• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // InstructionCombining - Combine instructions to form fewer, simple
10 // instructions.  This pass does not modify the CFG.  This pass is where
11 // algebraic simplification happens.
12 //
13 // This pass combines things like:
14 //    %Y = add i32 %X, 1
15 //    %Z = add i32 %Y, 1
16 // into:
17 //    %Z = add i32 %X, 2
18 //
19 // This is a simple worklist driven algorithm.
20 //
21 // This pass guarantees that the following canonicalizations are performed on
22 // the program:
23 //    1. If a binary operator has a constant operand, it is moved to the RHS
24 //    2. Bitwise operators with constant operands are always grouped so that
25 //       shifts are performed first, then or's, then and's, then xor's.
26 //    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
27 //    4. All cmp instructions on boolean values are replaced with logical ops
28 //    5. add X, X is represented as (X*2) => (X << 1)
29 //    6. Multiplies with a power-of-two constant argument are transformed into
30 //       shifts.
31 //   ... etc.
32 //
33 //===----------------------------------------------------------------------===//
34 
35 #include "InstCombineInternal.h"
36 #include "llvm-c/Initialization.h"
37 #include "llvm-c/Transforms/InstCombine.h"
38 #include "llvm/ADT/APInt.h"
39 #include "llvm/ADT/ArrayRef.h"
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/None.h"
42 #include "llvm/ADT/SmallPtrSet.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/ADT/TinyPtrVector.h"
46 #include "llvm/Analysis/AliasAnalysis.h"
47 #include "llvm/Analysis/AssumptionCache.h"
48 #include "llvm/Analysis/BasicAliasAnalysis.h"
49 #include "llvm/Analysis/BlockFrequencyInfo.h"
50 #include "llvm/Analysis/CFG.h"
51 #include "llvm/Analysis/ConstantFolding.h"
52 #include "llvm/Analysis/EHPersonalities.h"
53 #include "llvm/Analysis/GlobalsModRef.h"
54 #include "llvm/Analysis/InstructionSimplify.h"
55 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/MemoryBuiltins.h"
58 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
59 #include "llvm/Analysis/ProfileSummaryInfo.h"
60 #include "llvm/Analysis/TargetFolder.h"
61 #include "llvm/Analysis/TargetLibraryInfo.h"
62 #include "llvm/Analysis/TargetTransformInfo.h"
63 #include "llvm/Analysis/ValueTracking.h"
64 #include "llvm/Analysis/VectorUtils.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/Constant.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DIBuilder.h"
70 #include "llvm/IR/DataLayout.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Dominators.h"
73 #include "llvm/IR/Function.h"
74 #include "llvm/IR/GetElementPtrTypeIterator.h"
75 #include "llvm/IR/IRBuilder.h"
76 #include "llvm/IR/InstrTypes.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/IntrinsicInst.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/LegacyPassManager.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Operator.h"
84 #include "llvm/IR/PassManager.h"
85 #include "llvm/IR/PatternMatch.h"
86 #include "llvm/IR/Type.h"
87 #include "llvm/IR/Use.h"
88 #include "llvm/IR/User.h"
89 #include "llvm/IR/Value.h"
90 #include "llvm/IR/ValueHandle.h"
91 #include "llvm/InitializePasses.h"
92 #include "llvm/Pass.h"
93 #include "llvm/Support/CBindingWrapping.h"
94 #include "llvm/Support/Casting.h"
95 #include "llvm/Support/CommandLine.h"
96 #include "llvm/Support/Compiler.h"
97 #include "llvm/Support/Debug.h"
98 #include "llvm/Support/DebugCounter.h"
99 #include "llvm/Support/ErrorHandling.h"
100 #include "llvm/Support/KnownBits.h"
101 #include "llvm/Support/raw_ostream.h"
102 #include "llvm/Transforms/InstCombine/InstCombine.h"
103 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
104 #include "llvm/Transforms/Utils/Local.h"
105 #include <algorithm>
106 #include <cassert>
107 #include <cstdint>
108 #include <memory>
109 #include <string>
110 #include <utility>
111 
112 using namespace llvm;
113 using namespace llvm::PatternMatch;
114 
115 #define DEBUG_TYPE "instcombine"
116 
117 STATISTIC(NumWorklistIterations,
118           "Number of instruction combining iterations performed");
119 
120 STATISTIC(NumCombined , "Number of insts combined");
121 STATISTIC(NumConstProp, "Number of constant folds");
122 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
123 STATISTIC(NumSunkInst , "Number of instructions sunk");
124 STATISTIC(NumExpand,    "Number of expansions");
125 STATISTIC(NumFactor   , "Number of factorizations");
126 STATISTIC(NumReassoc  , "Number of reassociations");
127 DEBUG_COUNTER(VisitCounter, "instcombine-visit",
128               "Controls which instructions are visited");
129 
130 // FIXME: these limits eventually should be as low as 2.
131 static constexpr unsigned InstCombineDefaultMaxIterations = 1000;
132 #ifndef NDEBUG
133 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 100;
134 #else
135 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000;
136 #endif
137 
138 static cl::opt<bool>
139 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
140                                               cl::init(true));
141 
142 static cl::opt<unsigned> LimitMaxIterations(
143     "instcombine-max-iterations",
144     cl::desc("Limit the maximum number of instruction combining iterations"),
145     cl::init(InstCombineDefaultMaxIterations));
146 
147 static cl::opt<unsigned> InfiniteLoopDetectionThreshold(
148     "instcombine-infinite-loop-threshold",
149     cl::desc("Number of instruction combining iterations considered an "
150              "infinite loop"),
151     cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden);
152 
153 static cl::opt<unsigned>
154 MaxArraySize("instcombine-maxarray-size", cl::init(1024),
155              cl::desc("Maximum array size considered when doing a combine"));
156 
157 // FIXME: Remove this flag when it is no longer necessary to convert
158 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
159 // increases variable availability at the cost of accuracy. Variables that
160 // cannot be promoted by mem2reg or SROA will be described as living in memory
161 // for their entire lifetime. However, passes like DSE and instcombine can
162 // delete stores to the alloca, leading to misleading and inaccurate debug
163 // information. This flag can be removed when those passes are fixed.
164 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
165                                                cl::Hidden, cl::init(true));
166 
167 Optional<Instruction *>
targetInstCombineIntrinsic(IntrinsicInst & II)168 InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) {
169   // Handle target specific intrinsics
170   if (II.getCalledFunction()->isTargetIntrinsic()) {
171     return TTI.instCombineIntrinsic(*this, II);
172   }
173   return None;
174 }
175 
targetSimplifyDemandedUseBitsIntrinsic(IntrinsicInst & II,APInt DemandedMask,KnownBits & Known,bool & KnownBitsComputed)176 Optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic(
177     IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
178     bool &KnownBitsComputed) {
179   // Handle target specific intrinsics
180   if (II.getCalledFunction()->isTargetIntrinsic()) {
181     return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known,
182                                                 KnownBitsComputed);
183   }
184   return None;
185 }
186 
targetSimplifyDemandedVectorEltsIntrinsic(IntrinsicInst & II,APInt DemandedElts,APInt & UndefElts,APInt & UndefElts2,APInt & UndefElts3,std::function<void (Instruction *,unsigned,APInt,APInt &)> SimplifyAndSetOp)187 Optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic(
188     IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2,
189     APInt &UndefElts3,
190     std::function<void(Instruction *, unsigned, APInt, APInt &)>
191         SimplifyAndSetOp) {
192   // Handle target specific intrinsics
193   if (II.getCalledFunction()->isTargetIntrinsic()) {
194     return TTI.simplifyDemandedVectorEltsIntrinsic(
195         *this, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
196         SimplifyAndSetOp);
197   }
198   return None;
199 }
200 
EmitGEPOffset(User * GEP)201 Value *InstCombinerImpl::EmitGEPOffset(User *GEP) {
202   return llvm::EmitGEPOffset(&Builder, DL, GEP);
203 }
204 
205 /// Return true if it is desirable to convert an integer computation from a
206 /// given bit width to a new bit width.
207 /// We don't want to convert from a legal to an illegal type or from a smaller
208 /// to a larger illegal type. A width of '1' is always treated as a legal type
209 /// because i1 is a fundamental type in IR, and there are many specialized
210 /// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as
211 /// legal to convert to, in order to open up more combining opportunities.
212 /// NOTE: this treats i8, i16 and i32 specially, due to them being so common
213 /// from frontend languages.
shouldChangeType(unsigned FromWidth,unsigned ToWidth) const214 bool InstCombinerImpl::shouldChangeType(unsigned FromWidth,
215                                         unsigned ToWidth) const {
216   bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
217   bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
218 
219   // Convert to widths of 8, 16 or 32 even if they are not legal types. Only
220   // shrink types, to prevent infinite loops.
221   if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32))
222     return true;
223 
224   // If this is a legal integer from type, and the result would be an illegal
225   // type, don't do the transformation.
226   if (FromLegal && !ToLegal)
227     return false;
228 
229   // Otherwise, if both are illegal, do not increase the size of the result. We
230   // do allow things like i160 -> i64, but not i64 -> i160.
231   if (!FromLegal && !ToLegal && ToWidth > FromWidth)
232     return false;
233 
234   return true;
235 }
236 
237 /// Return true if it is desirable to convert a computation from 'From' to 'To'.
238 /// We don't want to convert from a legal to an illegal type or from a smaller
239 /// to a larger illegal type. i1 is always treated as a legal type because it is
240 /// a fundamental type in IR, and there are many specialized optimizations for
241 /// i1 types.
shouldChangeType(Type * From,Type * To) const242 bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const {
243   // TODO: This could be extended to allow vectors. Datalayout changes might be
244   // needed to properly support that.
245   if (!From->isIntegerTy() || !To->isIntegerTy())
246     return false;
247 
248   unsigned FromWidth = From->getPrimitiveSizeInBits();
249   unsigned ToWidth = To->getPrimitiveSizeInBits();
250   return shouldChangeType(FromWidth, ToWidth);
251 }
252 
253 // Return true, if No Signed Wrap should be maintained for I.
254 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
255 // where both B and C should be ConstantInts, results in a constant that does
256 // not overflow. This function only handles the Add and Sub opcodes. For
257 // all other opcodes, the function conservatively returns false.
maintainNoSignedWrap(BinaryOperator & I,Value * B,Value * C)258 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
259   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
260   if (!OBO || !OBO->hasNoSignedWrap())
261     return false;
262 
263   // We reason about Add and Sub Only.
264   Instruction::BinaryOps Opcode = I.getOpcode();
265   if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
266     return false;
267 
268   const APInt *BVal, *CVal;
269   if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
270     return false;
271 
272   bool Overflow = false;
273   if (Opcode == Instruction::Add)
274     (void)BVal->sadd_ov(*CVal, Overflow);
275   else
276     (void)BVal->ssub_ov(*CVal, Overflow);
277 
278   return !Overflow;
279 }
280 
hasNoUnsignedWrap(BinaryOperator & I)281 static bool hasNoUnsignedWrap(BinaryOperator &I) {
282   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
283   return OBO && OBO->hasNoUnsignedWrap();
284 }
285 
hasNoSignedWrap(BinaryOperator & I)286 static bool hasNoSignedWrap(BinaryOperator &I) {
287   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
288   return OBO && OBO->hasNoSignedWrap();
289 }
290 
291 /// Conservatively clears subclassOptionalData after a reassociation or
292 /// commutation. We preserve fast-math flags when applicable as they can be
293 /// preserved.
ClearSubclassDataAfterReassociation(BinaryOperator & I)294 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
295   FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
296   if (!FPMO) {
297     I.clearSubclassOptionalData();
298     return;
299   }
300 
301   FastMathFlags FMF = I.getFastMathFlags();
302   I.clearSubclassOptionalData();
303   I.setFastMathFlags(FMF);
304 }
305 
306 /// Combine constant operands of associative operations either before or after a
307 /// cast to eliminate one of the associative operations:
308 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
309 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
simplifyAssocCastAssoc(BinaryOperator * BinOp1,InstCombinerImpl & IC)310 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1,
311                                    InstCombinerImpl &IC) {
312   auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
313   if (!Cast || !Cast->hasOneUse())
314     return false;
315 
316   // TODO: Enhance logic for other casts and remove this check.
317   auto CastOpcode = Cast->getOpcode();
318   if (CastOpcode != Instruction::ZExt)
319     return false;
320 
321   // TODO: Enhance logic for other BinOps and remove this check.
322   if (!BinOp1->isBitwiseLogicOp())
323     return false;
324 
325   auto AssocOpcode = BinOp1->getOpcode();
326   auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
327   if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
328     return false;
329 
330   Constant *C1, *C2;
331   if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
332       !match(BinOp2->getOperand(1), m_Constant(C2)))
333     return false;
334 
335   // TODO: This assumes a zext cast.
336   // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
337   // to the destination type might lose bits.
338 
339   // Fold the constants together in the destination type:
340   // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
341   Type *DestTy = C1->getType();
342   Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy);
343   Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2);
344   IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0));
345   IC.replaceOperand(*BinOp1, 1, FoldedC);
346   return true;
347 }
348 
349 /// This performs a few simplifications for operators that are associative or
350 /// commutative:
351 ///
352 ///  Commutative operators:
353 ///
354 ///  1. Order operands such that they are listed from right (least complex) to
355 ///     left (most complex).  This puts constants before unary operators before
356 ///     binary operators.
357 ///
358 ///  Associative operators:
359 ///
360 ///  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
361 ///  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
362 ///
363 ///  Associative and commutative operators:
364 ///
365 ///  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
366 ///  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
367 ///  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
368 ///     if C1 and C2 are constants.
SimplifyAssociativeOrCommutative(BinaryOperator & I)369 bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
370   Instruction::BinaryOps Opcode = I.getOpcode();
371   bool Changed = false;
372 
373   do {
374     // Order operands such that they are listed from right (least complex) to
375     // left (most complex).  This puts constants before unary operators before
376     // binary operators.
377     if (I.isCommutative() && getComplexity(I.getOperand(0)) <
378         getComplexity(I.getOperand(1)))
379       Changed = !I.swapOperands();
380 
381     BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
382     BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
383 
384     if (I.isAssociative()) {
385       // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
386       if (Op0 && Op0->getOpcode() == Opcode) {
387         Value *A = Op0->getOperand(0);
388         Value *B = Op0->getOperand(1);
389         Value *C = I.getOperand(1);
390 
391         // Does "B op C" simplify?
392         if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
393           // It simplifies to V.  Form "A op V".
394           replaceOperand(I, 0, A);
395           replaceOperand(I, 1, V);
396           bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0);
397           bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0);
398 
399           // Conservatively clear all optional flags since they may not be
400           // preserved by the reassociation. Reset nsw/nuw based on the above
401           // analysis.
402           ClearSubclassDataAfterReassociation(I);
403 
404           // Note: this is only valid because SimplifyBinOp doesn't look at
405           // the operands to Op0.
406           if (IsNUW)
407             I.setHasNoUnsignedWrap(true);
408 
409           if (IsNSW)
410             I.setHasNoSignedWrap(true);
411 
412           Changed = true;
413           ++NumReassoc;
414           continue;
415         }
416       }
417 
418       // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
419       if (Op1 && Op1->getOpcode() == Opcode) {
420         Value *A = I.getOperand(0);
421         Value *B = Op1->getOperand(0);
422         Value *C = Op1->getOperand(1);
423 
424         // Does "A op B" simplify?
425         if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
426           // It simplifies to V.  Form "V op C".
427           replaceOperand(I, 0, V);
428           replaceOperand(I, 1, C);
429           // Conservatively clear the optional flags, since they may not be
430           // preserved by the reassociation.
431           ClearSubclassDataAfterReassociation(I);
432           Changed = true;
433           ++NumReassoc;
434           continue;
435         }
436       }
437     }
438 
439     if (I.isAssociative() && I.isCommutative()) {
440       if (simplifyAssocCastAssoc(&I, *this)) {
441         Changed = true;
442         ++NumReassoc;
443         continue;
444       }
445 
446       // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
447       if (Op0 && Op0->getOpcode() == Opcode) {
448         Value *A = Op0->getOperand(0);
449         Value *B = Op0->getOperand(1);
450         Value *C = I.getOperand(1);
451 
452         // Does "C op A" simplify?
453         if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
454           // It simplifies to V.  Form "V op B".
455           replaceOperand(I, 0, V);
456           replaceOperand(I, 1, B);
457           // Conservatively clear the optional flags, since they may not be
458           // preserved by the reassociation.
459           ClearSubclassDataAfterReassociation(I);
460           Changed = true;
461           ++NumReassoc;
462           continue;
463         }
464       }
465 
466       // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
467       if (Op1 && Op1->getOpcode() == Opcode) {
468         Value *A = I.getOperand(0);
469         Value *B = Op1->getOperand(0);
470         Value *C = Op1->getOperand(1);
471 
472         // Does "C op A" simplify?
473         if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
474           // It simplifies to V.  Form "B op V".
475           replaceOperand(I, 0, B);
476           replaceOperand(I, 1, V);
477           // Conservatively clear the optional flags, since they may not be
478           // preserved by the reassociation.
479           ClearSubclassDataAfterReassociation(I);
480           Changed = true;
481           ++NumReassoc;
482           continue;
483         }
484       }
485 
486       // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
487       // if C1 and C2 are constants.
488       Value *A, *B;
489       Constant *C1, *C2;
490       if (Op0 && Op1 &&
491           Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
492           match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
493           match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) {
494         bool IsNUW = hasNoUnsignedWrap(I) &&
495            hasNoUnsignedWrap(*Op0) &&
496            hasNoUnsignedWrap(*Op1);
497          BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ?
498            BinaryOperator::CreateNUW(Opcode, A, B) :
499            BinaryOperator::Create(Opcode, A, B);
500 
501          if (isa<FPMathOperator>(NewBO)) {
502           FastMathFlags Flags = I.getFastMathFlags();
503           Flags &= Op0->getFastMathFlags();
504           Flags &= Op1->getFastMathFlags();
505           NewBO->setFastMathFlags(Flags);
506         }
507         InsertNewInstWith(NewBO, I);
508         NewBO->takeName(Op1);
509         replaceOperand(I, 0, NewBO);
510         replaceOperand(I, 1, ConstantExpr::get(Opcode, C1, C2));
511         // Conservatively clear the optional flags, since they may not be
512         // preserved by the reassociation.
513         ClearSubclassDataAfterReassociation(I);
514         if (IsNUW)
515           I.setHasNoUnsignedWrap(true);
516 
517         Changed = true;
518         continue;
519       }
520     }
521 
522     // No further simplifications.
