 * 4 * 3 * 2 * 1),
716                 pow(2.0 * M_PI, 8) / (8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
717                 -pow(2.0 * M_PI, 10) / (10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
718         };
719 
720         struct qreg x_frac = ntq_shrink_sincos_input_range(c, src);
721         struct qreg sum = qir_uniform_f(c, coeff[0]);
722         struct qreg x2 = qir_FMUL(c, x_frac, x_frac);
723         struct qreg x = x2; /* Current x^2, x^4, or x^6 */
724         for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
725                 if (i != 1)
726                         x = qir_FMUL(c, x, x2);
727 
728                 sum = qir_FADD(c, qir_FMUL(c,
729                                            x,
730                                            qir_uniform_f(c, coeff[i])),
731                                sum);
732         }
733         return sum;
734 }
735 
736 static struct qreg
ntq_fsign(struct vc4_compile * c,struct qreg src)737 ntq_fsign(struct vc4_compile *c, struct qreg src)
738 {
739         struct qreg t = qir_get_temp(c);
740 
741         qir_SF(c, src);
742         qir_MOV_dest(c, t, qir_uniform_f(c, 0.0));
743         qir_MOV_dest(c, t, qir_uniform_f(c, 1.0))->cond = QPU_COND_ZC;
744         qir_MOV_dest(c, t, qir_uniform_f(c, -1.0))->cond = QPU_COND_NS;
745         return qir_MOV(c, t);
746 }
747 
748 static void
emit_vertex_input(struct vc4_compile * c,int attr)749 emit_vertex_input(struct vc4_compile *c, int attr)
750 {
751         enum pipe_format format = c->vs_key->attr_formats[attr];
752         uint32_t attr_size = util_format_get_blocksize(format);
753 
754         c->vattr_sizes[attr] = align(attr_size, 4);
755         for (int i = 0; i < align(attr_size, 4) / 4; i++) {
756                 c->inputs[attr * 4 + i] =
757                         qir_MOV(c, qir_reg(QFILE_VPM, attr * 4 + i));
758                 c->num_inputs++;
759         }
760 }
761 
762 static void
emit_fragcoord_input(struct vc4_compile * c,int attr)763 emit_fragcoord_input(struct vc4_compile *c, int attr)
764 {
765         c->inputs[attr * 4 + 0] = qir_ITOF(c, qir_reg(QFILE_FRAG_X, 0));
766         c->inputs[attr * 4 + 1] = qir_ITOF(c, qir_reg(QFILE_FRAG_Y, 0));
767         c->inputs[attr * 4 + 2] =
768                 qir_FMUL(c,
769                          qir_ITOF(c, qir_FRAG_Z(c)),
770                          qir_uniform_f(c, 1.0 / 0xffffff));
771         c->inputs[attr * 4 + 3] = qir_RCP(c, qir_FRAG_W(c));
772 }
773 
774 static struct qreg
emit_fragment_varying(struct vc4_compile * c,gl_varying_slot slot,uint8_t swizzle)775 emit_fragment_varying(struct vc4_compile *c, gl_varying_slot slot,
776                       uint8_t swizzle)
777 {
778         uint32_t i = c->num_input_slots++;
779         struct qreg vary = {
780                 QFILE_VARY,
781                 i
782         };
783 
784         if (c->num_input_slots >= c->input_slots_array_size) {
785                 c->input_slots_array_size =
786                         MAX2(4, c->input_slots_array_size * 2);
787 
788                 c->input_slots = reralloc(c, c->input_slots,
789                                           struct vc4_varying_slot,
790                                           c->input_slots_array_size);
791         }
792 
793         c->input_slots[i].slot = slot;
794         c->input_slots[i].swizzle = swizzle;
795 
796         return qir_VARY_ADD_C(c, qir_FMUL(c, vary, qir_FRAG_W(c)));
797 }
798 
799 static void
emit_fragment_input(struct vc4_compile * c,int attr,gl_varying_slot slot)800 emit_fragment_input(struct vc4_compile *c, int attr, gl_varying_slot slot)
801 {
802         for (int i = 0; i < 4; i++) {
803                 c->inputs[attr * 4 + i] =
804                         emit_fragment_varying(c, slot, i);
805                 c->num_inputs++;
806         }
807 }
808 
809 static void
add_output(struct vc4_compile * c,uint32_t decl_offset,uint8_t slot,uint8_t swizzle)810 add_output(struct vc4_compile *c,
811            uint32_t decl_offset,
812            uint8_t slot,
813            uint8_t swizzle)
814 {
815         uint32_t old_array_size = c->outputs_array_size;
816         resize_qreg_array(c, &c->outputs, &c->outputs_array_size,
817                           decl_offset + 1);
818 
819         if (old_array_size != c->outputs_array_size) {
820                 c->output_slots = reralloc(c,
821                                            c->output_slots,
822                                            struct vc4_varying_slot,
823                                            c->outputs_array_size);
824         }
825 
826         c->output_slots[decl_offset].slot = slot;
827         c->output_slots[decl_offset].swizzle = swizzle;
828 }
829 
830 static bool
ntq_src_is_only_ssa_def_user(nir_src * src)831 ntq_src_is_only_ssa_def_user(nir_src *src)
832 {
833         if (!src->is_ssa)
834                 return false;
835 
836         if (!list_is_empty(&src->ssa->if_uses))
837                 return false;
838 
839         return (src->ssa->uses.next == &src->use_link &&
840                 src->ssa->uses.next->next == &src->ssa->uses);
841 }
842 
843 /**
844  * In general, emits a nir_pack_unorm_4x8 as a series of MOVs with the pack
845  * bit set.
846  *
847  * However, as an optimization, it tries to find the instructions generating
848  * the sources to be packed and just emit the pack flag there, if possible.
849  */
850 static void
ntq_emit_pack_unorm_4x8(struct vc4_compile * c,nir_alu_instr * instr)851 ntq_emit_pack_unorm_4x8(struct vc4_compile *c, nir_alu_instr *instr)
852 {
853         struct qreg result = qir_get_temp(c);
854         struct nir_alu_instr *vec4 = NULL;
855 
856         /* If packing from a vec4 op (as expected), identify it so that we can
857          * peek back at what generated its sources.
858          */
859         if (instr->src[0].src.is_ssa &&
860             instr->src[0].src.ssa->parent_instr->type == nir_instr_type_alu &&
861             nir_instr_as_alu(instr->src[0].src.ssa->parent_instr)->op ==
862             nir_op_vec4) {
863                 vec4 = nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
864         }
865 
866         /* If the pack is replicating the same channel 4 times, use the 8888
867          * pack flag.  This is common for blending using the alpha
868          * channel.
869          */
870         if (instr->src[0].swizzle[0] == instr->src[0].swizzle[1] &&
871             instr->src[0].swizzle[0] == instr->src[0].swizzle[2] &&
872             instr->src[0].swizzle[0] == instr->src[0].swizzle[3]) {
873                 struct qreg rep = ntq_get_src(c,
874                                               instr->src[0].src,
875                                               instr->src[0].swizzle[0]);
876                 ntq_store_dest(c, &instr->dest.dest, 0, qir_PACK_8888_F(c, rep));
877                 return;
878         }
879 
880         for (int i = 0; i < 4; i++) {
881                 int swiz = instr->src[0].swizzle[i];
882                 struct qreg src;
883                 if (vec4) {
884                         src = ntq_get_src(c, vec4->src[swiz].src,
885                                           vec4->src[swiz].swizzle[0]);
886                 } else {
887                         src = ntq_get_src(c, instr->src[0].src, swiz);
888                 }
889 
890                 if (vec4 &&
891                     ntq_src_is_only_ssa_def_user(&vec4->src[swiz].src) &&
892                     src.file == QFILE_TEMP &&
893                     c->defs[src.index] &&
894                     qir_is_mul(c->defs[src.index]) &&
895                     !c->defs[src.index]->dst.pack) {
896                         struct qinst *rewrite = c->defs[src.index];
897                         c->defs[src.index] = NULL;
898                         rewrite->dst = result;
899                         rewrite->dst.pack = QPU_PACK_MUL_8A + i;
900                         continue;
901                 }
902 
903                 qir_PACK_8_F(c, result, src, i);
904         }
905 
906         ntq_store_dest(c, &instr->dest.dest, 0, qir_MOV(c, result));
907 }
908 
909 /** Handles sign-extended bitfield extracts for 16 bits. */
910 static struct qreg
ntq_emit_ibfe(struct vc4_compile * c,struct qreg base,struct qreg offset,struct qreg bits)911 ntq_emit_ibfe(struct vc4_compile *c, struct qreg base, struct qreg offset,
912               struct qreg bits)
913 {
914         assert(bits.file == QFILE_UNIF &&
915                c->uniform_contents[bits.index] == QUNIFORM_CONSTANT &&
916                c->uniform_data[bits.index] == 16);
917 
918         assert(offset.file == QFILE_UNIF &&
919                c->uniform_contents[offset.index] == QUNIFORM_CONSTANT);
920         int offset_bit = c->uniform_data[offset.index];
921         assert(offset_bit % 16 == 0);
922 
923         return qir_UNPACK_16_I(c, base, offset_bit / 16);
924 }
925 
926 /** Handles unsigned bitfield extracts for 8 bits. */
927 static struct qreg
ntq_emit_ubfe(struct vc4_compile * c,struct qreg base,struct qreg offset,struct qreg bits)928 ntq_emit_ubfe(struct vc4_compile *c, struct qreg base, struct qreg offset,
929               struct qreg bits)
930 {
931         assert(bits.file == QFILE_UNIF &&
932                c->uniform_contents[bits.index] == QUNIFORM_CONSTANT &&
933                c->uniform_data[bits.index] == 8);
934 
935         assert(offset.file == QFILE_UNIF &&
936                c->uniform_contents[offset.index] == QUNIFORM_CONSTANT);
937         int offset_bit = c->uniform_data[offset.index];
938         assert(offset_bit % 8 == 0);
939 
940         return qir_UNPACK_8_I(c, base, offset_bit / 8);
941 }
942 
943 /**
944  * If compare_instr is a valid comparison instruction, emits the
945  * compare_instr's comparison and returns the sel_instr's return value based
946  * on the compare_instr's result.
947  */
948 static bool
ntq_emit_comparison(struct vc4_compile * c,struct qreg * dest,nir_alu_instr * compare_instr,nir_alu_instr * sel_instr)949 ntq_emit_comparison(struct vc4_compile *c, struct qreg *dest,
950                     nir_alu_instr *compare_instr,
951                     nir_alu_instr *sel_instr)
952 {
953         enum qpu_cond cond;
954 
955         switch (compare_instr->op) {
956         case nir_op_feq32:
957         case nir_op_ieq32:
958         case nir_op_seq:
959                 cond = QPU_COND_ZS;
960                 break;
961         case nir_op_fneu32:
962         case nir_op_ine32:
963         case nir_op_sne:
964                 cond = QPU_COND_ZC;
965                 break;
966         case nir_op_fge32:
967         case nir_op_ige32:
968         case nir_op_uge32:
969         case nir_op_sge:
970                 cond = QPU_COND_NC;
971                 break;
972         case nir_op_flt32:
973         case nir_op_ilt32:
974         case nir_op_slt:
975                 cond = QPU_COND_NS;
976                 break;
977         default:
978                 return false;
979         }
980 
981         struct qreg src0 = ntq_get_alu_src(c, compare_instr, 0);
982         struct qreg src1 = ntq_get_alu_src(c, compare_instr, 1);
983 
984         unsigned unsized_type =
985                 nir_alu_type_get_base_type(nir_op_infos[compare_instr->op].input_types[0]);
986         if (unsized_type == nir_type_float)
987                 qir_SF(c, qir_FSUB(c, src0, src1));
988         else
989                 qir_SF(c, qir_SUB(c, src0, src1));
990 
991         switch (sel_instr->op) {
992         case nir_op_seq:
993         case nir_op_sne:
994         case nir_op_sge:
995         case nir_op_slt:
996                 *dest = qir_SEL(c, cond,
997                                 qir_uniform_f(c, 1.0), qir_uniform_f(c, 0.0));
998                 break;
999 
1000         case nir_op_b32csel:
1001                 *dest = qir_SEL(c, cond,
1002                                 ntq_get_alu_src(c, sel_instr, 1),
1003                                 ntq_get_alu_src(c, sel_instr, 2));
1004                 break;
1005 
1006         default:
1007                 *dest = qir_SEL(c, cond,
1008                                 qir_uniform_ui(c, ~0), qir_uniform_ui(c, 0));
1009                 break;
1010         }
1011 
1012         /* Make the temporary for nir_store_dest(). */
1013         *dest = qir_MOV(c, *dest);
1014 
1015         return true;
1016 }
1017 
1018 /**
1019  * Attempts to fold a comparison generating a boolean result into the
1020  * condition code for selecting between two values, instead of comparing the
1021  * boolean result against 0 to generate the condition code.