523     return Changed;
524   } while (true);
525 }
526 
527 /// Return whether "X LOp (Y ROp Z)" is always equal to
528 /// "(X LOp Y) ROp (X LOp Z)".
leftDistributesOverRight(Instruction::BinaryOps LOp,Instruction::BinaryOps ROp)529 static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
530                                      Instruction::BinaryOps ROp) {
531   // X & (Y | Z) <--> (X & Y) | (X & Z)
532   // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
533   if (LOp == Instruction::And)
534     return ROp == Instruction::Or || ROp == Instruction::Xor;
535 
536   // X | (Y & Z) <--> (X | Y) & (X | Z)
537   if (LOp == Instruction::Or)
538     return ROp == Instruction::And;
539 
540   // X * (Y + Z) <--> (X * Y) + (X * Z)
541   // X * (Y - Z) <--> (X * Y) - (X * Z)
542   if (LOp == Instruction::Mul)
543     return ROp == Instruction::Add || ROp == Instruction::Sub;
544 
545   return false;
546 }
547 
548 /// Return whether "(X LOp Y) ROp Z" is always equal to
549 /// "(X ROp Z) LOp (Y ROp Z)".
rightDistributesOverLeft(Instruction::BinaryOps LOp,Instruction::BinaryOps ROp)550 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
551                                      Instruction::BinaryOps ROp) {
552   if (Instruction::isCommutative(ROp))
553     return leftDistributesOverRight(ROp, LOp);
554 
555   // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
556   return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);
557 
558   // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
559   // but this requires knowing that the addition does not overflow and other
560   // such subtleties.
561 }
562 
563 /// This function returns identity value for given opcode, which can be used to
564 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
getIdentityValue(Instruction::BinaryOps Opcode,Value * V)565 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
566   if (isa<Constant>(V))
567     return nullptr;
568 
569   return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
570 }
571 
572 /// This function predicates factorization using distributive laws. By default,
573 /// it just returns the 'Op' inputs. But for special-cases like
574 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
575 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
576 /// allow more factorization opportunities.
577 static Instruction::BinaryOps
getBinOpsForFactorization(Instruction::BinaryOps TopOpcode,BinaryOperator * Op,Value * & LHS,Value * & RHS)578 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
579                           Value *&LHS, Value *&RHS) {
580   assert(Op && "Expected a binary operator");
581   LHS = Op->getOperand(0);
582   RHS = Op->getOperand(1);
583   if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
584     Constant *C;
585     if (match(Op, m_Shl(m_Value(), m_Constant(C)))) {
586       // X << C --> X * (1 << C)
587       RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C);
588       return Instruction::Mul;
589     }
590     // TODO: We can add other conversions e.g. shr => div etc.
591   }
592   return Op->getOpcode();
593 }
594 
595 /// This tries to simplify binary operations by factorizing out common terms
596 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
tryFactorization(BinaryOperator & I,Instruction::BinaryOps InnerOpcode,Value * A,Value * B,Value * C,Value * D)597 Value *InstCombinerImpl::tryFactorization(BinaryOperator &I,
598                                           Instruction::BinaryOps InnerOpcode,
599                                           Value *A, Value *B, Value *C,
600                                           Value *D) {
601   assert(A && B && C && D && "All values must be provided");
602 
603   Value *V = nullptr;
604   Value *SimplifiedInst = nullptr;
605   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
606   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
607 
608   // Does "X op' Y" always equal "Y op' X"?
609   bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
610 
611   // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
612   if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode))
613     // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
614     // commutative case, "(A op' B) op (C op' A)"?
615     if (A == C || (InnerCommutative && A == D)) {
616       if (A != C)
617         std::swap(C, D);
618       // Consider forming "A op' (B op D)".
619       // If "B op D" simplifies then it can be formed with no cost.
620       V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
621       // If "B op D" doesn't simplify then only go on if both of the existing
622       // operations "A op' B" and "C op' D" will be zapped as no longer used.
623       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
624         V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
625       if (V) {
626         SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V);
627       }
628     }
629 
630   // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
631   if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
632     // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
633     // commutative case, "(A op' B) op (B op' D)"?
634     if (B == D || (InnerCommutative && B == C)) {
635       if (B != D)
636         std::swap(C, D);
637       // Consider forming "(A op C) op' B".
638       // If "A op C" simplifies then it can be formed with no cost.
639       V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
640 
641       // If "A op C" doesn't simplify then only go on if both of the existing
642       // operations "A op' B" and "C op' D" will be zapped as no longer used.
643       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
644         V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
645       if (V) {
646         SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B);
647       }
648     }
649 
650   if (SimplifiedInst) {
651     ++NumFactor;
652     SimplifiedInst->takeName(&I);
653 
654     // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them.
655     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
656       if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
657         bool HasNSW = false;
658         bool HasNUW = false;
659         if (isa<OverflowingBinaryOperator>(&I)) {
660           HasNSW = I.hasNoSignedWrap();
661           HasNUW = I.hasNoUnsignedWrap();
662         }
663 
664         if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) {
665           HasNSW &= LOBO->hasNoSignedWrap();
666           HasNUW &= LOBO->hasNoUnsignedWrap();
667         }
668 
669         if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) {
670           HasNSW &= ROBO->hasNoSignedWrap();
671           HasNUW &= ROBO->hasNoUnsignedWrap();
672         }
673 
674         if (TopLevelOpcode == Instruction::Add &&
675             InnerOpcode == Instruction::Mul) {
676           // We can propagate 'nsw' if we know that
677           //  %Y = mul nsw i16 %X, C
678           //  %Z = add nsw i16 %Y, %X
679           // =>
680           //  %Z = mul nsw i16 %X, C+1
681           //
682           // iff C+1 isn't INT_MIN
683           const APInt *CInt;
684           if (match(V, m_APInt(CInt))) {
685             if (!CInt->isMinSignedValue())
686               BO->setHasNoSignedWrap(HasNSW);
687           }
688 
689           // nuw can be propagated with any constant or nuw value.
690           BO->setHasNoUnsignedWrap(HasNUW);
691         }
692       }
693     }
694   }
695   return SimplifiedInst;
696 }
697 
698 /// This tries to simplify binary operations which some other binary operation
699 /// distributes over either by factorizing out common terms
700 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
701 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
702 /// Returns the simplified value, or null if it didn't simplify.
SimplifyUsingDistributiveLaws(BinaryOperator & I)703 Value *InstCombinerImpl::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
704   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
705   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
706   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
707   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
708 
709   {
710     // Factorization.
711     Value *A, *B, *C, *D;
712     Instruction::BinaryOps LHSOpcode, RHSOpcode;
713     if (Op0)
714       LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
715     if (Op1)
716       RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
717 
718     // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
719     // a common term.
720     if (Op0 && Op1 && LHSOpcode == RHSOpcode)
721       if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D))
722         return V;
723 
724     // The instruction has the form "(A op' B) op (C)".  Try to factorize common
725     // term.
726     if (Op0)
727       if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
728         if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident))
729           return V;
730 
731     // The instruction has the form "(B) op (C op' D)".  Try to factorize common
732     // term.
733     if (Op1)
734       if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
735         if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D))
736           return V;
737   }
738 
739   // Expansion.
740   if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
741     // The instruction has the form "(A op' B) op C".  See if expanding it out
742     // to "(A op C) op' (B op C)" results in simplifications.
743     Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
744     Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
745 
746     // Disable the use of undef because it's not safe to distribute undef.
747     auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
748     Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
749     Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQDistributive);
750 
751     // Do "A op C" and "B op C" both simplify?
752     if (L && R) {
753       // They do! Return "L op' R".
754       ++NumExpand;
755       C = Builder.CreateBinOp(InnerOpcode, L, R);
756       C->takeName(&I);
757       return C;
758     }
759 
760     // Does "A op C" simplify to the identity value for the inner opcode?
761     if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
762       // They do! Return "B op C".
763       ++NumExpand;
764       C = Builder.CreateBinOp(TopLevelOpcode, B, C);
765       C->takeName(&I);
766       return C;
767     }
768 
769     // Does "B op C" simplify to the identity value for the inner opcode?
770     if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
771       // They do! Return "A op C".
772       ++NumExpand;
773       C = Builder.CreateBinOp(TopLevelOpcode, A, C);
774       C->takeName(&I);
775       return C;
776     }
777   }
778 
779   if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
780     // The instruction has the form "A op (B op' C)".  See if expanding it out
781     // to "(A op B) op' (A op C)" results in simplifications.
782     Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
783     Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
784 
785     // Disable the use of undef because it's not safe to distribute undef.
786     auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
787     Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQDistributive);
788     Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
789 
790     // Do "A op B" and "A op C" both simplify?
791     if (L && R) {
792       // They do! Return "L op' R".
793       ++NumExpand;
794       A = Builder.CreateBinOp(InnerOpcode, L, R);
795       A->takeName(&I);
796       return A;
797     }
798 
799     // Does "A op B" simplify to the identity value for the inner opcode?
800     if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
801       // They do! Return "A op C".
802       ++NumExpand;
803       A = Builder.CreateBinOp(TopLevelOpcode, A, C);
804       A->takeName(&I);
805       return A;
806     }
807 
808     // Does "A op C" simplify to the identity value for the inner opcode?
809     if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
810       // They do! Return "A op B".
811       ++NumExpand;
812       A = Builder.CreateBinOp(TopLevelOpcode, A, B);
813       A->takeName(&I);
814       return A;
815     }
816   }
817 
818   return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
819 }
820 
SimplifySelectsFeedingBinaryOp(BinaryOperator & I,Value * LHS,Value * RHS)821 Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
822                                                         Value *LHS,
823                                                         Value *RHS) {
824   Value *A, *B, *C, *D, *E, *F;
825   bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C)));
826   bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F)));
827   if (!LHSIsSelect && !RHSIsSelect)
828     return nullptr;
829 
830   FastMathFlags FMF;
831   BuilderTy::FastMathFlagGuard Guard(Builder);
832   if (isa<FPMathOperator>(&I)) {
833     FMF = I.getFastMathFlags();
834     Builder.setFastMathFlags(FMF);
835   }
836 
837   Instruction::BinaryOps Opcode = I.getOpcode();
838   SimplifyQuery Q = SQ.getWithInstruction(&I);
839 
840   Value *Cond, *True = nullptr, *False = nullptr;
841   if (LHSIsSelect && RHSIsSelect && A == D) {
842     // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F)
843     Cond = A;
844     True = SimplifyBinOp(Opcode, B, E, FMF, Q);
845     False = SimplifyBinOp(Opcode, C, F, FMF, Q);
846 
847     if (LHS->hasOneUse() && RHS->hasOneUse()) {
848       if (False && !True)
849         True = Builder.CreateBinOp(Opcode, B, E);
850       else if (True && !False)
851         False = Builder.CreateBinOp(Opcode, C, F);
852     }
853   } else if (LHSIsSelect && LHS->hasOneUse()) {
854     // (A ? B : C) op Y -> A ? (B op Y) : (C op Y)
855     Cond = A;
856     True = SimplifyBinOp(Opcode, B, RHS, FMF, Q);
857     False = SimplifyBinOp(Opcode, C, RHS, FMF, Q);
858   } else if (RHSIsSelect && RHS->hasOneUse()) {
859     // X op (D ? E : F) -> D ? (X op E) : (X op F)
860     Cond = D;
861     True = SimplifyBinOp(Opcode, LHS, E, FMF, Q);
862     False = SimplifyBinOp(Opcode, LHS, F, FMF, Q);
863   }
864 
865   if (!True || !False)
866     return nullptr;
867 
868   Value *SI = Builder.CreateSelect(Cond, True, False);
869   SI->takeName(&I);
870   return SI;
871 }
872 
873 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
874 /// constant zero (which is the 'negate' form).
dyn_castNegVal(Value * V) const875 Value *InstCombinerImpl::dyn_castNegVal(Value *V) const {
876   Value *NegV;
877   if (match(V, m_Neg(m_Value(NegV))))
878     return NegV;
879 
880   // Constants can be considered to be negated values if they can be folded.
881   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
882     return ConstantExpr::getNeg(C);
883 
884   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
885     if (C->getType()->getElementType()->isIntegerTy())
886       return ConstantExpr::getNeg(C);
887 
888   if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
889     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
890       Constant *Elt = CV->getAggregateElement(i);
891       if (!Elt)
892         return nullptr;
893 
894       if (isa<UndefValue>(Elt))
895         continue;
896 
897       if (!isa<ConstantInt>(Elt))
898         return nullptr;
899     }
900     return ConstantExpr::getNeg(CV);
901   }
902 
903   return nullptr;
904 }
905 
foldOperationIntoSelectOperand(Instruction & I,Value * SO,InstCombiner::BuilderTy & Builder)906 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO,
907                                              InstCombiner::BuilderTy &Builder) {
908   if (auto *Cast = dyn_cast<CastInst>(&I))
909     return Builder.CreateCast(Cast->getOpcode(), SO, I.getType());
910 
911   assert(I.isBinaryOp() && "Unexpected opcode for select folding");
912 
913   // Figure out if the constant is the left or the right argument.
914   bool ConstIsRHS = isa<Constant>(I.getOperand(1));
915   Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
916 
917   if (auto *SOC = dyn_cast<Constant>(SO)) {
918     if (ConstIsRHS)
919       return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
920     return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
921   }
922 
923   Value *Op0 = SO, *Op1 = ConstOperand;
924   if (!ConstIsRHS)
925     std::swap(Op0, Op1);
926 
927   auto *BO = cast<BinaryOperator>(&I);
928   Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1,
929                                   SO->getName() + ".op");
930   auto *FPInst = dyn_cast<Instruction>(RI);
931   if (FPInst && isa<FPMathOperator>(FPInst))
932     FPInst->copyFastMathFlags(BO);
933   return RI;
934 }
935 
FoldOpIntoSelect(Instruction & Op,SelectInst * SI)936 Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op,
937                                                 SelectInst *SI) {
938   // Don't modify shared select instructions.
939   if (!SI->hasOneUse())
940     return nullptr;
941 
942   Value *TV = SI->getTrueValue();
943   Value *FV = SI->getFalseValue();
944   if (!(isa<Constant>(TV) || isa<Constant>(FV)))
945     return nullptr;
946 
947   // Bool selects with constant operands can be folded to logical ops.
948   if (SI->getType()->isIntOrIntVectorTy(1))
949     return nullptr;
950 
951   // If it's a bitcast involving vectors, make sure it has the same number of
952   // elements on both sides.
953   if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
954     VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
955     VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
956 
957     // Verify that either both or neither are vectors.
958     if ((SrcTy == nullptr) != (DestTy == nullptr))
959       return nullptr;
960 
961     // If vectors, verify that they have the same number of elements.
962     if (SrcTy && cast<FixedVectorType>(SrcTy)->getNumElements() !=
963                      cast<FixedVectorType>(DestTy)->getNumElements())
964       return nullptr;
965   }
966 
967   // Test if a CmpInst instruction is used exclusively by a select as
968   // part of a minimum or maximum operation. If so, refrain from doing
969   // any other folding. This helps out other analyses which understand
970   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
971   // and CodeGen. And in this case, at least one of the comparison
972   // operands has at least one user besides the compare (the select),
973   // which would often largely negate the benefit of folding anyway.
974   if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
975     if (CI->hasOneUse()) {
976       Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
977 
978       // FIXME: This is a hack to avoid infinite looping with min/max patterns.
979       //        We have to ensure that vector constants that only differ with
980       //        undef elements are treated as equivalent.
981       auto areLooselyEqual = [](Value *A, Value *B) {
982         if (A == B)
983           return true;
984 
985         // Test for vector constants.
986         Constant *ConstA, *ConstB;
987         if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB)))
988           return false;
989 
990         // TODO: Deal with FP constants?
991         if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType())
992           return false;
993 
994         // Compare for equality including undefs as equal.
995         auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB);
996         const APInt *C;
997         return match(Cmp, m_APIntAllowUndef(C)) && C->isOneValue();
998       };
999 
1000       if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) ||
1001           (areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1)))
1002         return nullptr;
1003     }
1004   }
1005 
1006   Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder);
1007   Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder);
1008   return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
1009 }
1010 
foldOperationIntoPhiValue(BinaryOperator * I,Value * InV,InstCombiner::BuilderTy & Builder)1011 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV,
1012                                         InstCombiner::BuilderTy &Builder) {
1013   bool ConstIsRHS = isa<Constant>(I->getOperand(1));
1014   Constant *C = cast<Constant>(I->getOperand(ConstIsRHS));
1015 
1016   if (auto *InC = dyn_cast<Constant>(InV)) {
1017     if (ConstIsRHS)
1018       return ConstantExpr::get(I->getOpcode(), InC, C);
1019     return ConstantExpr::get(I->getOpcode(), C, InC);
1020   }
1021 
1022   Value *Op0 = InV, *Op1 = C;
1023   if (!ConstIsRHS)
1024     std::swap(Op0, Op1);
1025 
1026   Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phi.bo");
1027   auto *FPInst = dyn_cast<Instruction>(RI);
1028   if (FPInst && isa<FPMathOperator>(FPInst))
1029     FPInst->copyFastMathFlags(I);
1030   return RI;
1031 }
1032 
foldOpIntoPhi(Instruction & I,PHINode * PN)1033 Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) {
1034   unsigned NumPHIValues = PN->getNumIncomingValues();
1035   if (NumPHIValues == 0)
1036     return nullptr;
1037 
1038   // We normally only transform phis with a single use.  However, if a PHI has
1039   // multiple uses and they are all the same operation, we can fold *all* of the
1040   // uses into the PHI.
1041   if (!PN->hasOneUse()) {
1042     // Walk the use list for the instruction, comparing them to I.
1043     for (User *U : PN->users()) {
1044       Instruction *UI = cast<Instruction>(U);
1045       if (UI != &I && !I.isIdenticalTo(UI))
1046         return nullptr;
1047     }
1048     // Otherwise, we can replace *all* users with the new PHI we form.
1049   }
1050 
1051   // Check to see if all of the operands of the PHI are simple constants
1052   // (constantint/constantfp/undef).  If there is one non-constant value,
1053   // remember the BB it is in.  If there is more than one or if *it* is a PHI,
1054   // bail out.  We don't do arbitrary constant expressions here because moving
1055   // their computation can be expensive without a cost model.
1056   BasicBlock *NonConstBB = nullptr;
1057   for (unsigned i = 0; i != NumPHIValues; ++i) {
1058     Value *InVal = PN->getIncomingValue(i);
1059     // If I is a freeze instruction, count undef as a non-constant.
1060     if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal) &&
1061         (!isa<FreezeInst>(I) || isGuaranteedNotToBeUndefOrPoison(InVal)))
1062       continue;
1063 
1064     if (isa<PHINode>(InVal)) return nullptr;  // Itself a phi.
1065     if (NonConstBB) return nullptr;  // More than one non-const value.
1066 
1067     NonConstBB = PN->getIncomingBlock(i);
1068 
1069     // If the InVal is an invoke at the end of the pred block, then we can't
1070     // insert a computation after it without breaking the edge.
1071     if (isa<InvokeInst>(InVal))
1072       if (cast<Instruction>(InVal)->getParent() == NonConstBB)
1073         return nullptr;
1074 
1075     // If the incoming non-constant value is in I's block, we will remove one
1076     // instruction, but insert another equivalent one, leading to infinite
1077     // instcombine.
1078     if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI))
1079       return nullptr;
1080   }
1081 
1082   // If there is exactly one non-constant value, we can insert a copy of the
1083   // operation in that block.  However, if this is a critical edge, we would be
1084   // inserting the computation on some other paths (e.g. inside a loop).  Only
1085   // do this if the pred block is unconditionally branching into the phi block.
1086   // Also, make sure that the pred block is not dead code.
1087   if (NonConstBB != nullptr) {
1088     BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1089     if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(NonConstBB))
1090       return nullptr;
1091   }
1092 
1093   // Okay, we can do the transformation: create the new PHI node.
1094   PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
1095   InsertNewInstBefore(NewPN, *PN);
1096   NewPN->takeName(PN);
1097 
1098   // If we are going to have to insert a new computation, do so right before the
1099   // predecessor's terminator.
1100   if (NonConstBB)
1101     Builder.SetInsertPoint(NonConstBB->getTerminator());
1102 
1103   // Next, add all of the operands to the PHI.
1104   if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
1105     // We only currently try to fold the condition of a select when it is a phi,
1106     // not the true/false values.
1107     Value *TrueV = SI->getTrueValue();
1108     Value *FalseV = SI->getFalseValue();
1109     BasicBlock *PhiTransBB = PN->getParent();
1110     for (unsigned i = 0; i != NumPHIValues; ++i) {
1111       BasicBlock *ThisBB = PN->getIncomingBlock(i);
1112       Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
1113       Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
1114       Value *InV = nullptr;
1115       // Beware of ConstantExpr:  it may eventually evaluate to getNullValue,
1116       // even if currently isNullValue gives false.
1117       Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
1118       // For vector constants, we cannot use isNullValue to fold into
1119       // FalseVInPred versus TrueVInPred. When we have individual nonzero
1120       // elements in the vector, we will incorrectly fold InC to
1121       // `TrueVInPred`.
1122       if (InC && !isa<ConstantExpr>(InC) && isa<ConstantInt>(InC))
1123         InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
1124       else {
1125         // Generate the select in the same block as PN's current incoming block.
1126         // Note: ThisBB need not be the NonConstBB because vector constants
1127         // which are constants by definition are handled here.
1128         // FIXME: This can lead to an increase in IR generation because we might
1129         // generate selects for vector constant phi operand, that could not be
1130         // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For
1131         // non-vector phis, this transformation was always profitable because
1132         // the select would be generated exactly once in the NonConstBB.
1133         Builder.SetInsertPoint(ThisBB->getTerminator());
1134         InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred,
1135                                    FalseVInPred, "phi.sel");
1136       }
1137       NewPN->addIncoming(InV, ThisBB);
1138     }
1139   } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
1140     Constant *C = cast<Constant>(I.getOperand(1));
1141     for (unsigned i = 0; i != NumPHIValues; ++i) {
1142       Value *InV = nullptr;
1143       if (auto *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1144         InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1145       else
1146         InV = Builder.CreateCmp(CI->getPredicate(), PN->getIncomingValue(i),
1147                                 C, "phi.cmp");
1148       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1149     }
1150   } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) {
1151     for (unsigned i = 0; i != NumPHIValues; ++i) {
1152       Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i),
1153                                              Builder);
1154       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1155     }
1156   } else if (isa<FreezeInst>(&I)) {
1157     for (unsigned i = 0; i != NumPHIValues; ++i) {
1158       Value *InV;
1159       if (NonConstBB == PN->getIncomingBlock(i))
1160         InV = Builder.CreateFreeze(PN->getIncomingValue(i), "phi.fr");
1161       else
1162         InV = PN->getIncomingValue(i);
1163       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1164     }
1165   } else {
1166     CastInst *CI = cast<CastInst>(&I);
1167     Type *RetTy = CI->getType();
1168     for (unsigned i = 0; i != NumPHIValues; ++i) {
1169       Value *InV;
1170       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1171         InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1172       else
1173         InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i),
1174                                  I.getType(), "phi.cast");
1175       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1176     }
1177   }
1178 
1179   for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1180     Instruction *User = cast<Instruction>(*UI++);
1181     if (User == &I) continue;
1182     replaceInstUsesWith(*User, NewPN);
1183     eraseInstFromFunction(*User);
1184   }
1185   return replaceInstUsesWith(I, NewPN);
1186 }
1187 
foldBinOpIntoSelectOrPhi(BinaryOperator & I)1188 Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
1189   if (!isa<Constant>(I.getOperand(1)))
1190     return nullptr;
1191 
1192   if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
1193     if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
1194       return NewSel;
1195   } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
1196     if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
1197       return NewPhi;
1198   }
1199   return nullptr;
1200 }
1201 
1202 /// Given a pointer type and a constant offset, determine whether or not there
1203 /// is a sequence of GEP indices into the pointed type that will land us at the
1204 /// specified offset. If so, fill them into NewIndices and return the resultant
1205 /// element type, otherwise return null.
1206 Type *
FindElementAtOffset(PointerType * PtrTy,int64_t Offset,SmallVectorImpl<Value * > & NewIndices)1207 InstCombinerImpl::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
1208                                       SmallVectorImpl<Value *> &NewIndices) {
1209   Type *Ty = PtrTy->getElementType();
1210   if (!Ty->isSized())
1211     return nullptr;
1212 
1213   // Start with the index over the outer type.  Note that the type size
1214   // might be zero (even if the offset isn't zero) if the indexed type
1215   // is something like [0 x {int, int}]
1216   Type *IndexTy = DL.getIndexType(PtrTy);
1217   int64_t FirstIdx = 0;
1218   if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
1219     FirstIdx = Offset/TySize;
1220     Offset -= FirstIdx*TySize;
1221 
1222     // Handle hosts where % returns negative instead of values [0..TySize).
1223     if (Offset < 0) {
1224       --FirstIdx;
1225       Offset += TySize;
1226       assert(Offset >= 0);
1227     }
1228     assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
1229   }
1230 
1231   NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx));
1232 
1233   // Index into the types.  If we fail, set OrigBase to null.
1234   while (Offset) {
1235     // Indexing into tail padding between struct/array elements.
1236     if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
1237       return nullptr;
1238 
1239     if (StructType *STy = dyn_cast<StructType>(Ty)) {
1240       const StructLayout *SL = DL.getStructLayout(STy);
1241       assert(Offset < (int64_t)SL->getSizeInBytes() &&
1242              "Offset must stay within the indexed type");
1243 
1244       unsigned Elt = SL->getElementContainingOffset(Offset);
1245       NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
1246                                             Elt));
1247 
1248       Offset -= SL->getElementOffset(Elt);
1249       Ty = STy->getElementType(Elt);
1250     } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
1251       uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
1252       assert(EltSize && "Cannot index into a zero-sized array");
1253       NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize));
1254       Offset %= EltSize;
1255       Ty = AT->getElementType();
1256     } else {
1257       // Otherwise, we can't index into the middle of this atomic type, bail.
1258       return nullptr;
1259     }
1260   }
1261 
1262   return Ty;
1263 }
1264 
shouldMergeGEPs(GEPOperator & GEP,GEPOperator & Src)1265 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
1266   // If this GEP has only 0 indices, it is the same pointer as
1267   // Src. If Src is not a trivial GEP too, don't combine
1268   // the indices.
1269   if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
1270       !Src.hasOneUse())
1271     return false;
1272   return true;
1273 }
1274 
1275 /// Return a value X such that Val = X * Scale, or null if none.
1276 /// If the multiplication is known not to overflow, then NoSignedWrap is set.
Descale(Value * Val,APInt Scale,bool & NoSignedWrap)1277 Value *InstCombinerImpl::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
1278   assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
1279   assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
1280          Scale.getBitWidth() && "Scale not compatible with value!");
1281 
1282   // If Val is zero or Scale is one then Val = Val * Scale.
1283   if (match(Val, m_Zero()) || Scale == 1) {
1284     NoSignedWrap = true;
1285     return Val;
1286   }
1287 
1288   // If Scale is zero then it does not divide Val.
1289   if (Scale.isMinValue())
1290     return nullptr;
1291 
1292   // Look through chains of multiplications, searching for a constant that is
1293   // divisible by Scale.  For example, descaling X*(Y*(Z*4)) by a factor of 4
1294   // will find the constant factor 4 and produce X*(Y*Z).  Descaling X*(Y*8) by
1295   // a factor of 4 will produce X*(Y*2).  The principle of operation is to bore
1296   // down from Val:
1297   //
1298   //     Val = M1 * X          ||   Analysis starts here and works down
1299   //      M1 = M2 * Y          ||   Doesn't descend into terms with more
1300   //      M2 =  Z * 4          \/   than one use
1301   //
1302   // Then to modify a term at the bottom:
1303   //
1304   //     Val = M1 * X
1305   //      M1 =  Z * Y          ||   Replaced M2 with Z
1306   //
1307   // Then to work back up correcting nsw flags.
1308 
1309   // Op - the term we are currently analyzing.  Starts at Val then drills down.
1310   // Replaced with its descaled value before exiting from the drill down loop.
1311   Value *Op = Val;
1312 
1313   // Parent - initially null, but after drilling down notes where Op came from.
1314   // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
1315   // 0'th operand of Val.
1316   std::pair<Instruction *, unsigned> Parent;
1317 
1318   // Set if the transform requires a descaling at deeper levels that doesn't
1319   // overflow.
1320   bool RequireNoSignedWrap = false;
1321 
1322   // Log base 2 of the scale. Negative if not a power of 2.
1323   int32_t logScale = Scale.exactLogBase2();
1324 
1325   for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
1326     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1327       // If Op is a constant divisible by Scale then descale to the quotient.
1328       APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
1329       APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
1330       if (!Remainder.isMinValue())
1331         // Not divisible by Scale.
1332         return nullptr;
1333       // Replace with the quotient in the parent.
1334       Op = ConstantInt::get(CI->getType(), Quotient);
1335       NoSignedWrap = true;
1336       break;
1337     }
1338 
1339     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
1340       if (BO->getOpcode() == Instruction::Mul) {
1341         // Multiplication.
1342         NoSignedWrap = BO->hasNoSignedWrap();
1343         if (RequireNoSignedWrap && !NoSignedWrap)
1344           return nullptr;
1345 
1346         // There are three cases for multiplication: multiplication by exactly
1347         // the scale, multiplication by a constant different to the scale, and
1348         // multiplication by something else.
1349         Value *LHS = BO->getOperand(0);
1350         Value *RHS = BO->getOperand(1);
1351 
1352         if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1353           // Multiplication by a constant.
1354           if (CI->getValue() == Scale) {
1355             // Multiplication by exactly the scale, replace the multiplication
1356             // by its left-hand side in the parent.
1357             Op = LHS;
1358             break;
1359           }
1360 
1361           // Otherwise drill down into the constant.
1362           if (!Op->hasOneUse())
1363             return nullptr;
1364 
1365           Parent = std::make_pair(BO, 1);
1366           continue;
1367         }
1368 
1369         // Multiplication by something else. Drill down into the left-hand side
1370         // since that's where the reassociate pass puts the good stuff.
1371         if (!Op->hasOneUse())
1372           return nullptr;
1373 
1374         Parent = std::make_pair(BO, 0);
1375         continue;
1376       }
1377 
1378       if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
1379           isa<ConstantInt>(BO->getOperand(1))) {
1380         // Multiplication by a power of 2.
1381         NoSignedWrap = BO->hasNoSignedWrap();
1382         if (RequireNoSignedWrap && !NoSignedWrap)
1383           return nullptr;
1384 
1385         Value *LHS = BO->getOperand(0);
1386         int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
1387           getLimitedValue(Scale.getBitWidth());
1388         // Op = LHS << Amt.
1389 
1390         if (Amt == logScale) {
1391           // Multiplication by exactly the scale, replace the multiplication
1392           // by its left-hand side in the parent.
1393           Op = LHS;
1394           break;
1395         }
1396         if (Amt < logScale || !Op->hasOneUse())
1397           return nullptr;
1398 
1399         // Multiplication by more than the scale.  Reduce the multiplying amount
1400         // by the scale in the parent.
1401         Parent = std::make_pair(BO, 1);
1402         Op = ConstantInt::get(BO->getType(), Amt - logScale);
1403         break;
1404       }
1405     }
1406 
1407     if (!Op->hasOneUse())
1408       return nullptr;
1409 
1410     if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
1411       if (Cast->getOpcode() == Instruction::SExt) {
1412         // Op is sign-extended from a smaller type, descale in the smaller type.
1413         unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1414         APInt SmallScale = Scale.trunc(SmallSize);
1415         // Suppose Op = sext X, and we descale X as Y * SmallScale.  We want to
1416         // descale Op as (sext Y) * Scale.  In order to have
1417         //   sext (Y * SmallScale) = (sext Y) * Scale
1418         // some conditions need to hold however: SmallScale must sign-extend to
1419         // Scale and the multiplication Y * SmallScale should not overflow.
1420         if (SmallScale.sext(Scale.getBitWidth()) != Scale)
1421           // SmallScale does not sign-extend to Scale.
1422           return nullptr;
1423         assert(SmallScale.exactLogBase2() == logScale);
1424         // Require that Y * SmallScale must not overflow.
1425         RequireNoSignedWrap = true;
1426 
1427         // Drill down through the cast.
1428         Parent = std::make_pair(Cast, 0);
1429         Scale = SmallScale;
1430         continue;
1431       }
1432 
1433       if (Cast->getOpcode() == Instruction::Trunc) {
1434         // Op is truncated from a larger type, descale in the larger type.
1435         // Suppose Op = trunc X, and we descale X as Y * sext Scale.  Then
1436         //   trunc (Y * sext Scale) = (trunc Y) * Scale
1437         // always holds.  However (trunc Y) * Scale may overflow even if
1438         // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1439         // from this point up in the expression (see later).
1440         if (RequireNoSignedWrap)
1441           return nullptr;
1442 
1443         // Drill down through the cast.
1444         unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1445         Parent = std::make_pair(Cast, 0);
1446         Scale = Scale.sext(LargeSize);
1447         if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1448           logScale = -1;
1449         assert(Scale.exactLogBase2() == logScale);
1450         continue;
1451       }
1452     }
1453 
1454     // Unsupported expression, bail out.
1455     return nullptr;
1456   }
1457 
1458   // If Op is zero then Val = Op * Scale.
1459   if (match(Op, m_Zero())) {
1460     NoSignedWrap = true;
1461     return Op;
1462   }
1463 
1464   // We know that we can successfully descale, so from here on we can safely
1465   // modify the IR.  Op holds the descaled version of the deepest term in the
1466   // expression.  NoSignedWrap is 'true' if multiplying Op by Scale is known
1467   // not to overflow.
1468 
1469   if (!Parent.first)
1470     // The expression only had one term.
1471     return Op;
1472 
1473   // Rewrite the parent using the descaled version of its operand.
1474   assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1475   assert(Op != Parent.first->getOperand(Parent.second) &&
1476          "Descaling was a no-op?");
1477   replaceOperand(*Parent.first, Parent.second, Op);
1478   Worklist.push(Parent.first);
1479 
1480   // Now work back up the expression correcting nsw flags.  The logic is based
1481   // on the following observation: if X * Y is known not to overflow as a signed
1482   // multiplication, and Y is replaced by a value Z with smaller absolute value,
1483   // then X * Z will not overflow as a signed multiplication either.  As we work
1484   // our way up, having NoSignedWrap 'true' means that the descaled value at the
1485   // current level has strictly smaller absolute value than the original.
1486   Instruction *Ancestor = Parent.first;
1487   do {
1488     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1489       // If the multiplication wasn't nsw then we can't say anything about the
1490       // value of the descaled multiplication, and we have to clear nsw flags
1491       // from this point on up.
1492       bool OpNoSignedWrap = BO->hasNoSignedWrap();
1493       NoSignedWrap &= OpNoSignedWrap;
1494       if (NoSignedWrap != OpNoSignedWrap) {
1495         BO->setHasNoSignedWrap(NoSignedWrap);
1496         Worklist.push(Ancestor);
1497       }
1498     } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1499       // The fact that the descaled input to the trunc has smaller absolute
1500       // value than the original input doesn't tell us anything useful about
1501       // the absolute values of the truncations.
1502       NoSignedWrap = false;
1503     }
1504     assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1505            "Failed to keep proper track of nsw flags while drilling down?");
1506 
1507     if (Ancestor == Val)
1508       // Got to the top, all done!
1509       return Val;
1510 
1511     // Move up one level in the expression.
1512     assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1513     Ancestor = Ancestor->user_back();
1514   } while (true);
1515 }
1516 
foldVectorBinop(BinaryOperator & Inst)1517 Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) {
1518   // FIXME: some of this is likely fine for scalable vectors
1519   if (!isa<FixedVectorType>(Inst.getType()))
1520     return nullptr;
1521 
1522   BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
1523   Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1524   assert(cast<VectorType>(LHS->getType())->getElementCount() ==
1525          cast<VectorType>(Inst.getType())->getElementCount());
1526   assert(cast<VectorType>(RHS->getType())->getElementCount() ==
1527          cast<VectorType>(Inst.getType())->getElementCount());
1528 
1529   // If both operands of the binop are vector concatenations, then perform the
1530   // narrow binop on each pair of the source operands followed by concatenation
1531   // of the results.
1532   Value *L0, *L1, *R0, *R1;
1533   ArrayRef<int> Mask;
1534   if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) &&
1535       match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) &&
1536       LHS->hasOneUse() && RHS->hasOneUse() &&
1537       cast<ShuffleVectorInst>(LHS)->isConcat() &&
1538       cast<ShuffleVectorInst>(RHS)->isConcat()) {
1539     // This transform does not have the speculative execution constraint as
1540     // below because the shuffle is a concatenation. The new binops are
1541     // operating on exactly the same elements as the existing binop.
1542     // TODO: We could ease the mask requirement to allow different undef lanes,
1543     //       but that requires an analysis of the binop-with-undef output value.
1544     Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
1545     if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
1546       BO->copyIRFlags(&Inst);
1547     Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
1548     if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
1549       BO->copyIRFlags(&Inst);
1550     return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
1551   }
1552 
1553   // It may not be safe to reorder shuffles and things like div, urem, etc.
1554   // because we may trap when executing those ops on unknown vector elements.
1555   // See PR20059.
1556   if (!isSafeToSpeculativelyExecute(&Inst))
1557     return nullptr;
1558 
1559   auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) {
1560     Value *XY = Builder.CreateBinOp(Opcode, X, Y);
1561     if (auto *BO = dyn_cast<BinaryOperator>(XY))
1562       BO->copyIRFlags(&Inst);
1563     return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M);
1564   };
1565 
1566   // If both arguments of the binary operation are shuffles that use the same
1567   // mask and shuffle within a single vector, move the shuffle after the binop.
1568   Value *V1, *V2;
1569   if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) &&
1570       match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) &&
1571       V1->getType() == V2->getType() &&
1572       (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
1573     // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
1574     return createBinOpShuffle(V1, V2, Mask);
1575   }
1576 
1577   // If both arguments of a commutative binop are select-shuffles that use the
1578   // same mask with commuted operands, the shuffles are unnecessary.