1022  */
ntq_emit_bcsel(struct vc4_compile * c,nir_alu_instr * instr,struct qreg * src)1023 static struct qreg ntq_emit_bcsel(struct vc4_compile *c, nir_alu_instr *instr,
1024                                   struct qreg *src)
1025 {
1026         if (!instr->src[0].src.is_ssa)
1027                 goto out;
1028         if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
1029                 goto out;
1030         nir_alu_instr *compare =
1031                 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
1032         if (!compare)
1033                 goto out;
1034 
1035         struct qreg dest;
1036         if (ntq_emit_comparison(c, &dest, compare, instr))
1037                 return dest;
1038 
1039 out:
1040         qir_SF(c, src[0]);
1041         return qir_MOV(c, qir_SEL(c, QPU_COND_NS, src[1], src[2]));
1042 }
1043 
1044 static struct qreg
ntq_fddx(struct vc4_compile * c,struct qreg src)1045 ntq_fddx(struct vc4_compile *c, struct qreg src)
1046 {
1047         /* Make sure that we have a bare temp to use for MUL rotation, so it
1048          * can be allocated to an accumulator.
1049          */
1050         if (src.pack || src.file != QFILE_TEMP)
1051                 src = qir_MOV(c, src);
1052 
1053         struct qreg from_left = qir_ROT_MUL(c, src, 1);
1054         struct qreg from_right = qir_ROT_MUL(c, src, 15);
1055 
1056         /* Distinguish left/right pixels of the quad. */
1057         qir_SF(c, qir_AND(c, qir_reg(QFILE_QPU_ELEMENT, 0),
1058                           qir_uniform_ui(c, 1)));
1059 
1060         return qir_MOV(c, qir_SEL(c, QPU_COND_ZS,
1061                                   qir_FSUB(c, from_right, src),
1062                                   qir_FSUB(c, src, from_left)));
1063 }
1064 
1065 static struct qreg
ntq_fddy(struct vc4_compile * c,struct qreg src)1066 ntq_fddy(struct vc4_compile *c, struct qreg src)
1067 {
1068         if (src.pack || src.file != QFILE_TEMP)
1069                 src = qir_MOV(c, src);
1070 
1071         struct qreg from_bottom = qir_ROT_MUL(c, src, 2);
1072         struct qreg from_top = qir_ROT_MUL(c, src, 14);
1073 
1074         /* Distinguish top/bottom pixels of the quad. */
1075         qir_SF(c, qir_AND(c,
1076                           qir_reg(QFILE_QPU_ELEMENT, 0),
1077                           qir_uniform_ui(c, 2)));
1078 
1079         return qir_MOV(c, qir_SEL(c, QPU_COND_ZS,
1080                                   qir_FSUB(c, from_top, src),
1081                                   qir_FSUB(c, src, from_bottom)));
1082 }
1083 
1084 static void
ntq_emit_alu(struct vc4_compile * c,nir_alu_instr * instr)1085 ntq_emit_alu(struct vc4_compile *c, nir_alu_instr *instr)
1086 {
1087         /* This should always be lowered to ALU operations for VC4. */
1088         assert(!instr->dest.saturate);
1089 
1090         /* Vectors are special in that they have non-scalarized writemasks,
1091          * and just take the first swizzle channel for each argument in order
1092          * into each writemask channel.
1093          */
1094         if (instr->op == nir_op_vec2 ||
1095             instr->op == nir_op_vec3 ||
1096             instr->op == nir_op_vec4) {
1097                 struct qreg srcs[4];
1098                 for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
1099                         srcs[i] = ntq_get_src(c, instr->src[i].src,
1100                                               instr->src[i].swizzle[0]);
1101                 for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
1102                         ntq_store_dest(c, &instr->dest.dest, i,
1103                                        qir_MOV(c, srcs[i]));
1104                 return;
1105         }
1106 
1107         if (instr->op == nir_op_pack_unorm_4x8) {
1108                 ntq_emit_pack_unorm_4x8(c, instr);
1109                 return;
1110         }
1111 
1112         if (instr->op == nir_op_unpack_unorm_4x8) {
1113                 struct qreg src = ntq_get_src(c, instr->src[0].src,
1114                                               instr->src[0].swizzle[0]);
1115                 for (int i = 0; i < 4; i++) {
1116                         if (instr->dest.write_mask & (1 << i))
1117                                 ntq_store_dest(c, &instr->dest.dest, i,
1118                                                qir_UNPACK_8_F(c, src, i));
1119                 }
1120                 return;
1121         }
1122 
1123         /* General case: We can just grab the one used channel per src. */
1124         struct qreg src[nir_op_infos[instr->op].num_inputs];
1125         for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
1126                 src[i] = ntq_get_alu_src(c, instr, i);
1127         }
1128 
1129         struct qreg result;
1130 
1131         switch (instr->op) {
1132         case nir_op_mov:
1133                 result = qir_MOV(c, src[0]);
1134                 break;
1135         case nir_op_fmul:
1136                 result = qir_FMUL(c, src[0], src[1]);
1137                 break;
1138         case nir_op_fadd:
1139                 result = qir_FADD(c, src[0], src[1]);
1140                 break;
1141         case nir_op_fsub:
1142                 result = qir_FSUB(c, src[0], src[1]);
1143                 break;
1144         case nir_op_fmin:
1145                 result = qir_FMIN(c, src[0], src[1]);
1146                 break;
1147         case nir_op_fmax:
1148                 result = qir_FMAX(c, src[0], src[1]);
1149                 break;
1150 
1151         case nir_op_f2i32:
1152         case nir_op_f2u32:
1153                 result = qir_FTOI(c, src[0]);
1154                 break;
1155         case nir_op_i2f32:
1156         case nir_op_u2f32:
1157                 result = qir_ITOF(c, src[0]);
1158                 break;
1159         case nir_op_b2f32:
1160                 result = qir_AND(c, src[0], qir_uniform_f(c, 1.0));
1161                 break;
1162         case nir_op_b2i32:
1163                 result = qir_AND(c, src[0], qir_uniform_ui(c, 1));
1164                 break;
1165         case nir_op_i2b32:
1166         case nir_op_f2b32:
1167                 qir_SF(c, src[0]);
1168                 result = qir_MOV(c, qir_SEL(c, QPU_COND_ZC,
1169                                             qir_uniform_ui(c, ~0),
1170                                             qir_uniform_ui(c, 0)));
1171                 break;
1172 
1173         case nir_op_iadd:
1174                 result = qir_ADD(c, src[0], src[1]);
1175                 break;
1176         case nir_op_ushr:
1177                 result = qir_SHR(c, src[0], src[1]);
1178                 break;
1179         case nir_op_isub:
1180                 result = qir_SUB(c, src[0], src[1]);
1181                 break;
1182         case nir_op_ishr:
1183                 result = qir_ASR(c, src[0], src[1]);
1184                 break;
1185         case nir_op_ishl:
1186                 result = qir_SHL(c, src[0], src[1]);
1187                 break;
1188         case nir_op_imin:
1189                 result = qir_MIN(c, src[0], src[1]);
1190                 break;
1191         case nir_op_imax:
1192                 result = qir_MAX(c, src[0], src[1]);
1193                 break;
1194         case nir_op_iand:
1195                 result = qir_AND(c, src[0], src[1]);
1196                 break;
1197         case nir_op_ior:
1198                 result = qir_OR(c, src[0], src[1]);
1199                 break;
1200         case nir_op_ixor:
1201                 result = qir_XOR(c, src[0], src[1]);
1202                 break;
1203         case nir_op_inot:
1204                 result = qir_NOT(c, src[0]);
1205                 break;
1206 
1207         case nir_op_imul:
1208                 result = ntq_umul(c, src[0], src[1]);
1209                 break;
1210 
1211         case nir_op_seq:
1212         case nir_op_sne:
1213         case nir_op_sge:
1214         case nir_op_slt:
1215         case nir_op_feq32:
1216         case nir_op_fneu32:
1217         case nir_op_fge32:
1218         case nir_op_flt32:
1219         case nir_op_ieq32:
1220         case nir_op_ine32:
1221         case nir_op_ige32:
1222         case nir_op_uge32:
1223         case nir_op_ilt32:
1224                 if (!ntq_emit_comparison(c, &result, instr, instr)) {
1225                         fprintf(stderr, "Bad comparison instruction\n");
1226                 }
1227                 break;
1228 
1229         case nir_op_b32csel:
1230                 result = ntq_emit_bcsel(c, instr, src);
1231                 break;
1232         case nir_op_fcsel:
1233                 qir_SF(c, src[0]);
1234                 result = qir_MOV(c, qir_SEL(c, QPU_COND_ZC, src[1], src[2]));
1235                 break;
1236 
1237         case nir_op_frcp:
1238                 result = ntq_rcp(c, src[0]);
1239                 break;
1240         case nir_op_frsq:
1241                 result = ntq_rsq(c, src[0]);
1242                 break;
1243         case nir_op_fexp2:
1244                 result = qir_EXP2(c, src[0]);
1245                 break;
1246         case nir_op_flog2:
1247                 result = qir_LOG2(c, src[0]);
1248                 break;
1249 
1250         case nir_op_ftrunc:
1251                 result = qir_ITOF(c, qir_FTOI(c, src[0]));
1252                 break;
1253         case nir_op_fceil:
1254                 result = ntq_fceil(c, src[0]);
1255                 break;
1256         case nir_op_ffract:
1257                 result = ntq_ffract(c, src[0]);
1258                 break;
1259         case nir_op_ffloor:
1260                 result = ntq_ffloor(c, src[0]);
1261                 break;
1262 
1263         case nir_op_fsin:
1264                 result = ntq_fsin(c, src[0]);
1265                 break;
1266         case nir_op_fcos:
1267                 result = ntq_fcos(c, src[0]);
1268                 break;
1269 
1270         case nir_op_fsign:
1271                 result = ntq_fsign(c, src[0]);
1272                 break;
1273 
1274         case nir_op_fabs:
1275                 result = qir_FMAXABS(c, src[0], src[0]);
1276                 break;
1277         case nir_op_iabs:
1278                 result = qir_MAX(c, src[0],
1279                                 qir_SUB(c, qir_uniform_ui(c, 0), src[0]));
1280                 break;
1281 
1282         case nir_op_ibitfield_extract:
1283                 result = ntq_emit_ibfe(c, src[0], src[1], src[2]);
1284                 break;
1285 
1286         case nir_op_ubitfield_extract:
1287                 result = ntq_emit_ubfe(c, src[0], src[1], src[2]);
1288                 break;
1289 
1290         case nir_op_usadd_4x8:
1291                 result = qir_V8ADDS(c, src[0], src[1]);
1292                 break;
1293 
1294         case nir_op_ussub_4x8:
1295                 result = qir_V8SUBS(c, src[0], src[1]);
1296                 break;
1297 
1298         case nir_op_umin_4x8:
1299                 result = qir_V8MIN(c, src[0], src[1]);
1300                 break;
1301 
1302         case nir_op_umax_4x8:
1303                 result = qir_V8MAX(c, src[0], src[1]);
1304                 break;
1305 
1306         case nir_op_umul_unorm_4x8:
1307                 result = qir_V8MULD(c, src[0], src[1]);
1308                 break;
1309 
1310         case nir_op_fddx:
1311         case nir_op_fddx_coarse:
1312         case nir_op_fddx_fine:
1313                 result = ntq_fddx(c, src[0]);
1314                 break;
1315 
1316         case nir_op_fddy:
1317         case nir_op_fddy_coarse:
1318         case nir_op_fddy_fine:
1319                 result = ntq_fddy(c, src[0]);
1320                 break;
1321 
1322         default:
1323                 fprintf(stderr, "unknown NIR ALU inst: ");
1324                 nir_print_instr(&instr->instr, stderr);
1325                 fprintf(stderr, "\n");
1326                 abort();
1327         }
1328 
1329         /* We have a scalar result, so the instruction should only have a
1330          * single channel written to.