1579   if (Inst.isCommutative() &&
1580       match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) &&
1581       match(RHS,
1582             m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) {
1583     auto *LShuf = cast<ShuffleVectorInst>(LHS);
1584     auto *RShuf = cast<ShuffleVectorInst>(RHS);
1585     // TODO: Allow shuffles that contain undefs in the mask?
1586     //       That is legal, but it reduces undef knowledge.
1587     // TODO: Allow arbitrary shuffles by shuffling after binop?
1588     //       That might be legal, but we have to deal with poison.
1589     if (LShuf->isSelect() &&
1590         !is_contained(LShuf->getShuffleMask(), UndefMaskElem) &&
1591         RShuf->isSelect() &&
1592         !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) {
1593       // Example:
1594       // LHS = shuffle V1, V2, <0, 5, 6, 3>
1595       // RHS = shuffle V2, V1, <0, 5, 6, 3>
1596       // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
1597       Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
1598       NewBO->copyIRFlags(&Inst);
1599       return NewBO;
1600     }
1601   }
1602 
1603   // If one argument is a shuffle within one vector and the other is a constant,
1604   // try moving the shuffle after the binary operation. This canonicalization
1605   // intends to move shuffles closer to other shuffles and binops closer to
1606   // other binops, so they can be folded. It may also enable demanded elements
1607   // transforms.
1608   unsigned NumElts = cast<FixedVectorType>(Inst.getType())->getNumElements();
1609   Constant *C;
1610   if (match(&Inst,
1611             m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))),
1612                       m_Constant(C))) && !isa<ConstantExpr>(C) &&
1613       cast<FixedVectorType>(V1->getType())->getNumElements() <= NumElts) {
1614     assert(Inst.getType()->getScalarType() == V1->getType()->getScalarType() &&
1615            "Shuffle should not change scalar type");
1616 
1617     // Find constant NewC that has property:
1618     //   shuffle(NewC, ShMask) = C
1619     // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
1620     // reorder is not possible. A 1-to-1 mapping is not required. Example:
1621     // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
1622     bool ConstOp1 = isa<Constant>(RHS);
1623     ArrayRef<int> ShMask = Mask;
1624     unsigned SrcVecNumElts =
1625         cast<FixedVectorType>(V1->getType())->getNumElements();
1626     UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType());
1627     SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar);
1628     bool MayChange = true;
1629     for (unsigned I = 0; I < NumElts; ++I) {
1630       Constant *CElt = C->getAggregateElement(I);
1631       if (ShMask[I] >= 0) {
1632         assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
1633         Constant *NewCElt = NewVecC[ShMask[I]];
1634         // Bail out if:
1635         // 1. The constant vector contains a constant expression.
1636         // 2. The shuffle needs an element of the constant vector that can't
1637         //    be mapped to a new constant vector.
1638         // 3. This is a widening shuffle that copies elements of V1 into the
1639         //    extended elements (extending with undef is allowed).
1640         if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) ||
1641             I >= SrcVecNumElts) {
1642           MayChange = false;
1643           break;
1644         }
1645         NewVecC[ShMask[I]] = CElt;
1646       }
1647       // If this is a widening shuffle, we must be able to extend with undef
1648       // elements. If the original binop does not produce an undef in the high
1649       // lanes, then this transform is not safe.
1650       // Similarly for undef lanes due to the shuffle mask, we can only
1651       // transform binops that preserve undef.
1652       // TODO: We could shuffle those non-undef constant values into the
1653       //       result by using a constant vector (rather than an undef vector)
1654       //       as operand 1 of the new binop, but that might be too aggressive
1655       //       for target-independent shuffle creation.
1656       if (I >= SrcVecNumElts || ShMask[I] < 0) {
1657         Constant *MaybeUndef =
1658             ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt)
1659                      : ConstantExpr::get(Opcode, CElt, UndefScalar);
1660         if (!isa<UndefValue>(MaybeUndef)) {
1661           MayChange = false;
1662           break;
1663         }
1664       }
1665     }
1666     if (MayChange) {
1667       Constant *NewC = ConstantVector::get(NewVecC);
1668       // It may not be safe to execute a binop on a vector with undef elements
1669       // because the entire instruction can be folded to undef or create poison
1670       // that did not exist in the original code.
1671       if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
1672         NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
1673 
1674       // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
1675       // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
1676       Value *NewLHS = ConstOp1 ? V1 : NewC;
1677       Value *NewRHS = ConstOp1 ? NewC : V1;
1678       return createBinOpShuffle(NewLHS, NewRHS, Mask);
1679     }
1680   }
1681 
1682   // Try to reassociate to sink a splat shuffle after a binary operation.
1683   if (Inst.isAssociative() && Inst.isCommutative()) {
1684     // Canonicalize shuffle operand as LHS.
1685     if (isa<ShuffleVectorInst>(RHS))
1686       std::swap(LHS, RHS);
1687 
1688     Value *X;
1689     ArrayRef<int> MaskC;
1690     int SplatIndex;
1691     BinaryOperator *BO;
1692     if (!match(LHS,
1693                m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) ||
1694         !match(MaskC, m_SplatOrUndefMask(SplatIndex)) ||
1695         X->getType() != Inst.getType() || !match(RHS, m_OneUse(m_BinOp(BO))) ||
1696         BO->getOpcode() != Opcode)
1697       return nullptr;
1698 
1699     // FIXME: This may not be safe if the analysis allows undef elements. By
1700     //        moving 'Y' before the splat shuffle, we are implicitly assuming
1701     //        that it is not undef/poison at the splat index.
1702     Value *Y, *OtherOp;
1703     if (isSplatValue(BO->getOperand(0), SplatIndex)) {
1704       Y = BO->getOperand(0);
1705       OtherOp = BO->getOperand(1);
1706     } else if (isSplatValue(BO->getOperand(1), SplatIndex)) {
1707       Y = BO->getOperand(1);
1708       OtherOp = BO->getOperand(0);
1709     } else {
1710       return nullptr;
1711     }
1712 
1713     // X and Y are splatted values, so perform the binary operation on those
1714     // values followed by a splat followed by the 2nd binary operation:
1715     // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp
1716     Value *NewBO = Builder.CreateBinOp(Opcode, X, Y);
1717     SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex);
1718     Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask);
1719     Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp);
1720 
1721     // Intersect FMF on both new binops. Other (poison-generating) flags are
1722     // dropped to be safe.
1723     if (isa<FPMathOperator>(R)) {
1724       R->copyFastMathFlags(&Inst);
1725       R->andIRFlags(BO);
1726     }
1727     if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO))
1728       NewInstBO->copyIRFlags(R);
1729     return R;
1730   }
1731 
1732   return nullptr;
1733 }
1734 
1735 /// Try to narrow the width of a binop if at least 1 operand is an extend of
1736 /// of a value. This requires a potentially expensive known bits check to make
1737 /// sure the narrow op does not overflow.
narrowMathIfNoOverflow(BinaryOperator & BO)1738 Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) {
1739   // We need at least one extended operand.
1740   Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
1741 
1742   // If this is a sub, we swap the operands since we always want an extension
1743   // on the RHS. The LHS can be an extension or a constant.
1744   if (BO.getOpcode() == Instruction::Sub)
1745     std::swap(Op0, Op1);
1746 
1747   Value *X;
1748   bool IsSext = match(Op0, m_SExt(m_Value(X)));
1749   if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
1750     return nullptr;
1751 
1752   // If both operands are the same extension from the same source type and we
1753   // can eliminate at least one (hasOneUse), this might work.
1754   CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
1755   Value *Y;
1756   if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
1757         cast<Operator>(Op1)->getOpcode() == CastOpc &&
1758         (Op0->hasOneUse() || Op1->hasOneUse()))) {
1759     // If that did not match, see if we have a suitable constant operand.
1760     // Truncating and extending must produce the same constant.
1761     Constant *WideC;
1762     if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
1763       return nullptr;
1764     Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType());
1765     if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC)
1766       return nullptr;
1767     Y = NarrowC;
1768   }
1769 
1770   // Swap back now that we found our operands.
1771   if (BO.getOpcode() == Instruction::Sub)
1772     std::swap(X, Y);
1773 
1774   // Both operands have narrow versions. Last step: the math must not overflow
1775   // in the narrow width.
1776   if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
1777     return nullptr;
1778 
1779   // bo (ext X), (ext Y) --> ext (bo X, Y)
1780   // bo (ext X), C       --> ext (bo X, C')
1781   Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
1782   if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
1783     if (IsSext)
1784       NewBinOp->setHasNoSignedWrap();
1785     else
1786       NewBinOp->setHasNoUnsignedWrap();
1787   }
1788   return CastInst::Create(CastOpc, NarrowBO, BO.getType());
1789 }
1790 
isMergedGEPInBounds(GEPOperator & GEP1,GEPOperator & GEP2)1791 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) {
1792   // At least one GEP must be inbounds.
1793   if (!GEP1.isInBounds() && !GEP2.isInBounds())
1794     return false;
1795 
1796   return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) &&
1797          (GEP2.isInBounds() || GEP2.hasAllZeroIndices());
1798 }
1799 
1800 /// Thread a GEP operation with constant indices through the constant true/false
1801 /// arms of a select.
foldSelectGEP(GetElementPtrInst & GEP,InstCombiner::BuilderTy & Builder)1802 static Instruction *foldSelectGEP(GetElementPtrInst &GEP,
1803                                   InstCombiner::BuilderTy &Builder) {
1804   if (!GEP.hasAllConstantIndices())
1805     return nullptr;
1806 
1807   Instruction *Sel;
1808   Value *Cond;
1809   Constant *TrueC, *FalseC;
1810   if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) ||
1811       !match(Sel,
1812              m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC))))
1813     return nullptr;
1814 
1815   // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC'
1816   // Propagate 'inbounds' and metadata from existing instructions.
1817   // Note: using IRBuilder to create the constants for efficiency.
1818   SmallVector<Value *, 4> IndexC(GEP.idx_begin(), GEP.idx_end());
1819   bool IsInBounds = GEP.isInBounds();
1820   Value *NewTrueC = IsInBounds ? Builder.CreateInBoundsGEP(TrueC, IndexC)
1821                                : Builder.CreateGEP(TrueC, IndexC);
1822   Value *NewFalseC = IsInBounds ? Builder.CreateInBoundsGEP(FalseC, IndexC)
1823                                 : Builder.CreateGEP(FalseC, IndexC);
1824   return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel);
1825 }
1826 
visitGetElementPtrInst(GetElementPtrInst & GEP)1827 Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1828   SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
1829   Type *GEPType = GEP.getType();
1830   Type *GEPEltType = GEP.getSourceElementType();
1831   bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType);
1832   if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP)))
1833     return replaceInstUsesWith(GEP, V);
1834 
1835   // For vector geps, use the generic demanded vector support.
1836   // Skip if GEP return type is scalable. The number of elements is unknown at
1837   // compile-time.
1838   if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) {
1839     auto VWidth = GEPFVTy->getNumElements();
1840     APInt UndefElts(VWidth, 0);
1841     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1842     if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
1843                                               UndefElts)) {
1844       if (V != &GEP)
1845         return replaceInstUsesWith(GEP, V);
1846       return &GEP;
1847     }
1848 
1849     // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if
1850     // possible (decide on canonical form for pointer broadcast), 3) exploit
1851     // undef elements to decrease demanded bits
1852   }
1853 
1854   Value *PtrOp = GEP.getOperand(0);
1855 
1856   // Eliminate unneeded casts for indices, and replace indices which displace
1857   // by multiples of a zero size type with zero.
1858   bool MadeChange = false;
1859 
1860   // Index width may not be the same width as pointer width.
1861   // Data layout chooses the right type based on supported integer types.
1862   Type *NewScalarIndexTy =
1863       DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
1864 
1865   gep_type_iterator GTI = gep_type_begin(GEP);
1866   for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
1867        ++I, ++GTI) {
1868     // Skip indices into struct types.
1869     if (GTI.isStruct())
1870       continue;
1871 
1872     Type *IndexTy = (*I)->getType();
1873     Type *NewIndexType =
1874         IndexTy->isVectorTy()
1875             ? VectorType::get(NewScalarIndexTy,
1876                               cast<VectorType>(IndexTy)->getElementCount())
1877             : NewScalarIndexTy;
1878 
1879     // If the element type has zero size then any index over it is equivalent
1880     // to an index of zero, so replace it with zero if it is not zero already.
1881     Type *EltTy = GTI.getIndexedType();
1882     if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero())
1883       if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) {
1884         *I = Constant::getNullValue(NewIndexType);
1885         MadeChange = true;
1886       }
1887 
1888     if (IndexTy != NewIndexType) {
1889       // If we are using a wider index than needed for this platform, shrink
1890       // it to what we need.  If narrower, sign-extend it to what we need.
1891       // This explicit cast can make subsequent optimizations more obvious.
1892       *I = Builder.CreateIntCast(*I, NewIndexType, true);
1893       MadeChange = true;
1894     }
1895   }
1896   if (MadeChange)
1897     return &GEP;
1898 
1899   // Check to see if the inputs to the PHI node are getelementptr instructions.
1900   if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
1901     auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
1902     if (!Op1)
1903       return nullptr;
1904 
1905     // Don't fold a GEP into itself through a PHI node. This can only happen
1906     // through the back-edge of a loop. Folding a GEP into itself means that
1907     // the value of the previous iteration needs to be stored in the meantime,
1908     // thus requiring an additional register variable to be live, but not
1909     // actually achieving anything (the GEP still needs to be executed once per
1910     // loop iteration).
1911     if (Op1 == &GEP)
1912       return nullptr;
1913 
1914     int DI = -1;
1915 
1916     for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
1917       auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
1918       if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
1919         return nullptr;
1920 
1921       // As for Op1 above, don't try to fold a GEP into itself.
1922       if (Op2 == &GEP)
1923         return nullptr;
1924 
1925       // Keep track of the type as we walk the GEP.
1926       Type *CurTy = nullptr;
1927 
1928       for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
1929         if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
1930           return nullptr;
1931 
1932         if (Op1->getOperand(J) != Op2->getOperand(J)) {
1933           if (DI == -1) {
1934             // We have not seen any differences yet in the GEPs feeding the
1935             // PHI yet, so we record this one if it is allowed to be a
1936             // variable.
1937 
1938             // The first two arguments can vary for any GEP, the rest have to be
1939             // static for struct slots
1940             if (J > 1) {
1941               assert(CurTy && "No current type?");
1942               if (CurTy->isStructTy())
1943                 return nullptr;
1944             }
1945 
1946             DI = J;
1947           } else {
1948             // The GEP is different by more than one input. While this could be
1949             // extended to support GEPs that vary by more than one variable it
1950             // doesn't make sense since it greatly increases the complexity and
1951             // would result in an R+R+R addressing mode which no backend
1952             // directly supports and would need to be broken into several
1953             // simpler instructions anyway.
1954             return nullptr;
1955           }
1956         }
1957 
1958         // Sink down a layer of the type for the next iteration.
1959         if (J > 0) {
1960           if (J == 1) {
1961             CurTy = Op1->getSourceElementType();
1962           } else {
1963             CurTy =
1964                 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J));
1965           }
1966         }
1967       }
1968     }
1969 
1970     // If not all GEPs are identical we'll have to create a new PHI node.
1971     // Check that the old PHI node has only one use so that it will get
1972     // removed.
1973     if (DI != -1 && !PN->hasOneUse())
1974       return nullptr;
1975 
1976     auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
1977     if (DI == -1) {
1978       // All the GEPs feeding the PHI are identical. Clone one down into our
1979       // BB so that it can be merged with the current GEP.
1980     } else {
1981       // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
1982       // into the current block so it can be merged, and create a new PHI to
1983       // set that index.
1984       PHINode *NewPN;
1985       {
1986         IRBuilderBase::InsertPointGuard Guard(Builder);
1987         Builder.SetInsertPoint(PN);
1988         NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
1989                                   PN->getNumOperands());
1990       }
1991 
1992       for (auto &I : PN->operands())
1993         NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
1994                            PN->getIncomingBlock(I));
1995 
1996       NewGEP->setOperand(DI, NewPN);
1997     }
1998 
1999     GEP.getParent()->getInstList().insert(
2000         GEP.getParent()->getFirstInsertionPt(), NewGEP);
2001     replaceOperand(GEP, 0, NewGEP);
2002     PtrOp = NewGEP;
2003   }
2004 
2005   // Combine Indices - If the source pointer to this getelementptr instruction
2006   // is a getelementptr instruction, combine the indices of the two
2007   // getelementptr instructions into a single instruction.
2008   if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) {
2009     if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
2010       return nullptr;
2011 
2012     // Try to reassociate loop invariant GEP chains to enable LICM.
2013     if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 &&
2014         Src->hasOneUse()) {
2015       if (Loop *L = LI->getLoopFor(GEP.getParent())) {
2016         Value *GO1 = GEP.getOperand(1);
2017         Value *SO1 = Src->getOperand(1);
2018         // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is
2019         // invariant: this breaks the dependence between GEPs and allows LICM
2020         // to hoist the invariant part out of the loop.
2021         if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) {
2022           // We have to be careful here.
2023           // We have something like:
2024           //  %src = getelementptr <ty>, <ty>* %base, <ty> %idx
2025           //  %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2
2026           // If we just swap idx & idx2 then we could inadvertantly
2027           // change %src from a vector to a scalar, or vice versa.
2028           // Cases:
2029           //  1) %base a scalar & idx a scalar & idx2 a vector
2030           //      => Swapping idx & idx2 turns %src into a vector type.
2031           //  2) %base a scalar & idx a vector & idx2 a scalar
2032           //      => Swapping idx & idx2 turns %src in a scalar type
2033           //  3) %base, %idx, and %idx2 are scalars
2034           //      => %src & %gep are scalars
2035           //      => swapping idx & idx2 is safe
2036           //  4) %base a vector
2037           //      => %src is a vector
2038           //      => swapping idx & idx2 is safe.
2039           auto *SO0 = Src->getOperand(0);
2040           auto *SO0Ty = SO0->getType();
2041           if (!isa<VectorType>(GEPType) || // case 3
2042               isa<VectorType>(SO0Ty)) {    // case 4
2043             Src->setOperand(1, GO1);
2044             GEP.setOperand(1, SO1);
2045             return &GEP;
2046           } else {
2047             // Case 1 or 2
2048             // -- have to recreate %src & %gep
2049             // put NewSrc at same location as %src
2050             Builder.SetInsertPoint(cast<Instruction>(PtrOp));
2051             auto *NewSrc = cast<GetElementPtrInst>(
2052                 Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName()));
2053             NewSrc->setIsInBounds(Src->isInBounds());
2054             auto *NewGEP = GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1});
2055             NewGEP->setIsInBounds(GEP.isInBounds());
2056             return NewGEP;
2057           }
2058         }
2059       }
2060     }
2061 
2062     // Note that if our source is a gep chain itself then we wait for that
2063     // chain to be resolved before we perform this transformation.  This
2064     // avoids us creating a TON of code in some cases.
2065     if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0)))
2066       if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
2067         return nullptr;   // Wait until our source is folded to completion.