1331          */
1332         assert(util_is_power_of_two_or_zero(instr->dest.write_mask));
1333         ntq_store_dest(c, &instr->dest.dest,
1334                        ffs(instr->dest.write_mask) - 1, result);
1335 }
1336 
1337 static void
emit_frag_end(struct vc4_compile * c)1338 emit_frag_end(struct vc4_compile *c)
1339 {
1340         struct qreg color;
1341         if (c->output_color_index != -1) {
1342                 color = c->outputs[c->output_color_index];
1343         } else {
1344                 color = qir_uniform_ui(c, 0);
1345         }
1346 
1347         uint32_t discard_cond = QPU_COND_ALWAYS;
1348         if (c->s->info.fs.uses_discard) {
1349                 qir_SF(c, c->discard);
1350                 discard_cond = QPU_COND_ZS;
1351         }
1352 
1353         if (c->fs_key->stencil_enabled) {
1354                 qir_MOV_dest(c, qir_reg(QFILE_TLB_STENCIL_SETUP, 0),
1355                              qir_uniform(c, QUNIFORM_STENCIL, 0));
1356                 if (c->fs_key->stencil_twoside) {
1357                         qir_MOV_dest(c, qir_reg(QFILE_TLB_STENCIL_SETUP, 0),
1358                                      qir_uniform(c, QUNIFORM_STENCIL, 1));
1359                 }
1360                 if (c->fs_key->stencil_full_writemasks) {
1361                         qir_MOV_dest(c, qir_reg(QFILE_TLB_STENCIL_SETUP, 0),
1362                                      qir_uniform(c, QUNIFORM_STENCIL, 2));
1363                 }
1364         }
1365 
1366         if (c->output_sample_mask_index != -1) {
1367                 qir_MS_MASK(c, c->outputs[c->output_sample_mask_index]);
1368         }
1369 
1370         if (c->fs_key->depth_enabled) {
1371                 if (c->output_position_index != -1) {
1372                         qir_FTOI_dest(c, qir_reg(QFILE_TLB_Z_WRITE, 0),
1373                                       qir_FMUL(c,
1374                                                c->outputs[c->output_position_index],
1375                                                qir_uniform_f(c, 0xffffff)))->cond = discard_cond;
1376                 } else {
1377                         qir_MOV_dest(c, qir_reg(QFILE_TLB_Z_WRITE, 0),
1378                                      qir_FRAG_Z(c))->cond = discard_cond;
1379                 }
1380         }
1381 
1382         if (!c->msaa_per_sample_output) {
1383                 qir_MOV_dest(c, qir_reg(QFILE_TLB_COLOR_WRITE, 0),
1384                              color)->cond = discard_cond;
1385         } else {
1386                 for (int i = 0; i < VC4_MAX_SAMPLES; i++) {
1387                         qir_MOV_dest(c, qir_reg(QFILE_TLB_COLOR_WRITE_MS, 0),
1388                                      c->sample_colors[i])->cond = discard_cond;
1389                 }
1390         }
1391 }
1392 
1393 static void
emit_scaled_viewport_write(struct vc4_compile * c,struct qreg rcp_w)1394 emit_scaled_viewport_write(struct vc4_compile *c, struct qreg rcp_w)
1395 {
1396         struct qreg packed = qir_get_temp(c);
1397 
1398         for (int i = 0; i < 2; i++) {
1399                 struct qreg scale =
1400                         qir_uniform(c, QUNIFORM_VIEWPORT_X_SCALE + i, 0);
1401 
1402                 struct qreg packed_chan = packed;
1403                 packed_chan.pack = QPU_PACK_A_16A + i;
1404 
1405                 qir_FTOI_dest(c, packed_chan,
1406                               qir_FMUL(c,
1407                                        qir_FMUL(c,
1408                                                 c->outputs[c->output_position_index + i],
1409                                                 scale),
1410                                        rcp_w));
1411         }
1412 
1413         qir_VPM_WRITE(c, packed);
1414 }
1415 
1416 static void
emit_zs_write(struct vc4_compile * c,struct qreg rcp_w)1417 emit_zs_write(struct vc4_compile *c, struct qreg rcp_w)
1418 {
1419         struct qreg zscale = qir_uniform(c, QUNIFORM_VIEWPORT_Z_SCALE, 0);
1420         struct qreg zoffset = qir_uniform(c, QUNIFORM_VIEWPORT_Z_OFFSET, 0);
1421 
1422         qir_VPM_WRITE(c, qir_FADD(c, qir_FMUL(c, qir_FMUL(c,
1423                                                           c->outputs[c->output_position_index + 2],
1424                                                           zscale),
1425                                               rcp_w),
1426                                   zoffset));
1427 }
1428 
1429 static void
emit_rcp_wc_write(struct vc4_compile * c,struct qreg rcp_w)1430 emit_rcp_wc_write(struct vc4_compile *c, struct qreg rcp_w)
1431 {
1432         qir_VPM_WRITE(c, rcp_w);
1433 }
1434 
1435 static void
emit_point_size_write(struct vc4_compile * c)1436 emit_point_size_write(struct vc4_compile *c)
1437 {
1438         struct qreg point_size;
1439 
1440         if (c->output_point_size_index != -1)
1441                 point_size = c->outputs[c->output_point_size_index];
1442         else
1443                 point_size = qir_uniform_f(c, 1.0);
1444 
1445         qir_VPM_WRITE(c, point_size);
1446 }
1447 
1448 /**
1449  * Emits a VPM read of the stub vertex attribute set up by vc4_draw.c.
1450  *
1451  * The simulator insists that there be at least one vertex attribute, so
1452  * vc4_draw.c will emit one if it wouldn't have otherwise.  The simulator also
1453  * insists that all vertex attributes loaded get read by the VS/CS, so we have
1454  * to consume it here.
1455  */
1456 static void
emit_stub_vpm_read(struct vc4_compile * c)1457 emit_stub_vpm_read(struct vc4_compile *c)
1458 {
1459         if (c->num_inputs)
1460                 return;
1461 
1462         c->vattr_sizes[0] = 4;
1463         (void)qir_MOV(c, qir_reg(QFILE_VPM, 0));
1464         c->num_inputs++;
1465 }
1466 
1467 static void
emit_vert_end(struct vc4_compile * c,struct vc4_varying_slot * fs_inputs,uint32_t num_fs_inputs)1468 emit_vert_end(struct vc4_compile *c,
1469               struct vc4_varying_slot *fs_inputs,
1470               uint32_t num_fs_inputs)
1471 {
1472         struct qreg rcp_w = ntq_rcp(c, c->outputs[c->output_position_index + 3]);
1473 
1474         emit_stub_vpm_read(c);
1475 
1476         emit_scaled_viewport_write(c, rcp_w);
1477         emit_zs_write(c, rcp_w);
1478         emit_rcp_wc_write(c, rcp_w);
1479         if (c->vs_key->per_vertex_point_size)
1480                 emit_point_size_write(c);
1481 
1482         for (int i = 0; i < num_fs_inputs; i++) {
1483                 struct vc4_varying_slot *input = &fs_inputs[i];
1484                 int j;
1485 
1486                 for (j = 0; j < c->num_outputs; j++) {
1487                         struct vc4_varying_slot *output =
1488                                 &c->output_slots[j];
1489 
1490                         if (input->slot == output->slot &&
1491                             input->swizzle == output->swizzle) {
1492                                 qir_VPM_WRITE(c, c->outputs[j]);
1493                                 break;
1494                         }
1495                 }
1496                 /* Emit padding if we didn't find a declared VS output for
1497                  * this FS input.
1498                  */
1499                 if (j == c->num_outputs)
1500                         qir_VPM_WRITE(c, qir_uniform_f(c, 0.0));
1501         }
1502 }
1503 
1504 static void
emit_coord_end(struct vc4_compile * c)1505 emit_coord_end(struct vc4_compile *c)
1506 {
1507         struct qreg rcp_w = ntq_rcp(c, c->outputs[c->output_position_index + 3]);
1508 
1509         emit_stub_vpm_read(c);
1510 
1511         for (int i = 0; i < 4; i++)
1512                 qir_VPM_WRITE(c, c->outputs[c->output_position_index + i]);
1513 
1514         emit_scaled_viewport_write(c, rcp_w);
1515         emit_zs_write(c, rcp_w);
1516         emit_rcp_wc_write(c, rcp_w);
1517         if (c->vs_key->per_vertex_point_size)
1518                 emit_point_size_write(c);
1519 }
1520 
1521 static void
vc4_optimize_nir(struct nir_shader * s)1522 vc4_optimize_nir(struct nir_shader *s)
1523 {
1524         bool progress;
1525         unsigned lower_flrp =
1526                 (s->options->lower_flrp16 ? 16 : 0) |
1527                 (s->options->lower_flrp32 ? 32 : 0) |
1528                 (s->options->lower_flrp64 ? 64 : 0);
1529 
1530         do {
1531                 progress = false;
1532 
1533                 NIR_PASS_V(s, nir_lower_vars_to_ssa);
1534                 NIR_PASS(progress, s, nir_lower_alu_to_scalar, NULL, NULL);
1535                 NIR_PASS(progress, s, nir_lower_phis_to_scalar);
1536                 NIR_PASS(progress, s, nir_copy_prop);
1537                 NIR_PASS(progress, s, nir_opt_remove_phis);
1538                 NIR_PASS(progress, s, nir_opt_dce);
1539                 NIR_PASS(progress, s, nir_opt_dead_cf);
1540                 NIR_PASS(progress, s, nir_opt_cse);
1541                 NIR_PASS(progress, s, nir_opt_peephole_select, 8, true, true);
1542                 NIR_PASS(progress, s, nir_opt_algebraic);
1543                 NIR_PASS(progress, s, nir_opt_constant_folding);
1544                 if (lower_flrp != 0) {
1545                         bool lower_flrp_progress = false;
1546 
1547                         NIR_PASS(lower_flrp_progress, s, nir_lower_flrp,
1548                                  lower_flrp,
1549                                  false /* always_precise */);
1550                         if (lower_flrp_progress) {
1551                                 NIR_PASS(progress, s, nir_opt_constant_folding);
1552                                 progress = true;
1553                         }
1554 
1555                         /* Nothing should rematerialize any flrps, so we only
1556                          * need to do this lowering once.
1557                          */
1558                         lower_flrp = 0;
1559                 }
1560 
1561                 NIR_PASS(progress, s, nir_opt_undef);
1562                 NIR_PASS(progress, s, nir_opt_loop_unroll,
1563                          nir_var_shader_in |
1564                          nir_var_shader_out |
1565                          nir_var_function_temp);
1566         } while (progress);
1567 }
1568 
1569 static int
driver_location_compare(const void * in_a,const void * in_b)1570 driver_location_compare(const void *in_a, const void *in_b)
1571 {
1572         const nir_variable *const *a = in_a;
1573         const nir_variable *const *b = in_b;
1574 
1575         return (*a)->data.driver_location - (*b)->data.driver_location;
1576 }
1577 
1578 static void
ntq_setup_inputs(struct vc4_compile * c)1579 ntq_setup_inputs(struct vc4_compile *c)
1580 {
1581         unsigned num_entries = 0;
1582         nir_foreach_shader_in_variable(var, c->s)
1583                 num_entries++;
1584 
1585         nir_variable *vars[num_entries];
1586 
1587         unsigned i = 0;
1588         nir_foreach_shader_in_variable(var, c->s)
1589                 vars[i++] = var;
1590 
1591         /* Sort the variables so that we emit the input setup in
1592          * driver_location order.  This is required for VPM reads, whose data
1593          * is fetched into the VPM in driver_location (TGSI register index)
1594          * order.
1595          */
1596         qsort(&vars, num_entries, sizeof(*vars), driver_location_compare);
1597 
1598         for (unsigned i = 0; i < num_entries; i++) {
1599                 nir_variable *var = vars[i];
1600                 unsigned array_len = MAX2(glsl_get_length(var->type), 1);
1601                 unsigned loc = var->data.driver_location;
1602 
1603                 assert(array_len == 1);
1604                 (void)array_len;
1605                 resize_qreg_array(c, &c->inputs, &c->inputs_array_size,
1606                                   (loc + 1) * 4);
1607 
1608                 if (c->stage == QSTAGE_FRAG) {
1609                         if (var->data.location == VARYING_SLOT_POS) {
1610                                 emit_fragcoord_input(c, loc);
1611                         } else if (util_varying_is_point_coord(var->data.location,
1612                                                                c->fs_key->point_sprite_mask)) {
1613                                 c->inputs[loc * 4 + 0] = c->point_x;
1614                                 c->inputs[loc * 4 + 1] = c->point_y;
1615                         } else {
1616                                 emit_fragment_input(c, loc, var->data.location);
1617                         }
1618                 } else {
1619                         emit_vertex_input(c, loc);
1620                 }
1621         }
1622 }
1623 
1624 static void
ntq_setup_outputs(struct vc4_compile * c)1625 ntq_setup_outputs(struct vc4_compile *c)
1626 {
1627         nir_foreach_shader_out_variable(var, c->s) {
1628                 unsigned array_len = MAX2(glsl_get_length(var->type), 1);
1629                 unsigned loc = var->data.driver_location * 4;
1630 
1631                 assert(array_len == 1);
1632                 (void)array_len;
1633 
1634                 for (int i = 0; i < 4; i++)
1635                         add_output(c, loc + i, var->data.location, i);
1636 
1637                 if (c->stage == QSTAGE_FRAG) {
1638                         switch (var->data.location) {
1639                         case FRAG_RESULT_COLOR:
1640                         case FRAG_RESULT_DATA0:
1641                                 c->output_color_index = loc;
1642                                 break;
1643                         case FRAG_RESULT_DEPTH:
1644                                 c->output_position_index = loc;
1645                                 break;
1646                         case FRAG_RESULT_SAMPLE_MASK:
1647                                 c->output_sample_mask_index = loc;
1648                                 break;
1649                         }
1650                 } else {
1651                         switch (var->data.location) {
1652                         case VARYING_SLOT_POS:
1653                                 c->output_position_index = loc;
1654                                 break;
1655                         case VARYING_SLOT_PSIZ:
1656                                 c->output_point_size_index = loc;
1657                                 break;
1658                         }
1659                 }
1660         }
1661 }
1662 
1663 /**
1664  * Sets up the mapping from nir_register to struct qreg *.
1665  *
1666  * Each nir_register gets a struct qreg per 32-bit component being stored.
1667  */
1668 static void
ntq_setup_registers(struct vc4_compile * c,struct exec_list * list)1669 ntq_setup_registers(struct vc4_compile *c, struct exec_list *list)
1670 {
1671         foreach_list_typed(nir_register, nir_reg, node, list) {
1672                 unsigned array_len = MAX2(nir_reg->num_array_elems, 1);
1673                 struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
1674                                                   array_len *
1675                                                   nir_reg->num_components);
1676 
1677                 _mesa_hash_table_insert(c->def_ht, nir_reg, qregs);
1678 
1679                 for (int i = 0; i < array_len * nir_reg->num_components; i++)
1680                         qregs[i] = qir_get_temp(c);
1681         }
1682 }
1683 
1684 static void
ntq_emit_load_const(struct vc4_compile * c,nir_load_const_instr * instr)1685 ntq_emit_load_const(struct vc4_compile *c, nir_load_const_instr *instr)
1686 {
1687         struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
1688         for (int i = 0; i < instr->def.num_components; i++)
1689                 qregs[i] = qir_uniform_ui(c, instr->value[i].u32);
1690 
1691         _mesa_hash_table_insert(c->def_ht, &instr->def, qregs);
1692 }
1693 
1694 static void
ntq_emit_ssa_undef(struct vc4_compile * c,nir_ssa_undef_instr * instr)1695 ntq_emit_ssa_undef(struct vc4_compile *c, nir_ssa_undef_instr *instr)
1696 {
1697         struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
1698 
1699         /* QIR needs there to be *some* value, so pick 0 (same as for
1700          * ntq_setup_registers().
1701          */
1702         for (int i = 0; i < instr->def.num_components; i++)
1703                 qregs[i] = qir_uniform_ui(c, 0);
1704 }
1705 
1706 static void
ntq_emit_color_read(struct vc4_compile * c,nir_intrinsic_instr * instr)1707 ntq_emit_color_read(struct vc4_compile *c, nir_intrinsic_instr *instr)
1708 {
1709         assert(nir_src_as_uint(instr->src[0]) == 0);
1710 
1711         /* Reads of the per-sample color need to be done in
1712          * order.
1713          */
1714         int sample_index = (nir_intrinsic_base(instr) -
1715                             VC4_NIR_TLB_COLOR_READ_INPUT);
1716         for (int i = 0; i <= sample_index; i++) {
1717                 if (c->color_reads[i].file == QFILE_NULL) {
1718                         c->color_reads[i] =
1719                                 qir_TLB_COLOR_READ(c);
1720                 }
1721         }
1722         ntq_store_dest(c, &instr->dest, 0,
1723                        qir_MOV(c, c->color_reads[sample_index]));
1724 }
1725 
1726 static void
ntq_emit_load_input(struct vc4_compile * c,nir_intrinsic_instr * instr)1727 ntq_emit_load_input(struct vc4_compile *c, nir_intrinsic_instr *instr)
1728 {
1729         assert(instr->num_components == 1);
1730         assert(nir_src_is_const(instr->src[0]) &&
1731                "vc4 doesn't support indirect inputs");
1732 
1733         if (c->stage == QSTAGE_FRAG &&
1734             nir_intrinsic_base(instr) >= VC4_NIR_TLB_COLOR_READ_INPUT) {
1735                 ntq_emit_color_read(c, instr);
1736                 return;
1737         }
1738 
1739         uint32_t offset = nir_intrinsic_base(instr) +
1740                           nir_src_as_uint(instr->src[0]);
1741         int comp = nir_intrinsic_component(instr);
1742         ntq_store_dest(c, &instr->dest, 0,
1743                        qir_MOV(c, c->inputs[offset * 4 + comp]));
1744 }
1745 
1746 static void
ntq_emit_intrinsic(struct vc4_compile * c,nir_intrinsic_instr * instr)1747 ntq_emit_intrinsic(struct vc4_compile *c, nir_intrinsic_instr *instr)
1748 {
1749         unsigned offset;
1750 
1751         switch (instr->intrinsic) {
1752         case nir_intrinsic_load_uniform:
1753                 assert(instr->num_components == 1);
1754                 if (nir_src_is_const(instr->src[0])) {
1755                         offset = nir_intrinsic_base(instr) +
1756                                  nir_src_as_uint(instr->src[0]);
1757                         assert(offset % 4 == 0);
1758                         /* We need dwords */
1759                         offset = offset / 4;
1760                         ntq_store_dest(c, &instr->dest, 0,
1761                                        qir_uniform(c, QUNIFORM_UNIFORM,
1762                                                    offset));
1763                 } else {
1764                         ntq_store_dest(c, &instr->dest, 0,
1765                                        indirect_uniform_load(c, instr));
1766                 }
1767                 break;
1768 
1769         case nir_intrinsic_load_ubo:
1770                 assert(instr->num_components == 1);
1771                 ntq_store_dest(c, &instr->dest, 0, vc4_ubo_load(c, instr));
1772                 break;
1773 
1774         case nir_intrinsic_load_user_clip_plane:
1775                 for (int i = 0; i < nir_intrinsic_dest_components(instr); i++) {
1776                         ntq_store_dest(c, &instr->dest, i,
1777                                        qir_uniform(c, QUNIFORM_USER_CLIP_PLANE,
1778                                                    nir_intrinsic_ucp_id(instr) *
1779                                                    4 + i));
1780                 }
1781                 break;
1782 
1783         case nir_intrinsic_load_blend_const_color_r_float:
1784         case nir_intrinsic_load_blend_const_color_g_float:
1785         case nir_intrinsic_load_blend_const_color_b_float:
1786         case nir_intrinsic_load_blend_const_color_a_float:
1787                 ntq_store_dest(c, &instr->dest, 0,
1788                                qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR_X +
1789                                            (instr->intrinsic -
1790                                             nir_intrinsic_load_blend_const_color_r_float),
1791                                            0));
1792                 break;
1793 
1794         case nir_intrinsic_load_blend_const_color_rgba8888_unorm:
1795                 ntq_store_dest(c, &instr->dest, 0,
1796                                qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR_RGBA,
1797                                            0));
1798                 break;
1799 
1800         case nir_intrinsic_load_blend_const_color_aaaa8888_unorm:
1801                 ntq_store_dest(c, &instr->dest, 0,
1802                                qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR_AAAA,
1803                                            0));
1804                 break;
1805 
1806         case nir_intrinsic_load_sample_mask_in:
1807                 ntq_store_dest(c, &instr->dest, 0,
1808                                qir_uniform(c, QUNIFORM_SAMPLE_MASK, 0));
1809                 break;
1810 
1811         case nir_intrinsic_load_front_face:
1812                 /* The register contains 0 (front) or 1 (back), and we need to
1813                  * turn it into a NIR bool where true means front.
1814                  */
1815                 ntq_store_dest(c, &instr->dest, 0,
1816                                qir_ADD(c,
1817                                        qir_uniform_ui(c, -1),
1818                                        qir_reg(QFILE_FRAG_REV_FLAG, 0)));
1819                 break;
1820 
1821         case nir_intrinsic_load_input:
1822                 ntq_emit_load_input(c, instr);
1823                 break;
1824 
1825         case nir_intrinsic_store_output:
1826                 assert(nir_src_is_const(instr->src[1]) &&
1827                        "vc4 doesn't support indirect outputs");
1828                 offset = nir_intrinsic_base(instr) +
1829                          nir_src_as_uint(instr->src[1]);
1830 
1831                 /* MSAA color outputs are the only case where we have an
1832                  * output that's not lowered to being a store of a single 32
1833                  * bit value.
1834                  */
1835                 if (c->stage == QSTAGE_FRAG && instr->num_components == 4) {
1836                         assert(offset == c->output_color_index);
1837                         for (int i = 0; i < 4; i++) {
1838                                 c->sample_colors[i] =
1839                                         qir_MOV(c, ntq_get_src(c, instr->src[0],
1840                                                                i));
1841                         }
1842                 } else {
1843                         offset = offset * 4 + nir_intrinsic_component(instr);
1844                         assert(instr->num_components == 1);
1845                         c->outputs[offset] =
1846                                 qir_MOV(c, ntq_get_src(c, instr->src[0], 0));
1847                         c->num_outputs = MAX2(c->num_outputs, offset + 1);
1848                 }
1849                 break;
1850 
1851         case nir_intrinsic_discard:
1852                 if (c->execute.file != QFILE_NULL) {
1853                         qir_SF(c, c->execute);
1854                         qir_MOV_cond(c, QPU_COND_ZS, c->discard,
1855                                      qir_uniform_ui(c, ~0));
1856                 } else {
1857                         qir_MOV_dest(c, c->discard, qir_uniform_ui(c, ~0));
1858                 }
1859                 break;
1860 
1861         case nir_intrinsic_discard_if: {
1862                 /* true (~0) if we're discarding */
1863                 struct qreg cond = ntq_get_src(c, instr->src[0], 0);
1864 
1865                 if (c->execute.file != QFILE_NULL) {
1866                         /* execute == 0 means the channel is active.  Invert
1867                          * the condition so that we can use zero as "executing
1868                          * and discarding."