2068 
2069     SmallVector<Value*, 8> Indices;
2070 
2071     // Find out whether the last index in the source GEP is a sequential idx.
2072     bool EndsWithSequential = false;
2073     for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
2074          I != E; ++I)
2075       EndsWithSequential = I.isSequential();
2076 
2077     // Can we combine the two pointer arithmetics offsets?
2078     if (EndsWithSequential) {
2079       // Replace: gep (gep %P, long B), long A, ...
2080       // With:    T = long A+B; gep %P, T, ...
2081       Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
2082       Value *GO1 = GEP.getOperand(1);
2083 
2084       // If they aren't the same type, then the input hasn't been processed
2085       // by the loop above yet (which canonicalizes sequential index types to
2086       // intptr_t).  Just avoid transforming this until the input has been
2087       // normalized.
2088       if (SO1->getType() != GO1->getType())
2089         return nullptr;
2090 
2091       Value *Sum =
2092           SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
2093       // Only do the combine when we are sure the cost after the
2094       // merge is never more than that before the merge.
2095       if (Sum == nullptr)
2096         return nullptr;
2097 
2098       // Update the GEP in place if possible.
2099       if (Src->getNumOperands() == 2) {
2100         GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)));
2101         replaceOperand(GEP, 0, Src->getOperand(0));
2102         replaceOperand(GEP, 1, Sum);
2103         return &GEP;
2104       }
2105       Indices.append(Src->op_begin()+1, Src->op_end()-1);
2106       Indices.push_back(Sum);
2107       Indices.append(GEP.op_begin()+2, GEP.op_end());
2108     } else if (isa<Constant>(*GEP.idx_begin()) &&
2109                cast<Constant>(*GEP.idx_begin())->isNullValue() &&
2110                Src->getNumOperands() != 1) {
2111       // Otherwise we can do the fold if the first index of the GEP is a zero
2112       Indices.append(Src->op_begin()+1, Src->op_end());
2113       Indices.append(GEP.idx_begin()+1, GEP.idx_end());
2114     }
2115 
2116     if (!Indices.empty())
2117       return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))
2118                  ? GetElementPtrInst::CreateInBounds(
2119                        Src->getSourceElementType(), Src->getOperand(0), Indices,
2120                        GEP.getName())
2121                  : GetElementPtrInst::Create(Src->getSourceElementType(),
2122                                              Src->getOperand(0), Indices,
2123                                              GEP.getName());
2124   }
2125 
2126   // Skip if GEP source element type is scalable. The type alloc size is unknown
2127   // at compile-time.
2128   if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) {
2129     unsigned AS = GEP.getPointerAddressSpace();
2130     if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
2131         DL.getIndexSizeInBits(AS)) {
2132       uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2133 
2134       bool Matched = false;
2135       uint64_t C;
2136       Value *V = nullptr;
2137       if (TyAllocSize == 1) {
2138         V = GEP.getOperand(1);
2139         Matched = true;
2140       } else if (match(GEP.getOperand(1),
2141                        m_AShr(m_Value(V), m_ConstantInt(C)))) {
2142         if (TyAllocSize == 1ULL << C)
2143           Matched = true;
2144       } else if (match(GEP.getOperand(1),
2145                        m_SDiv(m_Value(V), m_ConstantInt(C)))) {
2146         if (TyAllocSize == C)
2147           Matched = true;
2148       }
2149 
2150       if (Matched) {
2151         // Canonicalize (gep i8* X, -(ptrtoint Y))
2152         // to (inttoptr (sub (ptrtoint X), (ptrtoint Y)))
2153         // The GEP pattern is emitted by the SCEV expander for certain kinds of
2154         // pointer arithmetic.
2155         if (match(V, m_Neg(m_PtrToInt(m_Value())))) {
2156           Operator *Index = cast<Operator>(V);
2157           Value *PtrToInt = Builder.CreatePtrToInt(PtrOp, Index->getType());
2158           Value *NewSub = Builder.CreateSub(PtrToInt, Index->getOperand(1));
2159           return CastInst::Create(Instruction::IntToPtr, NewSub, GEPType);
2160         }
2161         // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
2162         // to (bitcast Y)
2163         Value *Y;
2164         if (match(V, m_Sub(m_PtrToInt(m_Value(Y)),
2165                            m_PtrToInt(m_Specific(GEP.getOperand(0))))))
2166           return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType);
2167       }
2168     }
2169   }
2170 
2171   // We do not handle pointer-vector geps here.
2172   if (GEPType->isVectorTy())
2173     return nullptr;
2174 
2175   // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
2176   Value *StrippedPtr = PtrOp->stripPointerCasts();
2177   PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType());
2178 
2179   if (StrippedPtr != PtrOp) {
2180     bool HasZeroPointerIndex = false;
2181     Type *StrippedPtrEltTy = StrippedPtrTy->getElementType();
2182 
2183     if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
2184       HasZeroPointerIndex = C->isZero();
2185 
2186     // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
2187     // into     : GEP [10 x i8]* X, i32 0, ...
2188     //
2189     // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
2190     //           into     : GEP i8* X, ...
2191     //
2192     // This occurs when the program declares an array extern like "int X[];"
2193     if (HasZeroPointerIndex) {
2194       if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) {
2195         // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
2196         if (CATy->getElementType() == StrippedPtrEltTy) {
2197           // -> GEP i8* X, ...
2198           SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
2199           GetElementPtrInst *Res = GetElementPtrInst::Create(
2200               StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName());
2201           Res->setIsInBounds(GEP.isInBounds());
2202           if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
2203             return Res;
2204           // Insert Res, and create an addrspacecast.
2205           // e.g.,
2206           // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
2207           // ->
2208           // %0 = GEP i8 addrspace(1)* X, ...
2209           // addrspacecast i8 addrspace(1)* %0 to i8*
2210           return new AddrSpaceCastInst(Builder.Insert(Res), GEPType);
2211         }
2212 
2213         if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) {
2214           // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
2215           if (CATy->getElementType() == XATy->getElementType()) {
2216             // -> GEP [10 x i8]* X, i32 0, ...
2217             // At this point, we know that the cast source type is a pointer
2218             // to an array of the same type as the destination pointer
2219             // array.  Because the array type is never stepped over (there
2220             // is a leading zero) we can fold the cast into this GEP.
2221             if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
2222               GEP.setSourceElementType(XATy);
2223               return replaceOperand(GEP, 0, StrippedPtr);
2224             }
2225             // Cannot replace the base pointer directly because StrippedPtr's
2226             // address space is different. Instead, create a new GEP followed by
2227             // an addrspacecast.
2228             // e.g.,
2229             // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
2230             //   i32 0, ...
2231             // ->
2232             // %0 = GEP [10 x i8] addrspace(1)* X, ...
2233             // addrspacecast i8 addrspace(1)* %0 to i8*
2234             SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end());
2235             Value *NewGEP =
2236                 GEP.isInBounds()
2237                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2238                                                 Idx, GEP.getName())
2239                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2240                                         GEP.getName());
2241             return new AddrSpaceCastInst(NewGEP, GEPType);
2242           }
2243         }
2244       }
2245     } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) {
2246       // Skip if GEP source element type is scalable. The type alloc size is
2247       // unknown at compile-time.
2248       // Transform things like: %t = getelementptr i32*
2249       // bitcast ([2 x i32]* %str to i32*), i32 %V into:  %t1 = getelementptr [2
2250       // x i32]* %str, i32 0, i32 %V; bitcast
2251       if (StrippedPtrEltTy->isArrayTy() &&
2252           DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) ==
2253               DL.getTypeAllocSize(GEPEltType)) {
2254         Type *IdxType = DL.getIndexType(GEPType);
2255         Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
2256         Value *NewGEP =
2257             GEP.isInBounds()
2258                 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2259                                             GEP.getName())
2260                 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2261                                     GEP.getName());
2262 
2263         // V and GEP are both pointer types --> BitCast
2264         return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType);
2265       }
2266 
2267       // Transform things like:
2268       // %V = mul i64 %N, 4
2269       // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
2270       // into:  %t1 = getelementptr i32* %arr, i32 %N; bitcast
2271       if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) {
2272         // Check that changing the type amounts to dividing the index by a scale
2273         // factor.
2274         uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2275         uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy).getFixedSize();
2276         if (ResSize && SrcSize % ResSize == 0) {
2277           Value *Idx = GEP.getOperand(1);
2278           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2279           uint64_t Scale = SrcSize / ResSize;
2280 
2281           // Earlier transforms ensure that the index has the right type
2282           // according to Data Layout, which considerably simplifies the
2283           // logic by eliminating implicit casts.
2284           assert(Idx->getType() == DL.getIndexType(GEPType) &&
2285                  "Index type does not match the Data Layout preferences");
2286 
2287           bool NSW;
2288           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2289             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2290             // If the multiplication NewIdx * Scale may overflow then the new
2291             // GEP may not be "inbounds".
2292             Value *NewGEP =
2293                 GEP.isInBounds() && NSW
2294                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2295                                                 NewIdx, GEP.getName())
2296                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx,
2297                                         GEP.getName());
2298 
2299             // The NewGEP must be pointer typed, so must the old one -> BitCast
2300             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2301                                                                  GEPType);
2302           }
2303         }
2304       }
2305 
2306       // Similarly, transform things like:
2307       // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
2308       //   (where tmp = 8*tmp2) into:
2309       // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
2310       if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() &&
2311           StrippedPtrEltTy->isArrayTy()) {
2312         // Check that changing to the array element type amounts to dividing the
2313         // index by a scale factor.
2314         uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2315         uint64_t ArrayEltSize =
2316             DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType())
2317                 .getFixedSize();
2318         if (ResSize && ArrayEltSize % ResSize == 0) {
2319           Value *Idx = GEP.getOperand(1);
2320           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2321           uint64_t Scale = ArrayEltSize / ResSize;
2322 
2323           // Earlier transforms ensure that the index has the right type
2324           // according to the Data Layout, which considerably simplifies
2325           // the logic by eliminating implicit casts.
2326           assert(Idx->getType() == DL.getIndexType(GEPType) &&
2327                  "Index type does not match the Data Layout preferences");
2328 
2329           bool NSW;
2330           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2331             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2332             // If the multiplication NewIdx * Scale may overflow then the new
2333             // GEP may not be "inbounds".
2334             Type *IndTy = DL.getIndexType(GEPType);
2335             Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx};
2336 
2337             Value *NewGEP =
2338                 GEP.isInBounds() && NSW
2339                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2340                                                 Off, GEP.getName())
2341                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off,
2342                                         GEP.getName());
2343             // The NewGEP must be pointer typed, so must the old one -> BitCast
2344             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2345                                                                  GEPType);
2346           }
2347         }
2348       }
2349     }
2350   }
2351 
2352   // addrspacecast between types is canonicalized as a bitcast, then an
2353   // addrspacecast. To take advantage of the below bitcast + struct GEP, look
2354   // through the addrspacecast.
2355   Value *ASCStrippedPtrOp = PtrOp;
2356   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
2357     //   X = bitcast A addrspace(1)* to B addrspace(1)*
2358     //   Y = addrspacecast A addrspace(1)* to B addrspace(2)*
2359     //   Z = gep Y, <...constant indices...>
2360     // Into an addrspacecasted GEP of the struct.
2361     if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
2362       ASCStrippedPtrOp = BC;
2363   }
2364 
2365   if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) {
2366     Value *SrcOp = BCI->getOperand(0);
2367     PointerType *SrcType = cast<PointerType>(BCI->getSrcTy());
2368     Type *SrcEltType = SrcType->getElementType();
2369 
2370     // GEP directly using the source operand if this GEP is accessing an element
2371     // of a bitcasted pointer to vector or array of the same dimensions:
2372     // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z
2373     // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z
2374     auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy,
2375                                           const DataLayout &DL) {
2376       auto *VecVTy = cast<FixedVectorType>(VecTy);
2377       return ArrTy->getArrayElementType() == VecVTy->getElementType() &&
2378              ArrTy->getArrayNumElements() == VecVTy->getNumElements() &&
2379              DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy);
2380     };
2381     if (GEP.getNumOperands() == 3 &&
2382         ((GEPEltType->isArrayTy() && SrcEltType->isVectorTy() &&
2383           areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) ||
2384          (GEPEltType->isVectorTy() && SrcEltType->isArrayTy() &&
2385           areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) {
2386 
2387       // Create a new GEP here, as using `setOperand()` followed by
2388       // `setSourceElementType()` won't actually update the type of the
2389       // existing GEP Value. Causing issues if this Value is accessed when
2390       // constructing an AddrSpaceCastInst
2391       Value *NGEP =
2392           GEP.isInBounds()
2393               ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]})
2394               : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]});
2395       NGEP->takeName(&GEP);
2396 
2397       // Preserve GEP address space to satisfy users
2398       if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2399         return new AddrSpaceCastInst(NGEP, GEPType);
2400 
2401       return replaceInstUsesWith(GEP, NGEP);
2402     }
2403 
2404     // See if we can simplify:
2405     //   X = bitcast A* to B*
2406     //   Y = gep X, <...constant indices...>
2407     // into a gep of the original struct. This is important for SROA and alias
2408     // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
2409     unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType);
2410     APInt Offset(OffsetBits, 0);
2411     if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset)) {
2412       // If this GEP instruction doesn't move the pointer, just replace the GEP
2413       // with a bitcast of the real input to the dest type.
2414       if (!Offset) {
2415         // If the bitcast is of an allocation, and the allocation will be
2416         // converted to match the type of the cast, don't touch this.
2417         if (isa<AllocaInst>(SrcOp) || isAllocationFn(SrcOp, &TLI)) {
2418           // See if the bitcast simplifies, if so, don't nuke this GEP yet.
2419           if (Instruction *I = visitBitCast(*BCI)) {
2420             if (I != BCI) {
2421               I->takeName(BCI);
2422               BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
2423               replaceInstUsesWith(*BCI, I);
2424             }
2425             return &GEP;
2426           }
2427         }
2428 
2429         if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace())
2430           return new AddrSpaceCastInst(SrcOp, GEPType);
2431         return new BitCastInst(SrcOp, GEPType);
2432       }
2433 
2434       // Otherwise, if the offset is non-zero, we need to find out if there is a
2435       // field at Offset in 'A's type.  If so, we can pull the cast through the
2436       // GEP.
2437       SmallVector<Value*, 8> NewIndices;
2438       if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) {
2439         Value *NGEP =
2440             GEP.isInBounds()
2441                 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices)
2442                 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices);
2443 
2444         if (NGEP->getType() == GEPType)
2445           return replaceInstUsesWith(GEP, NGEP);
2446         NGEP->takeName(&GEP);
2447 
2448         if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2449           return new AddrSpaceCastInst(NGEP, GEPType);
2450         return new BitCastInst(NGEP, GEPType);
2451       }
2452     }
2453   }
2454 
2455   if (!GEP.isInBounds()) {
2456     unsigned IdxWidth =
2457         DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
2458     APInt BasePtrOffset(IdxWidth, 0);
2459     Value *UnderlyingPtrOp =
2460             PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
2461                                                              BasePtrOffset);
2462     if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) {
2463       if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
2464           BasePtrOffset.isNonNegative()) {
2465         APInt AllocSize(
2466             IdxWidth,
2467             DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinSize());
2468         if (BasePtrOffset.ule(AllocSize)) {
2469           return GetElementPtrInst::CreateInBounds(
2470               GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1),
2471               GEP.getName());
2472         }
2473       }
2474     }
2475   }
2476 
2477   if (Instruction *R = foldSelectGEP(GEP, Builder))
2478     return R;
2479 
2480   return nullptr;
2481 }
2482 
isNeverEqualToUnescapedAlloc(Value * V,const TargetLibraryInfo * TLI,Instruction * AI)2483 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI,
2484                                          Instruction *AI) {
2485   if (isa<ConstantPointerNull>(V))
2486     return true;
2487   if (auto *LI = dyn_cast<LoadInst>(V))
2488     return isa<GlobalVariable>(LI->getPointerOperand());
2489   // Two distinct allocations will never be equal.
2490   // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking
2491   // through bitcasts of V can cause
2492   // the result statement below to be true, even when AI and V (ex:
2493   // i8* ->i32* ->i8* of AI) are the same allocations.
2494   return isAllocLikeFn(V, TLI) && V != AI;
2495 }
2496 
isAllocSiteRemovable(Instruction * AI,SmallVectorImpl<WeakTrackingVH> & Users,const TargetLibraryInfo * TLI)2497 static bool isAllocSiteRemovable(Instruction *AI,
2498                                  SmallVectorImpl<WeakTrackingVH> &Users,
2499                                  const TargetLibraryInfo *TLI) {
2500   SmallVector<Instruction*, 4> Worklist;
2501   Worklist.push_back(AI);
2502 
2503   do {
2504     Instruction *PI = Worklist.pop_back_val();
2505     for (User *U : PI->users()) {
2506       Instruction *I = cast<Instruction>(U);
2507       switch (I->getOpcode()) {
2508       default:
2509         // Give up the moment we see something we can't handle.
2510         return false;
2511 
2512       case Instruction::AddrSpaceCast:
2513       case Instruction::BitCast:
2514       case Instruction::GetElementPtr:
2515         Users.emplace_back(I);
2516         Worklist.push_back(I);
2517         continue;
2518 
2519       case Instruction::ICmp: {
2520         ICmpInst *ICI = cast<ICmpInst>(I);
2521         // We can fold eq/ne comparisons with null to false/true, respectively.
2522         // We also fold comparisons in some conditions provided the alloc has
2523         // not escaped (see isNeverEqualToUnescapedAlloc).
2524         if (!ICI->isEquality())
2525           return false;
2526         unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
2527         if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
2528           return false;
2529         Users.emplace_back(I);
2530         continue;
2531       }
2532 
2533       case Instruction::Call:
2534         // Ignore no-op and store intrinsics.
2535         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2536           switch (II->getIntrinsicID()) {
2537           default:
2538             return false;
2539 
2540           case Intrinsic::memmove:
2541           case Intrinsic::memcpy:
2542           case Intrinsic::memset: {
2543             MemIntrinsic *MI = cast<MemIntrinsic>(II);
2544             if (MI->isVolatile() || MI->getRawDest() != PI)
2545               return false;
2546             LLVM_FALLTHROUGH;
2547           }
2548           case Intrinsic::assume:
2549           case Intrinsic::invariant_start:
2550           case Intrinsic::invariant_end:
2551           case Intrinsic::lifetime_start:
2552           case Intrinsic::lifetime_end:
2553           case Intrinsic::objectsize:
2554             Users.emplace_back(I);
2555             continue;
2556           }
2557         }
2558 
2559         if (isFreeCall(I, TLI)) {
2560           Users.emplace_back(I);
2561           continue;
2562         }
2563         return false;
2564 
2565       case Instruction::Store: {
2566         StoreInst *SI = cast<StoreInst>(I);
2567         if (SI->isVolatile() || SI->getPointerOperand() != PI)
2568           return false;
2569         Users.emplace_back(I);
2570         continue;
2571       }
2572       }
2573       llvm_unreachable("missing a return?");
2574     }
2575   } while (!Worklist.empty());
2576   return true;
2577 }
2578 
visitAllocSite(Instruction & MI)2579 Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) {
2580   // If we have a malloc call which is only used in any amount of comparisons to
2581   // null and free calls, delete the calls and replace the comparisons with true
2582   // or false as appropriate.
2583 
2584   // This is based on the principle that we can substitute our own allocation
2585   // function (which will never return null) rather than knowledge of the
2586   // specific function being called. In some sense this can change the permitted
2587   // outputs of a program (when we convert a malloc to an alloca, the fact that
2588   // the allocation is now on the stack is potentially visible, for example),
2589   // but we believe in a permissible manner.
2590   SmallVector<WeakTrackingVH, 64> Users;
2591 
2592   // If we are removing an alloca with a dbg.declare, insert dbg.value calls
2593   // before each store.
2594   SmallVector<DbgVariableIntrinsic *, 8> DVIs;
2595   std::unique_ptr<DIBuilder> DIB;
2596   if (isa<AllocaInst>(MI)) {
2597     findDbgUsers(DVIs, &MI);
2598     DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
2599   }
2600 
2601   if (isAllocSiteRemovable(&MI, Users, &TLI)) {
2602     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2603       // Lowering all @llvm.objectsize calls first because they may
2604       // use a bitcast/GEP of the alloca we are removing.
2605       if (!Users[i])
2606        continue;
2607 
2608       Instruction *I = cast<Instruction>(&*Users[i]);
2609 
2610       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2611         if (II->getIntrinsicID() == Intrinsic::objectsize) {
2612           Value *Result =
2613               lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true);
2614           replaceInstUsesWith(*I, Result);
2615           eraseInstFromFunction(*I);
2616           Users[i] = nullptr; // Skip examining in the next loop.
2617         }
2618       }
2619     }
2620     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2621       if (!Users[i])
2622         continue;
2623 
2624       Instruction *I = cast<Instruction>(&*Users[i]);
2625 
2626       if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
2627         replaceInstUsesWith(*C,
2628                             ConstantInt::get(Type::getInt1Ty(C->getContext()),
2629                                              C->isFalseWhenEqual()));
2630       } else if (auto *SI = dyn_cast<StoreInst>(I)) {
2631         for (auto *DVI : DVIs)
2632           if (DVI->isAddressOfVariable())
2633             ConvertDebugDeclareToDebugValue(DVI, SI, *DIB);
2634       } else {
2635         // Casts, GEP, or anything else: we're about to delete this instruction,
2636         // so it can not have any valid uses.
2637         replaceInstUsesWith(*I, UndefValue::get(I->getType()));
2638       }
2639       eraseInstFromFunction(*I);
2640     }
2641 
2642     if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
2643       // Replace invoke with a NOP intrinsic to maintain the original CFG
2644       Module *M = II->getModule();
2645       Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
2646       InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
2647                          None, "", II->getParent());
2648     }
2649 
2650     // Remove debug intrinsics which describe the value contained within the
2651     // alloca. In addition to removing dbg.{declare,addr} which simply point to
2652     // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.:
2653     //
2654     // ```
2655     //   define void @foo(i32 %0) {
2656     //     %a = alloca i32                              ; Deleted.
2657     //     store i32 %0, i32* %a
2658     //     dbg.value(i32 %0, "arg0")                    ; Not deleted.
2659     //     dbg.value(i32* %a, "arg0", DW_OP_deref)      ; Deleted.
2660     //     call void @trivially_inlinable_no_op(i32* %a)
2661     //     ret void
2662     //  }
2663     // ```
2664     //
2665     // This may not be required if we stop describing the contents of allocas
2666     // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in
2667     // the LowerDbgDeclare utility.
2668     //
2669     // If there is a dead store to `%a` in @trivially_inlinable_no_op, the
2670     // "arg0" dbg.value may be stale after the call. However, failing to remove
2671     // the DW_OP_deref dbg.value causes large gaps in location coverage.
2672     for (auto *DVI : DVIs)
2673       if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref())
2674         DVI->eraseFromParent();
2675 
2676     return eraseInstFromFunction(MI);
2677   }
2678   return nullptr;
2679 }
2680 
2681 /// Move the call to free before a NULL test.
2682 ///
2683 /// Check if this free is accessed after its argument has been test
2684 /// against NULL (property 0).
2685 /// If yes, it is legal to move this call in its predecessor block.
2686 ///
2687 /// The move is performed only if the block containing the call to free
2688 /// will be removed, i.e.:
2689 /// 1. it has only one predecessor P, and P has two successors
2690 /// 2. it contains the call, noops, and an unconditional branch
2691 /// 3. its successor is the same as its predecessor's successor
2692 ///
2693 /// The profitability is out-of concern here and this function should
2694 /// be called only if the caller knows this transformation would be
2695 /// profitable (e.g., for code size).
tryToMoveFreeBeforeNullTest(CallInst & FI,const DataLayout & DL)2696 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI,
2697                                                 const DataLayout &DL) {
2698   Value *Op = FI.getArgOperand(0);
2699   BasicBlock *FreeInstrBB = FI.getParent();
2700   BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
2701 
2702   // Validate part of constraint #1: Only one predecessor
2703   // FIXME: We can extend the number of predecessor, but in that case, we
2704   //        would duplicate the call to free in each predecessor and it may
2705   //        not be profitable even for code size.
2706   if (!PredBB)
2707     return nullptr;
2708 
2709   // Validate constraint #2: Does this block contains only the call to
2710   //                         free, noops, and an unconditional branch?
2711   BasicBlock *SuccBB;
2712   Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
2713   if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
2714     return nullptr;
2715 
2716   // If there are only 2 instructions in the block, at this point,
2717   // this is the call to free and unconditional.
2718   // If there are more than 2 instructions, check that they are noops
2719   // i.e., they won't hurt the performance of the generated code.
2720   if (FreeInstrBB->size() != 2) {
2721     for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) {
2722       if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
2723         continue;
2724       auto *Cast = dyn_cast<CastInst>(&Inst);
2725       if (!Cast || !Cast->isNoopCast(DL))
2726         return nullptr;
2727     }
2728   }
2729   // Validate the rest of constraint #1 by matching on the pred branch.
2730   Instruction *TI = PredBB->getTerminator();
2731   BasicBlock *TrueBB, *FalseBB;
2732   ICmpInst::Predicate Pred;
2733   if (!match(TI, m_Br(m_ICmp(Pred,
2734                              m_CombineOr(m_Specific(Op),
2735                                          m_Specific(Op->stripPointerCasts())),
2736                              m_Zero()),
2737                       TrueBB, FalseBB)))
2738     return nullptr;
2739   if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2740     return nullptr;
2741 
2742   // Validate constraint #3: Ensure the null case just falls through.
2743   if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
2744     return nullptr;
2745   assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
2746          "Broken CFG: missing edge from predecessor to successor");
2747 
2748   // At this point, we know that everything in FreeInstrBB can be moved
2749   // before TI.
2750   for (BasicBlock::iterator It = FreeInstrBB->begin(), End = FreeInstrBB->end();
2751        It != End;) {
2752     Instruction &Instr = *It++;
2753     if (&Instr == FreeInstrBBTerminator)
2754       break;
2755     Instr.moveBefore(TI);
2756   }
2757   assert(FreeInstrBB->size() == 1 &&
2758          "Only the branch instruction should remain");
2759   return &FI;
2760 }
2761 
visitFree(CallInst & FI)2762 Instruction *InstCombinerImpl::visitFree(CallInst &FI) {
2763   Value *Op = FI.getArgOperand(0);
2764 
2765   // free undef -> unreachable.
2766   if (isa<UndefValue>(Op)) {
2767     // Leave a marker since we can't modify the CFG here.
2768     CreateNonTerminatorUnreachable(&FI);
2769     return eraseInstFromFunction(FI);
2770   }
2771 
2772   // If we have 'free null' delete the instruction.  This can happen in stl code
2773   // when lots of inlining happens.
2774   if (isa<ConstantPointerNull>(Op))
2775     return eraseInstFromFunction(FI);
2776 
2777   // If we optimize for code size, try to move the call to free before the null
2778   // test so that simplify cfg can remove the empty block and dead code
2779   // elimination the branch. I.e., helps to turn something like:
2780   // if (foo) free(foo);
2781   // into
2782   // free(foo);
2783   //
2784   // Note that we can only do this for 'free' and not for any flavor of
2785   // 'operator delete'; there is no 'operator delete' symbol for which we are
2786   // permitted to invent a call, even if we're passing in a null pointer.
2787   if (MinimizeSize) {
2788     LibFunc Func;
2789     if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free)
2790       if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL))
2791         return I;
2792   }
2793 
2794   return nullptr;
2795 }
2796 
isMustTailCall(Value * V)2797 static bool isMustTailCall(Value *V) {
2798   if (auto *CI = dyn_cast<CallInst>(V))
2799     return CI->isMustTailCall();
2800   return false;
2801 }
2802 
visitReturnInst(ReturnInst & RI)2803 Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) {
2804   if (RI.getNumOperands() == 0) // ret void
2805     return nullptr;
2806 
2807   Value *ResultOp = RI.getOperand(0);
2808   Type *VTy = ResultOp->getType();
2809   if (!VTy->isIntegerTy() || isa<Constant>(ResultOp))
2810     return nullptr;
2811 
2812   // Don't replace result of musttail calls.
2813   if (isMustTailCall(ResultOp))
2814     return nullptr;
2815 
2816   // There might be assume intrinsics dominating this return that completely
2817   // determine the value. If so, constant fold it.
2818   KnownBits Known = computeKnownBits(ResultOp, 0, &RI);
2819   if (Known.isConstant())
2820     return replaceOperand(RI, 0,
2821         Constant::getIntegerValue(VTy, Known.getConstant()));
2822 
2823   return nullptr;
2824 }
2825 
visitUnreachableInst(UnreachableInst & I)2826 Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) {
2827   // Try to remove the previous instruction if it must lead to unreachable.
2828   // This includes instructions like stores and "llvm.assume" that may not get
2829   // removed by simple dead code elimination.
2830   Instruction *Prev = I.getPrevNonDebugInstruction();
2831   if (Prev && !Prev->isEHPad() &&
2832       isGuaranteedToTransferExecutionToSuccessor(Prev)) {
2833     // Temporarily disable removal of volatile stores preceding unreachable,
2834     // pending a potential LangRef change permitting volatile stores to trap.
2835     // TODO: Either remove this code, or properly integrate the check into
2836     // isGuaranteedToTransferExecutionToSuccessor().
2837     if (auto *SI = dyn_cast<StoreInst>(Prev))
2838       if (SI->isVolatile())
2839         return nullptr;
2840 
2841     // A value may still have uses before we process it here (for example, in
2842     // another unreachable block), so convert those to undef.
2843     replaceInstUsesWith(*Prev, UndefValue::get(Prev->getType()));
2844     eraseInstFromFunction(*Prev);
2845     return &I;
2846   }
2847   return nullptr;
2848 }
2849 
visitUnconditionalBranchInst(BranchInst & BI)2850 Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) {
2851   assert(BI.isUnconditional() && "Only for unconditional branches.");
2852 
2853   // If this store is the second-to-last instruction in the basic block
2854   // (excluding debug info and bitcasts of pointers) and if the block ends with
2855   // an unconditional branch, try to move the store to the successor block.
2856 
2857   auto GetLastSinkableStore = [](BasicBlock::iterator BBI) {
2858     auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) {
2859       return isa<DbgInfoIntrinsic>(BBI) ||
2860              (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy());
2861     };
2862 
2863     BasicBlock::iterator FirstInstr = BBI->getParent()->begin();
2864     do {
2865       if (BBI != FirstInstr)
2866         --BBI;
2867     } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI));
2868 
2869     return dyn_cast<StoreInst>(BBI);
2870   };
2871 
2872   if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI)))
2873     if (mergeStoreIntoSuccessor(*SI))
2874       return &BI;
2875 
2876   return nullptr;
2877 }
2878 
visitBranchInst(BranchInst & BI)2879 Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) {
2880   if (BI.isUnconditional())
2881     return visitUnconditionalBranchInst(BI);
2882 
2883   // Change br (not X), label True, label False to: br X, label False, True
2884   Value *X = nullptr;
2885   if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) &&
2886       !isa<Constant>(X)) {
2887     // Swap Destinations and condition...
2888     BI.swapSuccessors();
2889     return replaceOperand(BI, 0, X);
2890   }
2891 
2892   // If the condition is irrelevant, remove the use so that other
2893   // transforms on the condition become more effective.
2894   if (!isa<ConstantInt>(BI.getCondition()) &&
2895       BI.getSuccessor(0) == BI.getSuccessor(1))
2896     return replaceOperand(
2897         BI, 0, ConstantInt::getFalse(BI.getCondition()->getType()));
2898 
2899   // Canonicalize, for example, fcmp_one -> fcmp_oeq.
2900   CmpInst::Predicate Pred;
2901   if (match(&BI, m_Br(m_OneUse(m_FCmp(Pred, m_Value(), m_Value())),
2902                       m_BasicBlock(), m_BasicBlock())) &&
2903       !isCanonicalPredicate(Pred)) {
2904     // Swap destinations and condition.
2905     CmpInst *Cond = cast<CmpInst>(BI.getCondition());
2906     Cond->setPredicate(CmpInst::getInversePredicate(Pred));
2907     BI.swapSuccessors();
2908     Worklist.push(Cond);
2909     return &BI;
2910   }
2911 
2912   return nullptr;
2913 }
2914 
visitSwitchInst(SwitchInst & SI)2915 Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) {
2916   Value *Cond = SI.getCondition();
2917   Value *Op0;
2918   ConstantInt *AddRHS;
2919   if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
2920     // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
2921     for (auto Case : SI.cases()) {
2922       Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
2923       assert(isa<ConstantInt>(NewCase) &&
2924              "Result of expression should be constant");
2925       Case.setValue(cast<ConstantInt>(NewCase));
2926     }
2927     return replaceOperand(SI, 0, Op0);
2928   }
2929 
2930   KnownBits Known = computeKnownBits(Cond, 0, &SI);
2931   unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
2932   unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
2933 
2934   // Compute the number of leading bits we can ignore.
2935   // TODO: A better way to determine this would use ComputeNumSignBits().
2936   for (auto &C : SI.cases()) {
2937     LeadingKnownZeros = std::min(
2938         LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
2939     LeadingKnownOnes = std::min(
2940         LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
2941   }
2942 
2943   unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
2944 
2945   // Shrink the condition operand if the new type is smaller than the old type.
2946   // But do not shrink to a non-standard type, because backend can't generate
2947   // good code for that yet.
2948   // TODO: We can make it aggressive again after fixing PR39569.
2949   if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
2950       shouldChangeType(Known.getBitWidth(), NewWidth)) {
2951     IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
2952     Builder.SetInsertPoint(&SI);
2953     Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
2954 
2955     for (auto Case : SI.cases()) {
2956       APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
2957       Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
2958     }
2959     return replaceOperand(SI, 0, NewCond);
2960   }
2961 
2962   return nullptr;
2963 }
2964 
visitExtractValueInst(ExtractValueInst & EV)2965 Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) {
2966   Value *Agg = EV.getAggregateOperand();
2967 
2968   if (!EV.hasIndices())
2969     return replaceInstUsesWith(EV, Agg);
2970 
2971   if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(),
2972                                           SQ.getWithInstruction(&EV)))
2973     return replaceInstUsesWith(EV, V);
2974 
2975   if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
2976     // We're extracting from an insertvalue instruction, compare the indices
2977     const unsigned *exti, *exte, *insi, *inse;
2978     for (exti = EV.idx_begin(), insi = IV->idx_begin(),
2979          exte = EV.idx_end(), inse = IV->idx_end();
2980          exti != exte && insi != inse;
2981          ++exti, ++insi) {
2982       if (*insi != *exti)
2983         // The insert and extract both reference distinctly different elements.
2984         // This means the extract is not influenced by the insert, and we can
2985         // replace the aggregate operand of the extract with the aggregate
2986         // operand of the insert. i.e., replace
2987         // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2988         // %E = extractvalue { i32, { i32 } } %I, 0
2989         // with
2990         // %E = extractvalue { i32, { i32 } } %A, 0
2991         return ExtractValueInst::Create(IV->getAggregateOperand(),
2992                                         EV.getIndices());
2993     }
2994     if (exti == exte && insi == inse)
2995       // Both iterators are at the end: Index lists are identical. Replace
2996       // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2997       // %C = extractvalue { i32, { i32 } } %B, 1, 0
2998       // with "i32 42"
2999       return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
3000     if (exti == exte) {
3001       // The extract list is a prefix of the insert list. i.e. replace
3002       // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3003       // %E = extractvalue { i32, { i32 } } %I, 1
3004       // with
3005       // %X = extractvalue { i32, { i32 } } %A, 1
3006       // %E = insertvalue { i32 } %X, i32 42, 0
3007       // by switching the order of the insert and extract (though the
3008       // insertvalue should be left in, since it may have other uses).
3009       Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
3010                                                 EV.getIndices());
3011       return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
3012                                      makeArrayRef(insi, inse));
3013     }
3014     if (insi == inse)
3015       // The insert list is a prefix of the extract list
3016       // We can simply remove the common indices from the extract and make it
3017       // operate on the inserted value instead of the insertvalue result.
3018       // i.e., replace
3019       // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
3020       // %E = extractvalue { i32, { i32 } } %I, 1, 0
3021       // with
3022       // %E extractvalue { i32 } { i32 42 }, 0
3023       return ExtractValueInst::Create(IV->getInsertedValueOperand(),
3024                                       makeArrayRef(exti, exte));
3025   }
3026   if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) {
3027     // We're extracting from an overflow intrinsic, see if we're the only user,
3028     // which allows us to simplify multiple result intrinsics to simpler
3029     // things that just get one value.
3030     if (WO->hasOneUse()) {
3031       // Check if we're grabbing only the result of a 'with overflow' intrinsic
3032       // and replace it with a traditional binary instruction.
3033       if (*EV.idx_begin() == 0) {
3034         Instruction::BinaryOps BinOp = WO->getBinaryOp();
3035         Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
3036         replaceInstUsesWith(*WO, UndefValue::get(WO->getType()));
3037         eraseInstFromFunction(*WO);
3038         return BinaryOperator::Create(BinOp, LHS, RHS);
3039       }
3040 
3041       // If the normal result of the add is dead, and the RHS is a constant,
3042       // we can transform this into a range comparison.
3043       // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3
3044       if (WO->getIntrinsicID() == Intrinsic::uadd_with_overflow)
3045         if (ConstantInt *CI = dyn_cast<ConstantInt>(WO->getRHS()))
3046           return new ICmpInst(ICmpInst::ICMP_UGT, WO->getLHS(),
3047                               ConstantExpr::getNot(CI));
3048     }
3049   }
3050   if (LoadInst *L = dyn_cast<LoadInst>(Agg))
3051     // If the (non-volatile) load only has one use, we can rewrite this to a
3052     // load from a GEP. This reduces the size of the load. If a load is used
3053     // only by extractvalue instructions then this either must have been
3054     // optimized before, or it is a struct with padding, in which case we
3055     // don't want to do the transformation as it loses padding knowledge.