1869                          */
1870                         qir_SF(c, qir_AND(c, c->execute, qir_NOT(c, cond)));
1871                         qir_MOV_cond(c, QPU_COND_ZS, c->discard, cond);
1872                 } else {
1873                         qir_OR_dest(c, c->discard, c->discard,
1874                                     ntq_get_src(c, instr->src[0], 0));
1875                 }
1876 
1877                 break;
1878         }
1879 
1880         default:
1881                 fprintf(stderr, "Unknown intrinsic: ");
1882                 nir_print_instr(&instr->instr, stderr);
1883                 fprintf(stderr, "\n");
1884                 break;
1885         }
1886 }
1887 
1888 /* Clears (activates) the execute flags for any channels whose jump target
1889  * matches this block.
1890  */
1891 static void
ntq_activate_execute_for_block(struct vc4_compile * c)1892 ntq_activate_execute_for_block(struct vc4_compile *c)
1893 {
1894         qir_SF(c, qir_SUB(c,
1895                           c->execute,
1896                           qir_uniform_ui(c, c->cur_block->index)));
1897         qir_MOV_cond(c, QPU_COND_ZS, c->execute, qir_uniform_ui(c, 0));
1898 }
1899 
1900 static void
ntq_emit_if(struct vc4_compile * c,nir_if * if_stmt)1901 ntq_emit_if(struct vc4_compile *c, nir_if *if_stmt)
1902 {
1903         if (!c->vc4->screen->has_control_flow) {
1904                 fprintf(stderr,
1905                         "IF statement support requires updated kernel.\n");
1906                 return;
1907         }
1908 
1909         nir_block *nir_else_block = nir_if_first_else_block(if_stmt);
1910         bool empty_else_block =
1911                 (nir_else_block == nir_if_last_else_block(if_stmt) &&
1912                  exec_list_is_empty(&nir_else_block->instr_list));
1913 
1914         struct qblock *then_block = qir_new_block(c);
1915         struct qblock *after_block = qir_new_block(c);
1916         struct qblock *else_block;
1917         if (empty_else_block)
1918                 else_block = after_block;
1919         else
1920                 else_block = qir_new_block(c);
1921 
1922         bool was_top_level = false;
1923         if (c->execute.file == QFILE_NULL) {
1924                 c->execute = qir_MOV(c, qir_uniform_ui(c, 0));
1925                 was_top_level = true;
1926         }
1927 
1928         /* Set ZS for executing (execute == 0) and jumping (if->condition ==
1929          * 0) channels, and then update execute flags for those to point to
1930          * the ELSE block.
1931          */
1932         qir_SF(c, qir_OR(c,
1933                          c->execute,
1934                          ntq_get_src(c, if_stmt->condition, 0)));
1935         qir_MOV_cond(c, QPU_COND_ZS, c->execute,
1936                      qir_uniform_ui(c, else_block->index));
1937 
1938         /* Jump to ELSE if nothing is active for THEN, otherwise fall
1939          * through.
1940          */
1941         qir_SF(c, c->execute);
1942         qir_BRANCH(c, QPU_COND_BRANCH_ALL_ZC);
1943         qir_link_blocks(c->cur_block, else_block);
1944         qir_link_blocks(c->cur_block, then_block);
1945 
1946         /* Process the THEN block. */
1947         qir_set_emit_block(c, then_block);
1948         ntq_emit_cf_list(c, &if_stmt->then_list);
1949 
1950         if (!empty_else_block) {
1951                 /* Handle the end of the THEN block.  First, all currently
1952                  * active channels update their execute flags to point to
1953                  * ENDIF
1954                  */
1955                 qir_SF(c, c->execute);
1956                 qir_MOV_cond(c, QPU_COND_ZS, c->execute,
1957                              qir_uniform_ui(c, after_block->index));
1958 
1959                 /* If everything points at ENDIF, then jump there immediately. */
1960                 qir_SF(c, qir_SUB(c, c->execute, qir_uniform_ui(c, after_block->index)));
1961                 qir_BRANCH(c, QPU_COND_BRANCH_ALL_ZS);
1962                 qir_link_blocks(c->cur_block, after_block);
1963                 qir_link_blocks(c->cur_block, else_block);
1964 
1965                 qir_set_emit_block(c, else_block);
1966                 ntq_activate_execute_for_block(c);
1967                 ntq_emit_cf_list(c, &if_stmt->else_list);
1968         }
1969 
1970         qir_link_blocks(c->cur_block, after_block);
1971 
1972         qir_set_emit_block(c, after_block);
1973         if (was_top_level) {
1974                 c->execute = c->undef;
1975                 c->last_top_block = c->cur_block;
1976         } else {
1977                 ntq_activate_execute_for_block(c);
1978         }
1979 }
1980 
1981 static void
ntq_emit_jump(struct vc4_compile * c,nir_jump_instr * jump)1982 ntq_emit_jump(struct vc4_compile *c, nir_jump_instr *jump)
1983 {
1984         struct qblock *jump_block;
1985         switch (jump->type) {
1986         case nir_jump_break:
1987                 jump_block = c->loop_break_block;
1988                 break;
1989         case nir_jump_continue:
1990                 jump_block = c->loop_cont_block;
1991                 break;
1992         default:
1993                 unreachable("Unsupported jump type\n");
1994         }
1995 
1996         qir_SF(c, c->execute);
1997         qir_MOV_cond(c, QPU_COND_ZS, c->execute,
1998                      qir_uniform_ui(c, jump_block->index));
1999 
2000         /* Jump to the destination block if everyone has taken the jump. */
2001         qir_SF(c, qir_SUB(c, c->execute, qir_uniform_ui(c, jump_block->index)));
2002         qir_BRANCH(c, QPU_COND_BRANCH_ALL_ZS);
2003         struct qblock *new_block = qir_new_block(c);
2004         qir_link_blocks(c->cur_block, jump_block);
2005         qir_link_blocks(c->cur_block, new_block);
2006         qir_set_emit_block(c, new_block);
2007 }
2008 
2009 static void
ntq_emit_instr(struct vc4_compile * c,nir_instr * instr)2010 ntq_emit_instr(struct vc4_compile *c, nir_instr *instr)
2011 {
2012         switch (instr->type) {
2013         case nir_instr_type_alu:
2014                 ntq_emit_alu(c, nir_instr_as_alu(instr));
2015                 break;
2016 
2017         case nir_instr_type_intrinsic:
2018                 ntq_emit_intrinsic(c, nir_instr_as_intrinsic(instr));
2019                 break;
2020 
2021         case nir_instr_type_load_const:
2022                 ntq_emit_load_const(c, nir_instr_as_load_const(instr));
2023                 break;
2024 
2025         case nir_instr_type_ssa_undef:
2026                 ntq_emit_ssa_undef(c, nir_instr_as_ssa_undef(instr));
2027                 break;
2028 
2029         case nir_instr_type_tex:
2030                 ntq_emit_tex(c, nir_instr_as_tex(instr));
2031                 break;
2032 
2033         case nir_instr_type_jump:
2034                 ntq_emit_jump(c, nir_instr_as_jump(instr));
2035                 break;
2036 
2037         default:
2038                 fprintf(stderr, "Unknown NIR instr type: ");
2039                 nir_print_instr(instr, stderr);
2040                 fprintf(stderr, "\n");
2041                 abort();
2042         }
2043 }
2044 
2045 static void
ntq_emit_block(struct vc4_compile * c,nir_block * block)2046 ntq_emit_block(struct vc4_compile *c, nir_block *block)
2047 {
2048         nir_foreach_instr(instr, block) {
2049                 ntq_emit_instr(c, instr);
2050         }
2051 }
2052 
2053 static void ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list);
2054 
2055 static void
ntq_emit_loop(struct vc4_compile * c,nir_loop * loop)2056 ntq_emit_loop(struct vc4_compile *c, nir_loop *loop)
2057 {
2058         if (!c->vc4->screen->has_control_flow) {
2059                 fprintf(stderr,
2060                         "loop support requires updated kernel.\n");
2061                 ntq_emit_cf_list(c, &loop->body);
2062                 return;
2063         }
2064 
2065         bool was_top_level = false;
2066         if (c->execute.file == QFILE_NULL) {
2067                 c->execute = qir_MOV(c, qir_uniform_ui(c, 0));
2068                 was_top_level = true;
2069         }
2070 
2071         struct qblock *save_loop_cont_block = c->loop_cont_block;
2072         struct qblock *save_loop_break_block = c->loop_break_block;
2073 
2074         c->loop_cont_block = qir_new_block(c);
2075         c->loop_break_block = qir_new_block(c);
2076 
2077         qir_link_blocks(c->cur_block, c->loop_cont_block);
2078         qir_set_emit_block(c, c->loop_cont_block);
2079         ntq_activate_execute_for_block(c);
2080 
2081         ntq_emit_cf_list(c, &loop->body);
2082 
2083         /* If anything had explicitly continued, or is here at the end of the
2084          * loop, then we need to loop again.  SF updates are masked by the
2085          * instruction's condition, so we can do the OR of the two conditions
2086          * within SF.
2087          */
2088         qir_SF(c, c->execute);
2089         struct qinst *cont_check =
2090                 qir_SUB_dest(c,
2091                              c->undef,
2092                              c->execute,
2093                              qir_uniform_ui(c, c->loop_cont_block->index));
2094         cont_check->cond = QPU_COND_ZC;
2095         cont_check->sf = true;
2096 
2097         qir_BRANCH(c, QPU_COND_BRANCH_ANY_ZS);
2098         qir_link_blocks(c->cur_block, c->loop_cont_block);
2099         qir_link_blocks(c->cur_block, c->loop_break_block);
2100 
2101         qir_set_emit_block(c, c->loop_break_block);
2102         if (was_top_level) {
2103                 c->execute = c->undef;
2104                 c->last_top_block = c->cur_block;
2105         } else {
2106                 ntq_activate_execute_for_block(c);
2107         }
2108 
2109         c->loop_break_block = save_loop_break_block;
2110         c->loop_cont_block = save_loop_cont_block;
2111 }
2112 
2113 static void
ntq_emit_function(struct vc4_compile * c,nir_function_impl * func)2114 ntq_emit_function(struct vc4_compile *c, nir_function_impl *func)
2115 {
2116         fprintf(stderr, "FUNCTIONS not handled.\n");
2117         abort();
2118 }
2119 
2120 static void
ntq_emit_cf_list(struct vc4_compile * c,struct exec_list * list)2121 ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list)
2122 {
2123         foreach_list_typed(nir_cf_node, node, node, list) {
2124                 switch (node->type) {
2125                 case nir_cf_node_block:
2126                         ntq_emit_block(c, nir_cf_node_as_block(node));
2127                         break;
2128 
2129                 case nir_cf_node_if:
2130                         ntq_emit_if(c, nir_cf_node_as_if(node));
2131                         break;
2132 
2133                 case nir_cf_node_loop:
2134                         ntq_emit_loop(c, nir_cf_node_as_loop(node));
2135                         break;
2136 
2137                 case nir_cf_node_function:
2138                         ntq_emit_function(c, nir_cf_node_as_function(node));
2139                         break;
2140 
2141                 default:
2142                         fprintf(stderr, "Unknown NIR node type\n");
2143                         abort();
2144                 }
2145         }
2146 }
2147 
2148 static void
ntq_emit_impl(struct vc4_compile * c,nir_function_impl * impl)2149 ntq_emit_impl(struct vc4_compile *c, nir_function_impl *impl)
2150 {
2151         ntq_setup_registers(c, &impl->registers);
2152         ntq_emit_cf_list(c, &impl->body);
2153 }
2154 
2155 static void
nir_to_qir(struct vc4_compile * c)2156 nir_to_qir(struct vc4_compile *c)
2157 {
2158         if (c->stage == QSTAGE_FRAG && c->s->info.fs.uses_discard)
2159                 c->discard = qir_MOV(c, qir_uniform_ui(c, 0));
2160 
2161         ntq_setup_inputs(c);
2162         ntq_setup_outputs(c);
2163 
2164         /* Find the main function and emit the body. */
2165         nir_foreach_function(function, c->s) {
2166                 assert(strcmp(function->name, "main") == 0);
2167                 assert(function->impl);
2168                 ntq_emit_impl(c, function->impl);
2169         }
2170 }
2171 
2172 static const nir_shader_compiler_options nir_options = {
2173         .lower_all_io_to_temps = true,
2174         .lower_extract_byte = true,
2175         .lower_extract_word = true,
2176         .lower_fdiv = true,
2177         .lower_ffma16 = true,
2178         .lower_ffma32 = true,
2179         .lower_ffma64 = true,
2180         .lower_flrp32 = true,
2181         .lower_fmod = true,
2182         .lower_fpow = true,
2183         .lower_fsat = true,
2184         .lower_fsqrt = true,
2185         .lower_ldexp = true,
2186         .lower_negate = true,
2187         .lower_rotate = true,
2188         .lower_to_scalar = true,
2189         .lower_umax = true,
2190         .lower_umin = true,
2191         .lower_isign = true,
2192         .max_unroll_iterations = 32,
2193 };
2194 
2195 const void *
vc4_screen_get_compiler_options(struct pipe_screen * pscreen,enum pipe_shader_ir ir,enum pipe_shader_type shader)2196 vc4_screen_get_compiler_options(struct pipe_screen *pscreen,
2197                                 enum pipe_shader_ir ir,
2198                                 enum pipe_shader_type shader)
2199 {
2200         return &nir_options;
2201 }
2202 
2203 static int
count_nir_instrs(nir_shader * nir)2204 count_nir_instrs(nir_shader *nir)
2205 {
2206         int count = 0;
2207         nir_foreach_function(function, nir) {
2208                 if (!function->impl)
2209                         continue;
2210                 nir_foreach_block(block, function->impl) {
2211                         nir_foreach_instr(instr, block)
2212                                 count++;
2213                 }
2214         }
2215         return count;
2216 }
2217 
2218 static struct vc4_compile *
vc4_shader_ntq(struct vc4_context * vc4,enum qstage stage,struct vc4_key * key,bool fs_threaded)2219 vc4_shader_ntq(struct vc4_context *vc4, enum qstage stage,
2220                struct vc4_key *key, bool fs_threaded)
2221 {
2222         struct vc4_compile *c = qir_compile_init();
2223 
2224         c->vc4 = vc4;
2225         c->stage = stage;
2226         c->shader_state = &key->shader_state->base;
2227         c->program_id = key->shader_state->program_id;
2228         c->variant_id =
2229                 p_atomic_inc_return(&key->shader_state->compiled_variant_count);
2230         c->fs_threaded = fs_threaded;
2231 
2232         c->key = key;
2233         switch (stage) {
2234         case QSTAGE_FRAG:
2235                 c->fs_key = (struct vc4_fs_key *)key;
2236                 if (c->fs_key->is_points) {
2237                         c->point_x = emit_fragment_varying(c, ~0, 0);
2238                         c->point_y = emit_fragment_varying(c, ~0, 0);
2239                 } else if (c->fs_key->is_lines) {
2240                         c->line_x = emit_fragment_varying(c, ~0, 0);
2241                 }
2242                 break;
2243         case QSTAGE_VERT:
2244                 c->vs_key = (struct vc4_vs_key *)key;
2245                 break;
2246         case QSTAGE_COORD:
2247                 c->vs_key = (struct vc4_vs_key *)key;
2248                 break;
2249         }
2250 
2251         c->s = nir_shader_clone(c, key->shader_state->base.ir.nir);
2252 
2253         if (stage == QSTAGE_FRAG) {
2254                 NIR_PASS_V(c->s, vc4_nir_lower_blend, c);
2255         }
2256 
2257         struct nir_lower_tex_options tex_options = {
2258                 /* We would need to implement txs, but we don't want the
2259                  * int/float conversions
2260                  */
2261                 .lower_rect = false,
2262 
2263                 .lower_txp = ~0,
2264 
2265                 /* Apply swizzles to all samplers. */
2266                 .swizzle_result = ~0,
2267         };
2268 
2269         /* Lower the format swizzle and ARB_texture_swizzle-style swizzle.
2270          * The format swizzling applies before sRGB decode, and
2271          * ARB_texture_swizzle is the last thing before returning the sample.
2272          */
2273         for (int i = 0; i < ARRAY_SIZE(key->tex); i++) {
2274                 enum pipe_format format = c->key->tex[i].format;
2275 
2276                 if (!format)
2277                         continue;
2278 
2279                 const uint8_t *format_swizzle = vc4_get_format_swizzle(format);
2280 
2281                 for (int j = 0; j < 4; j++) {
2282                         uint8_t arb_swiz = c->key->tex[i].swizzle[j];
2283 
2284                         if (arb_swiz <= 3) {
2285                                 tex_options.swizzles[i][j] =
2286                                         format_swizzle[arb_swiz];
2287                         } else {
2288                                 tex_options.swizzles[i][j] = arb_swiz;
2289                         }
2290                 }
2291 
2292                 if (util_format_is_srgb(format))
2293                         tex_options.lower_srgb |= (1 << i);
2294         }
2295 
2296         NIR_PASS_V(c->s, nir_lower_tex, &tex_options);
2297 
2298         if (c->fs_key && c->fs_key->light_twoside)
2299                 NIR_PASS_V(c->s, nir_lower_two_sided_color, true);
2300 
2301         if (c->vs_key && c->vs_key->clamp_color)
2302                 NIR_PASS_V(c->s, nir_lower_clamp_color_outputs);
2303 
2304         if (c->key->ucp_enables) {
2305                 if (stage == QSTAGE_FRAG) {
2306                         NIR_PASS_V(c->s, nir_lower_clip_fs,
2307                                    c->key->ucp_enables, false);
2308                 } else {
2309                         NIR_PASS_V(c->s, nir_lower_clip_vs,
2310                                    c->key->ucp_enables, false, false, NULL);
2311                         NIR_PASS_V(c->s, nir_lower_io_to_scalar,
2312                                    nir_var_shader_out);
2313                 }
2314         }
2315 
2316         /* FS input scalarizing must happen after nir_lower_two_sided_color,
2317          * which only handles a vec4 at a time.  Similarly, VS output
2318          * scalarizing must happen after nir_lower_clip_vs.
2319          */
2320         if (c->stage == QSTAGE_FRAG)
2321                 NIR_PASS_V(c->s, nir_lower_io_to_scalar, nir_var_shader_in);
2322         else
2323                 NIR_PASS_V(c->s, nir_lower_io_to_scalar, nir_var_shader_out);
2324 
2325         NIR_PASS_V(c->s, vc4_nir_lower_io, c);
2326         NIR_PASS_V(c->s, vc4_nir_lower_txf_ms, c);
2327         NIR_PASS_V(c->s, nir_lower_idiv, nir_lower_idiv_fast);
2328 
2329         vc4_optimize_nir(c->s);
2330 
2331         /* Do late algebraic optimization to turn add(a, neg(b)) back into
2332          * subs, then the mandatory cleanup after algebraic.  Note that it may
2333          * produce fnegs, and if so then we need to keep running to squash
2334          * fneg(fneg(a)).
2335          */
2336         bool more_late_algebraic = true;
2337         while (more_late_algebraic) {
2338                 more_late_algebraic = false;
2339                 NIR_PASS(more_late_algebraic, c->s, nir_opt_algebraic_late);
2340                 NIR_PASS_V(c->s, nir_opt_constant_folding);
2341                 NIR_PASS_V(c->s, nir_copy_prop);
2342                 NIR_PASS_V(c->s, nir_opt_dce);
2343                 NIR_PASS_V(c->s, nir_opt_cse);
2344         }
2345 
2346         NIR_PASS_V(c->s, nir_lower_bool_to_int32);
2347 
2348         NIR_PASS_V(c->s, nir_convert_from_ssa, true);
2349 
2350         if (vc4_debug & VC4_DEBUG_SHADERDB) {
2351                 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d NIR instructions\n",
2352                         qir_get_stage_name(c->stage),
2353                         c->program_id, c->variant_id,
2354                         count_nir_instrs(c->s));
2355         }
2356 
2357         if (vc4_debug & VC4_DEBUG_NIR) {
2358                 fprintf(stderr, "%s prog %d/%d NIR:\n",
2359                         qir_get_stage_name(c->stage),
2360                         c->program_id, c->variant_id);
2361                 nir_print_shader(c->s, stderr);
2362         }
2363 
2364         nir_to_qir(c);
2365 
2366         switch (stage) {
2367         case QSTAGE_FRAG:
2368                 /* FS threading requires that the thread execute
2369                  * QPU_SIG_LAST_THREAD_SWITCH exactly once before terminating
2370                  * (with no other THRSW afterwards, obviously).  If we didn't
2371                  * fetch a texture at a top level block, this wouldn't be
2372                  * true.
2373                  */
2374                 if (c->fs_threaded && !c->last_thrsw_at_top_level) {
2375                         c->failed = true;
2376                         return c;
2377                 }
2378 
2379                 emit_frag_end(c);
2380                 break;
2381         case QSTAGE_VERT:
2382                 emit_vert_end(c,
2383                               c->vs_key->fs_inputs->input_slots,
2384                               c->vs_key->fs_inputs->num_inputs);
2385                 break;
2386         case QSTAGE_COORD:
2387                 emit_coord_end(c);
2388                 break;
2389         }
2390 
2391         if (vc4_debug & VC4_DEBUG_QIR) {
2392                 fprintf(stderr, "%s prog %d/%d pre-opt QIR:\n",
2393                         qir_get_stage_name(c->stage),
2394                         c->program_id, c->variant_id);
2395                 qir_dump(c);
2396                 fprintf(stderr, "\n");
2397         }
2398 
2399         qir_optimize(c);
2400         qir_lower_uniforms(c);
2401 
2402         qir_schedule_instructions(c);
2403         qir_emit_uniform_stream_resets(c);
2404 
2405         if (vc4_debug & VC4_DEBUG_QIR) {
2406                 fprintf(stderr, "%s prog %d/%d QIR:\n",
2407                         qir_get_stage_name(c->stage),
2408                         c->program_id, c->variant_id);
2409                 qir_dump(c);
2410                 fprintf(stderr, "\n");
2411         }
2412 
2413         qir_reorder_uniforms(c);
2414         vc4_generate_code(vc4, c);
2415 
2416         if (vc4_debug & VC4_DEBUG_SHADERDB) {
2417                 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d instructions\n",
2418                         qir_get_stage_name(c->stage),
2419                         c->program_id, c->variant_id,
2420                         c->qpu_inst_count);
2421                 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d uniforms\n",
2422                         qir_get_stage_name(c->stage),
2423                         c->program_id, c->variant_id,
2424                         c->num_uniforms);
2425         }
2426 
2427         ralloc_free(c->s);
2428 
2429         return c;
2430 }
2431 
2432 static void *
vc4_shader_state_create(struct pipe_context * pctx,const struct pipe_shader_state * cso)2433 vc4_shader_state_create(struct pipe_context *pctx,
2434                         const struct pipe_shader_state *cso)
2435 {
2436         struct vc4_context *vc4 = vc4_context(pctx);
2437         struct vc4_uncompiled_shader *so = CALLOC_STRUCT(vc4_uncompiled_shader);
2438         if (!so)
2439                 return NULL;
2440 
2441         so->program_id = vc4->next_uncompiled_program_id++;
2442 
2443         nir_shader *s;
2444 
2445         if (cso->type == PIPE_SHADER_IR_NIR) {
2446                 /* The backend takes ownership of the NIR shader on state
2447                  * creation.