3056     if (L->isSimple() && L->hasOneUse()) {
3057       // extractvalue has integer indices, getelementptr has Value*s. Convert.
3058       SmallVector<Value*, 4> Indices;
3059       // Prefix an i32 0 since we need the first element.
3060       Indices.push_back(Builder.getInt32(0));
3061       for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
3062             I != E; ++I)
3063         Indices.push_back(Builder.getInt32(*I));
3064 
3065       // We need to insert these at the location of the old load, not at that of
3066       // the extractvalue.
3067       Builder.SetInsertPoint(L);
3068       Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
3069                                              L->getPointerOperand(), Indices);
3070       Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
3071       // Whatever aliasing information we had for the orignal load must also
3072       // hold for the smaller load, so propagate the annotations.
3073       AAMDNodes Nodes;
3074       L->getAAMetadata(Nodes);
3075       NL->setAAMetadata(Nodes);
3076       // Returning the load directly will cause the main loop to insert it in
3077       // the wrong spot, so use replaceInstUsesWith().
3078       return replaceInstUsesWith(EV, NL);
3079     }
3080   // We could simplify extracts from other values. Note that nested extracts may
3081   // already be simplified implicitly by the above: extract (extract (insert) )
3082   // will be translated into extract ( insert ( extract ) ) first and then just
3083   // the value inserted, if appropriate. Similarly for extracts from single-use
3084   // loads: extract (extract (load)) will be translated to extract (load (gep))
3085   // and if again single-use then via load (gep (gep)) to load (gep).
3086   // However, double extracts from e.g. function arguments or return values
3087   // aren't handled yet.
3088   return nullptr;
3089 }
3090 
3091 /// Return 'true' if the given typeinfo will match anything.
isCatchAll(EHPersonality Personality,Constant * TypeInfo)3092 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
3093   switch (Personality) {
3094   case EHPersonality::GNU_C:
3095   case EHPersonality::GNU_C_SjLj:
3096   case EHPersonality::Rust:
3097     // The GCC C EH and Rust personality only exists to support cleanups, so
3098     // it's not clear what the semantics of catch clauses are.
3099     return false;
3100   case EHPersonality::Unknown:
3101     return false;
3102   case EHPersonality::GNU_Ada:
3103     // While __gnat_all_others_value will match any Ada exception, it doesn't
3104     // match foreign exceptions (or didn't, before gcc-4.7).
3105     return false;
3106   case EHPersonality::GNU_CXX:
3107   case EHPersonality::GNU_CXX_SjLj:
3108   case EHPersonality::GNU_ObjC:
3109   case EHPersonality::MSVC_X86SEH:
3110   case EHPersonality::MSVC_TableSEH:
3111   case EHPersonality::MSVC_CXX:
3112   case EHPersonality::CoreCLR:
3113   case EHPersonality::Wasm_CXX:
3114   case EHPersonality::XL_CXX:
3115     return TypeInfo->isNullValue();
3116   }
3117   llvm_unreachable("invalid enum");
3118 }
3119 
shorter_filter(const Value * LHS,const Value * RHS)3120 static bool shorter_filter(const Value *LHS, const Value *RHS) {
3121   return
3122     cast<ArrayType>(LHS->getType())->getNumElements()
3123   <
3124     cast<ArrayType>(RHS->getType())->getNumElements();
3125 }
3126 
visitLandingPadInst(LandingPadInst & LI)3127 Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) {
3128   // The logic here should be correct for any real-world personality function.
3129   // However if that turns out not to be true, the offending logic can always
3130   // be conditioned on the personality function, like the catch-all logic is.
3131   EHPersonality Personality =
3132       classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
3133 
3134   // Simplify the list of clauses, eg by removing repeated catch clauses
3135   // (these are often created by inlining).
3136   bool MakeNewInstruction = false; // If true, recreate using the following:
3137   SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
3138   bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
3139 
3140   SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
3141   for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
3142     bool isLastClause = i + 1 == e;
3143     if (LI.isCatch(i)) {
3144       // A catch clause.
3145       Constant *CatchClause = LI.getClause(i);
3146       Constant *TypeInfo = CatchClause->stripPointerCasts();
3147 
3148       // If we already saw this clause, there is no point in having a second
3149       // copy of it.
3150       if (AlreadyCaught.insert(TypeInfo).second) {
3151         // This catch clause was not already seen.
3152         NewClauses.push_back(CatchClause);
3153       } else {
3154         // Repeated catch clause - drop the redundant copy.
3155         MakeNewInstruction = true;
3156       }
3157 
3158       // If this is a catch-all then there is no point in keeping any following
3159       // clauses or marking the landingpad as having a cleanup.
3160       if (isCatchAll(Personality, TypeInfo)) {
3161         if (!isLastClause)
3162           MakeNewInstruction = true;
3163         CleanupFlag = false;
3164         break;
3165       }
3166     } else {
3167       // A filter clause.  If any of the filter elements were already caught
3168       // then they can be dropped from the filter.  It is tempting to try to
3169       // exploit the filter further by saying that any typeinfo that does not
3170       // occur in the filter can't be caught later (and thus can be dropped).
3171       // However this would be wrong, since typeinfos can match without being
3172       // equal (for example if one represents a C++ class, and the other some
3173       // class derived from it).
3174       assert(LI.isFilter(i) && "Unsupported landingpad clause!");
3175       Constant *FilterClause = LI.getClause(i);
3176       ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
3177       unsigned NumTypeInfos = FilterType->getNumElements();
3178 
3179       // An empty filter catches everything, so there is no point in keeping any
3180       // following clauses or marking the landingpad as having a cleanup.  By
3181       // dealing with this case here the following code is made a bit simpler.
3182       if (!NumTypeInfos) {
3183         NewClauses.push_back(FilterClause);
3184         if (!isLastClause)
3185           MakeNewInstruction = true;
3186         CleanupFlag = false;
3187         break;
3188       }
3189 
3190       bool MakeNewFilter = false; // If true, make a new filter.
3191       SmallVector<Constant *, 16> NewFilterElts; // New elements.
3192       if (isa<ConstantAggregateZero>(FilterClause)) {
3193         // Not an empty filter - it contains at least one null typeinfo.
3194         assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
3195         Constant *TypeInfo =
3196           Constant::getNullValue(FilterType->getElementType());
3197         // If this typeinfo is a catch-all then the filter can never match.
3198         if (isCatchAll(Personality, TypeInfo)) {
3199           // Throw the filter away.
3200           MakeNewInstruction = true;
3201           continue;
3202         }
3203 
3204         // There is no point in having multiple copies of this typeinfo, so
3205         // discard all but the first copy if there is more than one.
3206         NewFilterElts.push_back(TypeInfo);
3207         if (NumTypeInfos > 1)
3208           MakeNewFilter = true;
3209       } else {
3210         ConstantArray *Filter = cast<ConstantArray>(FilterClause);
3211         SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
3212         NewFilterElts.reserve(NumTypeInfos);
3213 
3214         // Remove any filter elements that were already caught or that already
3215         // occurred in the filter.  While there, see if any of the elements are
3216         // catch-alls.  If so, the filter can be discarded.
3217         bool SawCatchAll = false;
3218         for (unsigned j = 0; j != NumTypeInfos; ++j) {
3219           Constant *Elt = Filter->getOperand(j);
3220           Constant *TypeInfo = Elt->stripPointerCasts();
3221           if (isCatchAll(Personality, TypeInfo)) {
3222             // This element is a catch-all.  Bail out, noting this fact.
3223             SawCatchAll = true;
3224             break;
3225           }
3226 
3227           // Even if we've seen a type in a catch clause, we don't want to
3228           // remove it from the filter.  An unexpected type handler may be
3229           // set up for a call site which throws an exception of the same
3230           // type caught.  In order for the exception thrown by the unexpected
3231           // handler to propagate correctly, the filter must be correctly
3232           // described for the call site.
3233           //
3234           // Example:
3235           //
3236           // void unexpected() { throw 1;}
3237           // void foo() throw (int) {
3238           //   std::set_unexpected(unexpected);
3239           //   try {
3240           //     throw 2.0;
3241           //   } catch (int i) {}
3242           // }
3243 
3244           // There is no point in having multiple copies of the same typeinfo in
3245           // a filter, so only add it if we didn't already.
3246           if (SeenInFilter.insert(TypeInfo).second)
3247             NewFilterElts.push_back(cast<Constant>(Elt));
3248         }
3249         // A filter containing a catch-all cannot match anything by definition.
3250         if (SawCatchAll) {
3251           // Throw the filter away.
3252           MakeNewInstruction = true;
3253           continue;
3254         }
3255 
3256         // If we dropped something from the filter, make a new one.
3257         if (NewFilterElts.size() < NumTypeInfos)
3258           MakeNewFilter = true;
3259       }
3260       if (MakeNewFilter) {
3261         FilterType = ArrayType::get(FilterType->getElementType(),
3262                                     NewFilterElts.size());
3263         FilterClause = ConstantArray::get(FilterType, NewFilterElts);
3264         MakeNewInstruction = true;
3265       }
3266 
3267       NewClauses.push_back(FilterClause);
3268 
3269       // If the new filter is empty then it will catch everything so there is
3270       // no point in keeping any following clauses or marking the landingpad
3271       // as having a cleanup.  The case of the original filter being empty was
3272       // already handled above.
3273       if (MakeNewFilter && !NewFilterElts.size()) {
3274         assert(MakeNewInstruction && "New filter but not a new instruction!");
3275         CleanupFlag = false;
3276         break;
3277       }
3278     }
3279   }
3280 
3281   // If several filters occur in a row then reorder them so that the shortest
3282   // filters come first (those with the smallest number of elements).  This is
3283   // advantageous because shorter filters are more likely to match, speeding up
3284   // unwinding, but mostly because it increases the effectiveness of the other
3285   // filter optimizations below.
3286   for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
3287     unsigned j;
3288     // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
3289     for (j = i; j != e; ++j)
3290       if (!isa<ArrayType>(NewClauses[j]->getType()))
3291         break;
3292 
3293     // Check whether the filters are already sorted by length.  We need to know
3294     // if sorting them is actually going to do anything so that we only make a
3295     // new landingpad instruction if it does.
3296     for (unsigned k = i; k + 1 < j; ++k)
3297       if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
3298         // Not sorted, so sort the filters now.  Doing an unstable sort would be
3299         // correct too but reordering filters pointlessly might confuse users.
3300         std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
3301                          shorter_filter);
3302         MakeNewInstruction = true;
3303         break;
3304       }
3305 
3306     // Look for the next batch of filters.
3307     i = j + 1;
3308   }
3309 
3310   // If typeinfos matched if and only if equal, then the elements of a filter L
3311   // that occurs later than a filter F could be replaced by the intersection of
3312   // the elements of F and L.  In reality two typeinfos can match without being
3313   // equal (for example if one represents a C++ class, and the other some class
3314   // derived from it) so it would be wrong to perform this transform in general.
3315   // However the transform is correct and useful if F is a subset of L.  In that
3316   // case L can be replaced by F, and thus removed altogether since repeating a
3317   // filter is pointless.  So here we look at all pairs of filters F and L where
3318   // L follows F in the list of clauses, and remove L if every element of F is
3319   // an element of L.  This can occur when inlining C++ functions with exception
3320   // specifications.
3321   for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
3322     // Examine each filter in turn.
3323     Value *Filter = NewClauses[i];
3324     ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
3325     if (!FTy)
3326       // Not a filter - skip it.
3327       continue;
3328     unsigned FElts = FTy->getNumElements();
3329     // Examine each filter following this one.  Doing this backwards means that
3330     // we don't have to worry about filters disappearing under us when removed.
3331     for (unsigned j = NewClauses.size() - 1; j != i; --j) {
3332       Value *LFilter = NewClauses[j];
3333       ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
3334       if (!LTy)
3335         // Not a filter - skip it.
3336         continue;
3337       // If Filter is a subset of LFilter, i.e. every element of Filter is also
3338       // an element of LFilter, then discard LFilter.
3339       SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
3340       // If Filter is empty then it is a subset of LFilter.
3341       if (!FElts) {
3342         // Discard LFilter.
3343         NewClauses.erase(J);
3344         MakeNewInstruction = true;
3345         // Move on to the next filter.
3346         continue;
3347       }
3348       unsigned LElts = LTy->getNumElements();
3349       // If Filter is longer than LFilter then it cannot be a subset of it.
3350       if (FElts > LElts)
3351         // Move on to the next filter.
3352         continue;
3353       // At this point we know that LFilter has at least one element.
3354       if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
3355         // Filter is a subset of LFilter iff Filter contains only zeros (as we
3356         // already know that Filter is not longer than LFilter).
3357         if (isa<ConstantAggregateZero>(Filter)) {
3358           assert(FElts <= LElts && "Should have handled this case earlier!");
3359           // Discard LFilter.
3360           NewClauses.erase(J);
3361           MakeNewInstruction = true;
3362         }
3363         // Move on to the next filter.
3364         continue;
3365       }
3366       ConstantArray *LArray = cast<ConstantArray>(LFilter);
3367       if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
3368         // Since Filter is non-empty and contains only zeros, it is a subset of
3369         // LFilter iff LFilter contains a zero.
3370         assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
3371         for (unsigned l = 0; l != LElts; ++l)
3372           if (LArray->getOperand(l)->isNullValue()) {
3373             // LFilter contains a zero - discard it.
3374             NewClauses.erase(J);
3375             MakeNewInstruction = true;
3376             break;
3377           }
3378         // Move on to the next filter.
3379         continue;
3380       }
3381       // At this point we know that both filters are ConstantArrays.  Loop over
3382       // operands to see whether every element of Filter is also an element of
3383       // LFilter.  Since filters tend to be short this is probably faster than
3384       // using a method that scales nicely.
3385       ConstantArray *FArray = cast<ConstantArray>(Filter);
3386       bool AllFound = true;
3387       for (unsigned f = 0; f != FElts; ++f) {
3388         Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
3389         AllFound = false;
3390         for (unsigned l = 0; l != LElts; ++l) {
3391           Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
3392           if (LTypeInfo == FTypeInfo) {
3393             AllFound = true;
3394             break;
3395           }
3396         }
3397         if (!AllFound)
3398           break;
3399       }
3400       if (AllFound) {
3401         // Discard LFilter.
3402         NewClauses.erase(J);
3403         MakeNewInstruction = true;
3404       }
3405       // Move on to the next filter.
3406     }
3407   }
3408 
3409   // If we changed any of the clauses, replace the old landingpad instruction
3410   // with a new one.
3411   if (MakeNewInstruction) {
3412     LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
3413                                                  NewClauses.size());
3414     for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
3415       NLI->addClause(NewClauses[i]);
3416     // A landing pad with no clauses must have the cleanup flag set.  It is
3417     // theoretically possible, though highly unlikely, that we eliminated all
3418     // clauses.  If so, force the cleanup flag to true.
3419     if (NewClauses.empty())
3420       CleanupFlag = true;
3421     NLI->setCleanup(CleanupFlag);
3422     return NLI;
3423   }
3424 
3425   // Even if none of the clauses changed, we may nonetheless have understood
3426   // that the cleanup flag is pointless.  Clear it if so.
3427   if (LI.isCleanup() != CleanupFlag) {
3428     assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
3429     LI.setCleanup(CleanupFlag);
3430     return &LI;
3431   }
3432 
3433   return nullptr;
3434 }
3435 
visitFreeze(FreezeInst & I)3436 Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) {
3437   Value *Op0 = I.getOperand(0);
3438 
3439   if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I)))
3440     return replaceInstUsesWith(I, V);
3441 
3442   // freeze (phi const, x) --> phi const, (freeze x)
3443   if (auto *PN = dyn_cast<PHINode>(Op0)) {
3444     if (Instruction *NV = foldOpIntoPhi(I, PN))
3445       return NV;
3446   }
3447 
3448   if (match(Op0, m_Undef())) {
3449     // If I is freeze(undef), see its uses and fold it to the best constant.
3450     // - or: pick -1
3451     // - select's condition: pick the value that leads to choosing a constant
3452     // - other ops: pick 0
3453     Constant *BestValue = nullptr;
3454     Constant *NullValue = Constant::getNullValue(I.getType());
3455     for (const auto *U : I.users()) {
3456       Constant *C = NullValue;
3457 
3458       if (match(U, m_Or(m_Value(), m_Value())))
3459         C = Constant::getAllOnesValue(I.getType());
3460       else if (const auto *SI = dyn_cast<SelectInst>(U)) {
3461         if (SI->getCondition() == &I) {
3462           APInt CondVal(1, isa<Constant>(SI->getFalseValue()) ? 0 : 1);
3463           C = Constant::getIntegerValue(I.getType(), CondVal);
3464         }
3465       }
3466 
3467       if (!BestValue)
3468         BestValue = C;
3469       else if (BestValue != C)
3470         BestValue = NullValue;
3471     }
3472 
3473     return replaceInstUsesWith(I, BestValue);
3474   }
3475 
3476   return nullptr;
3477 }
3478 
3479 /// Try to move the specified instruction from its current block into the
3480 /// beginning of DestBlock, which can only happen if it's safe to move the
3481 /// instruction past all of the instructions between it and the end of its
3482 /// block.
TryToSinkInstruction(Instruction * I,BasicBlock * DestBlock)3483 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
3484   assert(I->getSingleUndroppableUse() && "Invariants didn't hold!");
3485   BasicBlock *SrcBlock = I->getParent();
3486 
3487   // Cannot move control-flow-involving, volatile loads, vaarg, etc.
3488   if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() ||
3489       I->isTerminator())
3490     return false;
3491 
3492   // Do not sink static or dynamic alloca instructions. Static allocas must
3493   // remain in the entry block, and dynamic allocas must not be sunk in between
3494   // a stacksave / stackrestore pair, which would incorrectly shorten its
3495   // lifetime.
3496   if (isa<AllocaInst>(I))
3497     return false;
3498 
3499   // Do not sink into catchswitch blocks.
3500   if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
3501     return false;
3502 
3503   // Do not sink convergent call instructions.
3504   if (auto *CI = dyn_cast<CallInst>(I)) {
3505     if (CI->isConvergent())
3506       return false;
3507   }
3508   // We can only sink load instructions if there is nothing between the load and
3509   // the end of block that could change the value.
3510   if (I->mayReadFromMemory()) {
3511     // We don't want to do any sophisticated alias analysis, so we only check
3512     // the instructions after I in I's parent block if we try to sink to its
3513     // successor block.
3514     if (DestBlock->getUniquePredecessor() != I->getParent())
3515       return false;
3516     for (BasicBlock::iterator Scan = I->getIterator(),
3517                               E = I->getParent()->end();
3518          Scan != E; ++Scan)
3519       if (Scan->mayWriteToMemory())
3520         return false;
3521   }
3522 
3523   I->dropDroppableUses([DestBlock](const Use *U) {
3524     if (auto *I = dyn_cast<Instruction>(U->getUser()))
3525       return I->getParent() != DestBlock;
3526     return true;
3527   });
3528   /// FIXME: We could remove droppable uses that are not dominated by
3529   /// the new position.