2448                  */
2449                 s = cso->ir.nir;
2450        } else {
2451                 assert(cso->type == PIPE_SHADER_IR_TGSI);
2452 
2453                 if (vc4_debug & VC4_DEBUG_TGSI) {
2454                         fprintf(stderr, "prog %d TGSI:\n",
2455                                 so->program_id);
2456                         tgsi_dump(cso->tokens, 0);
2457                         fprintf(stderr, "\n");
2458                 }
2459                 s = tgsi_to_nir(cso->tokens, pctx->screen, false);
2460         }
2461 
2462         if (s->info.stage == MESA_SHADER_VERTEX)
2463                 NIR_PASS_V(s, nir_lower_point_size, 1.0f, 0.0f);
2464 
2465         NIR_PASS_V(s, nir_lower_io,
2466                    nir_var_shader_in | nir_var_shader_out | nir_var_uniform,
2467                    type_size, (nir_lower_io_options)0);
2468 
2469         NIR_PASS_V(s, nir_lower_regs_to_ssa);
2470         NIR_PASS_V(s, nir_normalize_cubemap_coords);
2471 
2472         NIR_PASS_V(s, nir_lower_load_const_to_scalar);
2473 
2474         vc4_optimize_nir(s);
2475 
2476         NIR_PASS_V(s, nir_remove_dead_variables, nir_var_function_temp, NULL);
2477 
2478         /* Garbage collect dead instructions */
2479         nir_sweep(s);
2480 
2481         so->base.type = PIPE_SHADER_IR_NIR;
2482         so->base.ir.nir = s;
2483 
2484         if (vc4_debug & VC4_DEBUG_NIR) {
2485                 fprintf(stderr, "%s prog %d NIR:\n",
2486                         gl_shader_stage_name(s->info.stage),
2487                         so->program_id);
2488                 nir_print_shader(s, stderr);
2489                 fprintf(stderr, "\n");
2490         }
2491 
2492         return so;
2493 }
2494 
2495 static void
copy_uniform_state_to_shader(struct vc4_compiled_shader * shader,struct vc4_compile * c)2496 copy_uniform_state_to_shader(struct vc4_compiled_shader *shader,
2497                              struct vc4_compile *c)
2498 {
2499         int count = c->num_uniforms;
2500         struct vc4_shader_uniform_info *uinfo = &shader->uniforms;
2501 
2502         uinfo->count = count;
2503         uinfo->data = ralloc_array(shader, uint32_t, count);
2504         memcpy(uinfo->data, c->uniform_data,
2505                count * sizeof(*uinfo->data));
2506         uinfo->contents = ralloc_array(shader, enum quniform_contents, count);
2507         memcpy(uinfo->contents, c->uniform_contents,
2508                count * sizeof(*uinfo->contents));
2509         uinfo->num_texture_samples = c->num_texture_samples;
2510 
2511         vc4_set_shader_uniform_dirty_flags(shader);
2512 }
2513 
2514 static void
vc4_setup_compiled_fs_inputs(struct vc4_context * vc4,struct vc4_compile * c,struct vc4_compiled_shader * shader)2515 vc4_setup_compiled_fs_inputs(struct vc4_context *vc4, struct vc4_compile *c,
2516                              struct vc4_compiled_shader *shader)
2517 {
2518         struct vc4_fs_inputs inputs;
2519 
2520         memset(&inputs, 0, sizeof(inputs));
2521         inputs.input_slots = ralloc_array(shader,
2522                                           struct vc4_varying_slot,
2523                                           c->num_input_slots);
2524 
2525         bool input_live[c->num_input_slots];
2526 
2527         memset(input_live, 0, sizeof(input_live));
2528         qir_for_each_inst_inorder(inst, c) {
2529                 for (int i = 0; i < qir_get_nsrc(inst); i++) {
2530                         if (inst->src[i].file == QFILE_VARY)
2531                                 input_live[inst->src[i].index] = true;
2532                 }
2533         }
2534 
2535         for (int i = 0; i < c->num_input_slots; i++) {
2536                 struct vc4_varying_slot *slot = &c->input_slots[i];
2537 
2538                 if (!input_live[i])
2539                         continue;
2540 
2541                 /* Skip non-VS-output inputs. */
2542                 if (slot->slot == (uint8_t)~0)
2543                         continue;
2544 
2545                 if (slot->slot == VARYING_SLOT_COL0 ||
2546                     slot->slot == VARYING_SLOT_COL1 ||
2547                     slot->slot == VARYING_SLOT_BFC0 ||
2548                     slot->slot == VARYING_SLOT_BFC1) {
2549                         shader->color_inputs |= (1 << inputs.num_inputs);
2550                 }
2551 
2552                 inputs.input_slots[inputs.num_inputs] = *slot;
2553                 inputs.num_inputs++;
2554         }
2555         shader->num_inputs = inputs.num_inputs;
2556 
2557         /* Add our set of inputs to the set of all inputs seen.  This way, we
2558          * can have a single pointer that identifies an FS inputs set,
2559          * allowing VS to avoid recompiling when the FS is recompiled (or a
2560          * new one is bound using separate shader objects) but the inputs
2561          * don't change.
2562          */
2563         struct set_entry *entry = _mesa_set_search(vc4->fs_inputs_set, &inputs);
2564         if (entry) {
2565                 shader->fs_inputs = entry->key;
2566                 ralloc_free(inputs.input_slots);
2567         } else {
2568                 struct vc4_fs_inputs *alloc_inputs;
2569 
2570                 alloc_inputs = rzalloc(vc4->fs_inputs_set, struct vc4_fs_inputs);
2571                 memcpy(alloc_inputs, &inputs, sizeof(inputs));
2572                 ralloc_steal(alloc_inputs, inputs.input_slots);
2573                 _mesa_set_add(vc4->fs_inputs_set, alloc_inputs);
2574 
2575                 shader->fs_inputs = alloc_inputs;
2576         }
2577 }
2578 
2579 static struct vc4_compiled_shader *
vc4_get_compiled_shader(struct vc4_context * vc4,enum qstage stage,struct vc4_key * key)2580 vc4_get_compiled_shader(struct vc4_context *vc4, enum qstage stage,
2581                         struct vc4_key *key)
2582 {
2583         struct hash_table *ht;
2584         uint32_t key_size;
2585         bool try_threading;
2586 
2587         if (stage == QSTAGE_FRAG) {
2588                 ht = vc4->fs_cache;
2589                 key_size = sizeof(struct vc4_fs_key);
2590                 try_threading = vc4->screen->has_threaded_fs;
2591         } else {
2592                 ht = vc4->vs_cache;
2593                 key_size = sizeof(struct vc4_vs_key);
2594                 try_threading = false;
2595         }
2596 
2597         struct vc4_compiled_shader *shader;
2598         struct hash_entry *entry = _mesa_hash_table_search(ht, key);
2599         if (entry)
2600                 return entry->data;
2601 
2602         struct vc4_compile *c = vc4_shader_ntq(vc4, stage, key, try_threading);
2603         /* If the FS failed to compile threaded, fall back to single threaded. */
2604         if (try_threading && c->failed) {
2605                 qir_compile_destroy(c);
2606                 c = vc4_shader_ntq(vc4, stage, key, false);
2607         }
2608 
2609         shader = rzalloc(NULL, struct vc4_compiled_shader);
2610 
2611         shader->program_id = vc4->next_compiled_program_id++;
2612         if (stage == QSTAGE_FRAG) {
2613                 vc4_setup_compiled_fs_inputs(vc4, c, shader);
2614 
2615                 /* Note: the temporary clone in c->s has been freed. */
2616                 nir_shader *orig_shader = key->shader_state->base.ir.nir;
2617                 if (orig_shader->info.outputs_written & (1 << FRAG_RESULT_DEPTH))
2618                         shader->disable_early_z = true;
2619         } else {
2620                 shader->num_inputs = c->num_inputs;
2621 
2622                 shader->vattr_offsets[0] = 0;
2623                 for (int i = 0; i < 8; i++) {
2624                         shader->vattr_offsets[i + 1] =
2625                                 shader->vattr_offsets[i] + c->vattr_sizes[i];
2626 
2627                         if (c->vattr_sizes[i])
2628                                 shader->vattrs_live |= (1 << i);
2629                 }
2630         }
2631 
2632         shader->failed = c->failed;
2633         if (c->failed) {
2634                 shader->failed = true;
2635         } else {
2636                 copy_uniform_state_to_shader(shader, c);
2637                 shader->bo = vc4_bo_alloc_shader(vc4->screen, c->qpu_insts,
2638                                                  c->qpu_inst_count *
2639                                                  sizeof(uint64_t));
2640         }
2641 
2642         shader->fs_threaded = c->fs_threaded;
2643 
2644         if ((vc4_debug & VC4_DEBUG_SHADERDB) && stage == QSTAGE_FRAG) {
2645                 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d FS threads\n",
2646                         qir_get_stage_name(c->stage),
2647                         c->program_id, c->variant_id,
2648                         1 + shader->fs_threaded);
2649         }
2650 
2651         qir_compile_destroy(c);
2652 
2653         struct vc4_key *dup_key;
2654         dup_key = rzalloc_size(shader, key_size); /* TODO: don't use rzalloc */
2655         memcpy(dup_key, key, key_size);
2656         _mesa_hash_table_insert(ht, dup_key, shader);
2657 
2658         return shader;
2659 }
2660 
2661 static void
vc4_setup_shared_key(struct vc4_context * vc4,struct vc4_key * key,struct vc4_texture_stateobj * texstate)2662 vc4_setup_shared_key(struct vc4_context *vc4, struct vc4_key *key,
2663                      struct vc4_texture_stateobj *texstate)
2664 {
2665         for (int i = 0; i < texstate->num_textures; i++) {
2666                 struct pipe_sampler_view *sampler = texstate->textures[i];
2667                 struct vc4_sampler_view *vc4_sampler = vc4_sampler_view(sampler);
2668                 struct pipe_sampler_state *sampler_state =
2669                         texstate->samplers[i];
2670 
2671                 if (!sampler)
2672                         continue;
2673 
2674                 key->tex[i].format = sampler->format;
2675                 key->tex[i].swizzle[0] = sampler->swizzle_r;
2676                 key->tex[i].swizzle[1] = sampler->swizzle_g;
2677                 key->tex[i].swizzle[2] = sampler->swizzle_b;
2678                 key->tex[i].swizzle[3] = sampler->swizzle_a;
2679 
2680                 if (sampler->texture->nr_samples > 1) {
2681                         key->tex[i].msaa_width = sampler->texture->width0;
2682                         key->tex[i].msaa_height = sampler->texture->height0;
2683                 } else if (sampler){
2684                         key->tex[i].compare_mode = sampler_state->compare_mode;
2685                         key->tex[i].compare_func = sampler_state->compare_func;
2686                         key->tex[i].wrap_s = sampler_state->wrap_s;
2687                         key->tex[i].wrap_t = sampler_state->wrap_t;
2688                         key->tex[i].force_first_level =
2689                                 vc4_sampler->force_first_level;
2690                 }
2691         }
2692 
2693         key->ucp_enables = vc4->rasterizer->base.clip_plane_enable;
2694 }
2695 
2696 static void
vc4_update_compiled_fs(struct vc4_context * vc4,uint8_t prim_mode)2697 vc4_update_compiled_fs(struct vc4_context *vc4, uint8_t prim_mode)
2698 {
2699         struct vc4_job *job = vc4->job;
2700         struct vc4_fs_key local_key;
2701         struct vc4_fs_key *key = &local_key;
2702 
2703         if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
2704                             VC4_DIRTY_BLEND |
2705                             VC4_DIRTY_FRAMEBUFFER |
2706                             VC4_DIRTY_ZSA |
2707                             VC4_DIRTY_RASTERIZER |
2708                             VC4_DIRTY_SAMPLE_MASK |
2709                             VC4_DIRTY_FRAGTEX |
2710                             VC4_DIRTY_UNCOMPILED_FS |
2711                             VC4_DIRTY_UBO_1_SIZE))) {
2712                 return;
2713         }
2714 
2715         memset(key, 0, sizeof(*key));
2716         vc4_setup_shared_key(vc4, &key->base, &vc4->fragtex);
2717         key->base.shader_state = vc4->prog.bind_fs;
2718         key->is_points = (prim_mode == PIPE_PRIM_POINTS);
2719         key->is_lines = (prim_mode >= PIPE_PRIM_LINES &&
2720                          prim_mode <= PIPE_PRIM_LINE_STRIP);
2721         key->blend = vc4->blend->rt[0];
2722         if (vc4->blend->logicop_enable) {
2723                 key->logicop_func = vc4->blend->logicop_func;
2724         } else {
2725                 key->logicop_func = PIPE_LOGICOP_COPY;
2726         }
2727         if (job->msaa) {
2728                 key->msaa = vc4->rasterizer->base.multisample;
2729                 key->sample_coverage = (vc4->sample_mask != (1 << VC4_MAX_SAMPLES) - 1);
2730                 key->sample_alpha_to_coverage = vc4->blend->alpha_to_coverage;
2731                 key->sample_alpha_to_one = vc4->blend->alpha_to_one;
2732         }
2733 
2734         if (vc4->framebuffer.cbufs[0])
2735                 key->color_format = vc4->framebuffer.cbufs[0]->format;
2736 
2737         key->stencil_enabled = vc4->zsa->stencil_uniforms[0] != 0;
2738         key->stencil_twoside = vc4->zsa->stencil_uniforms[1] != 0;
2739         key->stencil_full_writemasks = vc4->zsa->stencil_uniforms[2] != 0;
2740         key->depth_enabled = (vc4->zsa->base.depth.enabled ||
2741                               key->stencil_enabled);
2742         if (vc4->zsa->base.alpha.enabled)
2743                 key->alpha_test_func = vc4->zsa->base.alpha.func;
2744         else
2745                 key->alpha_test_func = COMPARE_FUNC_ALWAYS;
2746 
2747         if (key->is_points) {
2748                 key->point_sprite_mask =
2749                         vc4->rasterizer->base.sprite_coord_enable;
2750                 key->point_coord_upper_left =
2751                         (vc4->rasterizer->base.sprite_coord_mode ==
2752                          PIPE_SPRITE_COORD_UPPER_LEFT);
2753         }
2754 
2755         key->ubo_1_size = vc4->constbuf[PIPE_SHADER_FRAGMENT].cb[1].buffer_size;
2756         key->light_twoside = vc4->rasterizer->base.light_twoside;
2757 
2758         struct vc4_compiled_shader *old_fs = vc4->prog.fs;
2759         vc4->prog.fs = vc4_get_compiled_shader(vc4, QSTAGE_FRAG, &key->base);
2760         if (vc4->prog.fs == old_fs)
2761                 return;
2762 
2763         vc4->dirty |= VC4_DIRTY_COMPILED_FS;
2764 
2765         if (vc4->rasterizer->base.flatshade &&
2766             (!old_fs || vc4->prog.fs->color_inputs != old_fs->color_inputs)) {
2767                 vc4->dirty |= VC4_DIRTY_FLAT_SHADE_FLAGS;
2768         }
2769 
2770         if (!old_fs || vc4->prog.fs->fs_inputs != old_fs->fs_inputs)
2771                 vc4->dirty |= VC4_DIRTY_FS_INPUTS;
2772 }
2773 
2774 static void
vc4_update_compiled_vs(struct vc4_context * vc4,uint8_t prim_mode)2775 vc4_update_compiled_vs(struct vc4_context *vc4, uint8_t prim_mode)
2776 {
2777         struct vc4_vs_key local_key;
2778         struct vc4_vs_key *key = &local_key;
2779 
2780         if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
2781                             VC4_DIRTY_RASTERIZER |
2782                             VC4_DIRTY_VERTTEX |
2783                             VC4_DIRTY_VTXSTATE |
2784                             VC4_DIRTY_UNCOMPILED_VS |
2785                             VC4_DIRTY_FS_INPUTS))) {
2786                 return;
2787         }
2788 
2789         memset(key, 0, sizeof(*key));
2790         vc4_setup_shared_key(vc4, &key->base, &vc4->verttex);
2791         key->base.shader_state = vc4->prog.bind_vs;
2792         key->fs_inputs = vc4->prog.fs->fs_inputs;
2793         key->clamp_color = vc4->rasterizer->base.clamp_vertex_color;
2794 
2795         for (int i = 0; i < ARRAY_SIZE(key->attr_formats); i++)
2796                 key->attr_formats[i] = vc4->vtx->pipe[i].src_format;
2797 
2798         key->per_vertex_point_size =
2799                 (prim_mode == PIPE_PRIM_POINTS &&
2800                  vc4->rasterizer->base.point_size_per_vertex);
2801 
2802         struct vc4_compiled_shader *vs =
2803                 vc4_get_compiled_shader(vc4, QSTAGE_VERT, &key->base);
2804         if (vs != vc4->prog.vs) {
2805                 vc4->prog.vs = vs;
2806                 vc4->dirty |= VC4_DIRTY_COMPILED_VS;
2807         }
2808 
2809         key->is_coord = true;
2810         /* Coord shaders don't care what the FS inputs are. */
2811         key->fs_inputs = NULL;
2812         struct vc4_compiled_shader *cs =
2813                 vc4_get_compiled_shader(vc4, QSTAGE_COORD, &key->base);
2814         if (cs != vc4->prog.cs) {
2815                 vc4->prog.cs = cs;
2816                 vc4->dirty |= VC4_DIRTY_COMPILED_CS;
2817         }
2818 }
2819 
2820 bool
vc4_update_compiled_shaders(struct vc4_context * vc4,uint8_t prim_mode)2821 vc4_update_compiled_shaders(struct vc4_context *vc4, uint8_t prim_mode)
2822 {
2823         vc4_update_compiled_fs(vc4, prim_mode);
2824         vc4_update_compiled_vs(vc4, prim_mode);
2825 
2826         return !(vc4->prog.cs->failed ||
2827                  vc4->prog.vs->failed ||
2828                  vc4->prog.fs->failed);
2829 }
2830 
2831 static uint32_t
fs_cache_hash(const void * key)2832 fs_cache_hash(const void *key)
2833 {
2834         return _mesa_hash_data(key, sizeof(struct vc4_fs_key));
2835 }
2836 
2837 static uint32_t
vs_cache_hash(const void * key)2838 vs_cache_hash(const void *key)
2839 {
2840         return _mesa_hash_data(key, sizeof(struct vc4_vs_key));
2841 }
2842 
2843 static bool
fs_cache_compare(const void * key1,const void * key2)2844 fs_cache_compare(const void *key1, const void *key2)
2845 {
2846         return memcmp(key1, key2, sizeof(struct vc4_fs_key)) == 0;
2847 }
2848 
2849 static bool
vs_cache_compare(const void * key1,const void * key2)2850 vs_cache_compare(const void *key1, const void *key2)
2851 {
2852         return memcmp(key1, key2, sizeof(struct vc4_vs_key)) == 0;
2853 }
2854 
2855 static uint32_t
fs_inputs_hash(const void * key)2856 fs_inputs_hash(const void *key)
2857 {
2858         const struct vc4_fs_inputs *inputs = key;
2859 
2860         return _mesa_hash_data(inputs->input_slots,
2861                                sizeof(*inputs->input_slots) *
2862                                inputs->num_inputs);
2863 }
2864 
2865 static bool
fs_inputs_compare(const void * key1,const void * key2)2866 fs_inputs_compare(const void *key1, const void *key2)
2867 {
2868         const struct vc4_fs_inputs *inputs1 = key1;
2869         const struct vc4_fs_inputs *inputs2 = key2;
2870 
2871         return (inputs1->num_inputs == inputs2->num_inputs &&
2872                 memcmp(inputs1->input_slots,
2873                        inputs2->input_slots,
2874                        sizeof(*inputs1->input_slots) *
2875                        inputs1->num_inputs) == 0);
2876 }
2877 
2878 static void
delete_from_cache_if_matches(struct hash_table * ht,struct vc4_compiled_shader ** last_compile,struct hash_entry * entry,struct vc4_uncompiled_shader * so)2879 delete_from_cache_if_matches(struct hash_table *ht,
2880                              struct vc4_compiled_shader **last_compile,
2881                              struct hash_entry *entry,
2882                              struct vc4_uncompiled_shader *so)
2883 {
2884         const struct vc4_key *key = entry->key;
2885 
2886         if (key->shader_state == so) {
2887                 struct vc4_compiled_shader *shader = entry->data;
2888                 _mesa_hash_table_remove(ht, entry);
2889                 vc4_bo_unreference(&shader->bo);
2890 
2891                 if (shader == *last_compile)
2892                         *last_compile = NULL;
2893 
2894                 ralloc_free(shader);
2895         }
2896 }
2897 
2898 static void
vc4_shader_state_delete(struct pipe_context * pctx,void * hwcso)2899 vc4_shader_state_delete(struct pipe_context *pctx, void *hwcso)
2900 {
2901         struct vc4_context *vc4 = vc4_context(pctx);
2902         struct vc4_uncompiled_shader *so = hwcso;
2903 
2904         hash_table_foreach(vc4->fs_cache, entry) {
2905                 delete_from_cache_if_matches(vc4->fs_cache, &vc4->prog.fs,
2906                                              entry, so);
2907         }
2908         hash_table_foreach(vc4->vs_cache, entry) {
2909                 delete_from_cache_if_matches(vc4->vs_cache, &vc4->prog.vs,
2910                                              entry, so);
2911         }
2912 
2913         ralloc_free(so->base.ir.nir);
2914         free(so);
2915 }
2916 
2917 static void
vc4_fp_state_bind(struct pipe_context * pctx,void * hwcso)2918 vc4_fp_state_bind(struct pipe_context *pctx, void *hwcso)
2919 {
2920         struct vc4_context *vc4 = vc4_context(pctx);
2921         vc4->prog.bind_fs = hwcso;
2922         vc4->dirty |= VC4_DIRTY_UNCOMPILED_FS;
2923 }
2924 
2925 static void
vc4_vp_state_bind(struct pipe_context * pctx,void * hwcso)2926 vc4_vp_state_bind(struct pipe_context *pctx, void *hwcso)
2927 {
2928         struct vc4_context *vc4 = vc4_context(pctx);
2929         vc4->prog.bind_vs = hwcso;
2930         vc4->dirty |= VC4_DIRTY_UNCOMPILED_VS;
2931 }
2932 
2933 void
vc4_program_init(struct pipe_context * pctx)2934 vc4_program_init(struct pipe_context *pctx)
2935 {
2936         struct vc4_context *vc4 = vc4_context(pctx);
2937 
2938         pctx->create_vs_state = vc4_shader_state_create;
2939         pctx->delete_vs_state = vc4_shader_state_delete;
2940 
2941         pctx->create_fs_state = vc4_shader_state_create;
2942         pctx->delete_fs_state = vc4_shader_state_delete;
2943 
2944         pctx->bind_fs_state = vc4_fp_state_bind;
2945         pctx->bind_vs_state = vc4_vp_state_bind;
2946 
2947         vc4->fs_cache = _mesa_hash_table_create(pctx, fs_cache_hash,
2948                                                 fs_cache_compare);
2949         vc4->vs_cache = _mesa_hash_table_create(pctx, vs_cache_hash,
2950                                                 vs_cache_compare);
2951         vc4->fs_inputs_set = _mesa_set_create(pctx, fs_inputs_hash,
2952                                               fs_inputs_compare);
2953 }
2954 
2955 void
vc4_program_fini(struct pipe_context * pctx)2956 vc4_program_fini(struct pipe_context *pctx)
2957 {
2958         struct vc4_context *vc4 = vc4_context(pctx);
2959 
2960         hash_table_foreach(vc4->fs_cache, entry) {
2961                 struct vc4_compiled_shader *shader = entry->data;
2962                 vc4_bo_unreference(&shader->bo);
2963                 ralloc_free(shader);
2964                 _mesa_hash_table_remove(vc4->fs_cache, entry);
2965         }
2966 
2967         hash_table_foreach(vc4->vs_cache, entry) {
2968                 struct vc4_compiled_shader *shader = entry->data;
2969                 vc4_bo_unreference(&shader->bo);
2970                 ralloc_free(shader);
2971                 _mesa_hash_table_remove(vc4->vs_cache, entry);
2972         }
2973 }
2974