3530 
3531   BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
3532   I->moveBefore(&*InsertPos);
3533   ++NumSunkInst;
3534 
3535   // Also sink all related debug uses from the source basic block. Otherwise we
3536   // get debug use before the def. Attempt to salvage debug uses first, to
3537   // maximise the range variables have location for. If we cannot salvage, then
3538   // mark the location undef: we know it was supposed to receive a new location
3539   // here, but that computation has been sunk.
3540   SmallVector<DbgVariableIntrinsic *, 2> DbgUsers;
3541   findDbgUsers(DbgUsers, I);
3542 
3543   // Update the arguments of a dbg.declare instruction, so that it
3544   // does not point into a sunk instruction.
3545   auto updateDbgDeclare = [&I](DbgVariableIntrinsic *DII) {
3546     if (!isa<DbgDeclareInst>(DII))
3547       return false;
3548 
3549     if (isa<CastInst>(I))
3550       DII->setOperand(
3551           0, MetadataAsValue::get(I->getContext(),
3552                                   ValueAsMetadata::get(I->getOperand(0))));
3553     return true;
3554   };
3555 
3556   SmallVector<DbgVariableIntrinsic *, 2> DIIClones;
3557   for (auto User : DbgUsers) {
3558     // A dbg.declare instruction should not be cloned, since there can only be
3559     // one per variable fragment. It should be left in the original place
3560     // because the sunk instruction is not an alloca (otherwise we could not be
3561     // here).
3562     if (User->getParent() != SrcBlock || updateDbgDeclare(User))
3563       continue;
3564 
3565     DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone()));
3566     LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n');
3567   }
3568 
3569   // Perform salvaging without the clones, then sink the clones.
3570   if (!DIIClones.empty()) {
3571     salvageDebugInfoForDbgValues(*I, DbgUsers);
3572     for (auto &DIIClone : DIIClones) {
3573       DIIClone->insertBefore(&*InsertPos);
3574       LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n');
3575     }
3576   }
3577 
3578   return true;
3579 }
3580 
run()3581 bool InstCombinerImpl::run() {
3582   while (!Worklist.isEmpty()) {
3583     // Walk deferred instructions in reverse order, and push them to the
3584     // worklist, which means they'll end up popped from the worklist in-order.
3585     while (Instruction *I = Worklist.popDeferred()) {
3586       // Check to see if we can DCE the instruction. We do this already here to
3587       // reduce the number of uses and thus allow other folds to trigger.
3588       // Note that eraseInstFromFunction() may push additional instructions on
3589       // the deferred worklist, so this will DCE whole instruction chains.
3590       if (isInstructionTriviallyDead(I, &TLI)) {
3591         eraseInstFromFunction(*I);
3592         ++NumDeadInst;
3593         continue;
3594       }
3595 
3596       Worklist.push(I);
3597     }
3598 
3599     Instruction *I = Worklist.removeOne();
3600     if (I == nullptr) continue;  // skip null values.
3601 
3602     // Check to see if we can DCE the instruction.
3603     if (isInstructionTriviallyDead(I, &TLI)) {
3604       eraseInstFromFunction(*I);
3605       ++NumDeadInst;
3606       continue;
3607     }
3608 
3609     if (!DebugCounter::shouldExecute(VisitCounter))
3610       continue;
3611 
3612     // Instruction isn't dead, see if we can constant propagate it.
3613     if (!I->use_empty() &&
3614         (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
3615       if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) {
3616         LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I
3617                           << '\n');
3618 
3619         // Add operands to the worklist.
3620         replaceInstUsesWith(*I, C);
3621         ++NumConstProp;
3622         if (isInstructionTriviallyDead(I, &TLI))
3623           eraseInstFromFunction(*I);
3624         MadeIRChange = true;
3625         continue;
3626       }
3627     }
3628 
3629     // See if we can trivially sink this instruction to its user if we can
3630     // prove that the successor is not executed more frequently than our block.
3631     if (EnableCodeSinking)
3632       if (Use *SingleUse = I->getSingleUndroppableUse()) {
3633         BasicBlock *BB = I->getParent();
3634         Instruction *UserInst = cast<Instruction>(SingleUse->getUser());
3635         BasicBlock *UserParent;
3636 
3637         // Get the block the use occurs in.
3638         if (PHINode *PN = dyn_cast<PHINode>(UserInst))
3639           UserParent = PN->getIncomingBlock(*SingleUse);
3640         else
3641           UserParent = UserInst->getParent();
3642 
3643         if (UserParent != BB) {
3644           // See if the user is one of our successors that has only one
3645           // predecessor, so that we don't have to split the critical edge.
3646           bool ShouldSink = UserParent->getUniquePredecessor() == BB;
3647           // Another option where we can sink is a block that ends with a
3648           // terminator that does not pass control to other block (such as
3649           // return or unreachable). In this case:
3650           //   - I dominates the User (by SSA form);
3651           //   - the User will be executed at most once.
3652           // So sinking I down to User is always profitable or neutral.
3653           if (!ShouldSink) {
3654             auto *Term = UserParent->getTerminator();
3655             ShouldSink = isa<ReturnInst>(Term) || isa<UnreachableInst>(Term);
3656           }
3657           if (ShouldSink) {
3658             assert(DT.dominates(BB, UserParent) &&
3659                    "Dominance relation broken?");
3660             // Okay, the CFG is simple enough, try to sink this instruction.
3661             if (TryToSinkInstruction(I, UserParent)) {
3662               LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
3663               MadeIRChange = true;
3664               // We'll add uses of the sunk instruction below, but since sinking
3665               // can expose opportunities for it's *operands* add them to the
3666               // worklist
3667               for (Use &U : I->operands())
3668                 if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
3669                   Worklist.push(OpI);
3670             }
3671           }
3672         }
3673       }
3674 
3675     // Now that we have an instruction, try combining it to simplify it.
3676     Builder.SetInsertPoint(I);
3677     Builder.SetCurrentDebugLocation(I->getDebugLoc());
3678 
3679 #ifndef NDEBUG
3680     std::string OrigI;
3681 #endif
3682     LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
3683     LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
3684 
3685     if (Instruction *Result = visit(*I)) {
3686       ++NumCombined;
3687       // Should we replace the old instruction with a new one?
3688       if (Result != I) {
3689         LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
3690                           << "    New = " << *Result << '\n');
3691 
3692         if (I->getDebugLoc())
3693           Result->setDebugLoc(I->getDebugLoc());
3694         // Everything uses the new instruction now.
3695         I->replaceAllUsesWith(Result);
3696 
3697         // Move the name to the new instruction first.
3698         Result->takeName(I);
3699 
3700         // Insert the new instruction into the basic block...
3701         BasicBlock *InstParent = I->getParent();
3702         BasicBlock::iterator InsertPos = I->getIterator();
3703 
3704         // Are we replace a PHI with something that isn't a PHI, or vice versa?
3705         if (isa<PHINode>(Result) != isa<PHINode>(I)) {
3706           // We need to fix up the insertion point.
3707           if (isa<PHINode>(I)) // PHI -> Non-PHI
3708             InsertPos = InstParent->getFirstInsertionPt();
3709           else // Non-PHI -> PHI
3710             InsertPos = InstParent->getFirstNonPHI()->getIterator();
3711         }
3712 
3713         InstParent->getInstList().insert(InsertPos, Result);
3714 
3715         // Push the new instruction and any users onto the worklist.
3716         Worklist.pushUsersToWorkList(*Result);
3717         Worklist.push(Result);
3718 
3719         eraseInstFromFunction(*I);
3720       } else {
3721         LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
3722                           << "    New = " << *I << '\n');
3723 
3724         // If the instruction was modified, it's possible that it is now dead.
3725         // if so, remove it.
3726         if (isInstructionTriviallyDead(I, &TLI)) {
3727           eraseInstFromFunction(*I);
3728         } else {
3729           Worklist.pushUsersToWorkList(*I);
3730           Worklist.push(I);
3731         }
3732       }
3733       MadeIRChange = true;
3734     }
3735   }
3736 
3737   Worklist.zap();
3738   return MadeIRChange;
3739 }
3740 
3741 /// Populate the IC worklist from a function, by walking it in depth-first
3742 /// order and adding all reachable code to the worklist.
3743 ///
3744 /// This has a couple of tricks to make the code faster and more powerful.  In
3745 /// particular, we constant fold and DCE instructions as we go, to avoid adding
3746 /// them to the worklist (this significantly speeds up instcombine on code where
3747 /// many instructions are dead or constant).  Additionally, if we find a branch
3748 /// whose condition is a known constant, we only visit the reachable successors.
prepareICWorklistFromFunction(Function & F,const DataLayout & DL,const TargetLibraryInfo * TLI,InstCombineWorklist & ICWorklist)3749 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
3750                                           const TargetLibraryInfo *TLI,
3751                                           InstCombineWorklist &ICWorklist) {
3752   bool MadeIRChange = false;
3753   SmallPtrSet<BasicBlock *, 32> Visited;
3754   SmallVector<BasicBlock*, 256> Worklist;
3755   Worklist.push_back(&F.front());
3756 
3757   SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
3758   DenseMap<Constant *, Constant *> FoldedConstants;
3759 
3760   do {
3761     BasicBlock *BB = Worklist.pop_back_val();
3762 
3763     // We have now visited this block!  If we've already been here, ignore it.
3764     if (!Visited.insert(BB).second)
3765       continue;
3766 
3767     for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
3768       Instruction *Inst = &*BBI++;
3769 
3770       // ConstantProp instruction if trivially constant.
3771       if (!Inst->use_empty() &&
3772           (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0))))
3773         if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
3774           LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst
3775                             << '\n');
3776           Inst->replaceAllUsesWith(C);
3777           ++NumConstProp;
3778           if (isInstructionTriviallyDead(Inst, TLI))
3779             Inst->eraseFromParent();
3780           MadeIRChange = true;
3781           continue;
3782         }
3783 
3784       // See if we can constant fold its operands.
3785       for (Use &U : Inst->operands()) {
3786         if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
3787           continue;
3788 
3789         auto *C = cast<Constant>(U);
3790         Constant *&FoldRes = FoldedConstants[C];
3791         if (!FoldRes)
3792           FoldRes = ConstantFoldConstant(C, DL, TLI);
3793 
3794         if (FoldRes != C) {
3795           LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst
3796                             << "\n    Old = " << *C
3797                             << "\n    New = " << *FoldRes << '\n');
3798           U = FoldRes;
3799           MadeIRChange = true;
3800         }
3801       }
3802 
3803       // Skip processing debug intrinsics in InstCombine. Processing these call instructions
3804       // consumes non-trivial amount of time and provides no value for the optimization.
3805       if (!isa<DbgInfoIntrinsic>(Inst))
3806         InstrsForInstCombineWorklist.push_back(Inst);
3807     }
3808 
3809     // Recursively visit successors.  If this is a branch or switch on a
3810     // constant, only visit the reachable successor.
3811     Instruction *TI = BB->getTerminator();
3812     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
3813       if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
3814         bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
3815         BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
3816         Worklist.push_back(ReachableBB);
3817         continue;
3818       }
3819     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
3820       if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
3821         Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor());
3822         continue;
3823       }
3824     }
3825 
3826     for (BasicBlock *SuccBB : successors(TI))
3827       Worklist.push_back(SuccBB);
3828   } while (!Worklist.empty());
3829 
3830   // Remove instructions inside unreachable blocks. This prevents the
3831   // instcombine code from having to deal with some bad special cases, and
3832   // reduces use counts of instructions.
3833   for (BasicBlock &BB : F) {
3834     if (Visited.count(&BB))
3835       continue;
3836 
3837     unsigned NumDeadInstInBB;
3838     unsigned NumDeadDbgInstInBB;
3839     std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) =
3840         removeAllNonTerminatorAndEHPadInstructions(&BB);
3841 
3842     MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0;
3843     NumDeadInst += NumDeadInstInBB;
3844   }
3845 
3846   // Once we've found all of the instructions to add to instcombine's worklist,
3847   // add them in reverse order.  This way instcombine will visit from the top
3848   // of the function down.  This jives well with the way that it adds all uses
3849   // of instructions to the worklist after doing a transformation, thus avoiding
3850   // some N^2 behavior in pathological cases.
3851   ICWorklist.reserve(InstrsForInstCombineWorklist.size());
3852   for (Instruction *Inst : reverse(InstrsForInstCombineWorklist)) {
3853     // DCE instruction if trivially dead. As we iterate in reverse program
3854     // order here, we will clean up whole chains of dead instructions.
3855     if (isInstructionTriviallyDead(Inst, TLI)) {
3856       ++NumDeadInst;
3857       LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
3858       salvageDebugInfo(*Inst);
3859       Inst->eraseFromParent();
3860       MadeIRChange = true;
3861       continue;
3862     }
3863 
3864     ICWorklist.push(Inst);
3865   }
3866 
3867   return MadeIRChange;
3868 }
3869 
combineInstructionsOverFunction(Function & F,InstCombineWorklist & Worklist,AliasAnalysis * AA,AssumptionCache & AC,TargetLibraryInfo & TLI,TargetTransformInfo & TTI,DominatorTree & DT,OptimizationRemarkEmitter & ORE,BlockFrequencyInfo * BFI,ProfileSummaryInfo * PSI,unsigned MaxIterations,LoopInfo * LI)3870 static bool combineInstructionsOverFunction(
3871     Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA,
3872     AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI,
3873     DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
3874     ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) {
3875   auto &DL = F.getParent()->getDataLayout();
3876   MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue());
3877 
3878   /// Builder - This is an IRBuilder that automatically inserts new
3879   /// instructions into the worklist when they are created.
3880   IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
3881       F.getContext(), TargetFolder(DL),
3882       IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
3883         Worklist.add(I);
3884         if (match(I, m_Intrinsic<Intrinsic::assume>()))
3885           AC.registerAssumption(cast<CallInst>(I));
3886       }));
3887 
3888   // Lower dbg.declare intrinsics otherwise their value may be clobbered
3889   // by instcombiner.
3890   bool MadeIRChange = false;
3891   if (ShouldLowerDbgDeclare)
3892     MadeIRChange = LowerDbgDeclare(F);
3893 
3894   // Iterate while there is work to do.
3895   unsigned Iteration = 0;
3896   while (true) {
3897     ++NumWorklistIterations;
3898     ++Iteration;
3899 
3900     if (Iteration > InfiniteLoopDetectionThreshold) {
3901       report_fatal_error(
3902           "Instruction Combining seems stuck in an infinite loop after " +
3903           Twine(InfiniteLoopDetectionThreshold) + " iterations.");
3904     }
3905 
3906     if (Iteration > MaxIterations) {
3907       LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations
3908                         << " on " << F.getName()
3909                         << " reached; stopping before reaching a fixpoint\n");
3910       break;
3911     }
3912 
3913     LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
3914                       << F.getName() << "\n");
3915 
3916     MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
3917 
3918     InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT,
3919                         ORE, BFI, PSI, DL, LI);
3920     IC.MaxArraySizeForCombine = MaxArraySize;
3921 
3922     if (!IC.run())
3923       break;
3924 
3925     MadeIRChange = true;
3926   }
3927 
3928   return MadeIRChange;
3929 }
3930 
InstCombinePass()3931 InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {}
3932 
InstCombinePass(unsigned MaxIterations)3933 InstCombinePass::InstCombinePass(unsigned MaxIterations)
3934     : MaxIterations(MaxIterations) {}
3935 
run(Function & F,FunctionAnalysisManager & AM)3936 PreservedAnalyses InstCombinePass::run(Function &F,
3937                                        FunctionAnalysisManager &AM) {
3938   auto &AC = AM.getResult<AssumptionAnalysis>(F);
3939   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
3940   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
3941   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
3942   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
3943 
3944   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
3945 
3946   auto *AA = &AM.getResult<AAManager>(F);
3947   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
3948   ProfileSummaryInfo *PSI =
3949       MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
3950   auto *BFI = (PSI && PSI->hasProfileSummary()) ?
3951       &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
3952 
3953   if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
3954                                        BFI, PSI, MaxIterations, LI))
3955     // No changes, all analyses are preserved.
3956     return PreservedAnalyses::all();
3957 
3958   // Mark all the analyses that instcombine updates as preserved.
3959   PreservedAnalyses PA;
3960   PA.preserveSet<CFGAnalyses>();
3961   PA.preserve<AAManager>();
3962   PA.preserve<BasicAA>();
3963   PA.preserve<GlobalsAA>();
3964   return PA;
3965 }
3966 
getAnalysisUsage(AnalysisUsage & AU) const3967 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
3968   AU.setPreservesCFG();
3969   AU.addRequired<AAResultsWrapperPass>();
3970   AU.addRequired<AssumptionCacheTracker>();
3971   AU.addRequired<TargetLibraryInfoWrapperPass>();
3972   AU.addRequired<TargetTransformInfoWrapperPass>();
3973   AU.addRequired<DominatorTreeWrapperPass>();
3974   AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
3975   AU.addPreserved<DominatorTreeWrapperPass>();
3976   AU.addPreserved<AAResultsWrapperPass>();
3977   AU.addPreserved<BasicAAWrapperPass>();
3978   AU.addPreserved<GlobalsAAWrapperPass>();
3979   AU.addRequired<ProfileSummaryInfoWrapperPass>();
3980   LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
3981 }
3982 
runOnFunction(Function & F)3983 bool InstructionCombiningPass::runOnFunction(Function &F) {
3984   if (skipFunction(F))
3985     return false;
3986 
3987   // Required analyses.
3988   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3989   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3990   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
3991   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3992   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3993   auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
3994 
3995   // Optional analyses.
3996   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
3997   auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
3998   ProfileSummaryInfo *PSI =
3999       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
4000   BlockFrequencyInfo *BFI =
4001       (PSI && PSI->hasProfileSummary()) ?
4002       &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
4003       nullptr;
4004 
4005   return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
4006                                          BFI, PSI, MaxIterations, LI);
4007 }
4008 
4009 char InstructionCombiningPass::ID = 0;
4010 
InstructionCombiningPass()4011 InstructionCombiningPass::InstructionCombiningPass()
4012     : FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) {
4013   initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
4014 }
4015 
InstructionCombiningPass(unsigned MaxIterations)4016 InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations)
4017     : FunctionPass(ID), MaxIterations(MaxIterations) {
4018   initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
4019 }
4020 
4021 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
4022                       "Combine redundant instructions", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)4023 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4024 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
4025 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
4026 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4027 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
4028 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
4029 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
4030 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
4031 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
4032 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
4033                     "Combine redundant instructions", false, false)
4034 
4035 // Initialization Routines
4036 void llvm::initializeInstCombine(PassRegistry &Registry) {
4037   initializeInstructionCombiningPassPass(Registry);
4038 }
4039 
LLVMInitializeInstCombine(LLVMPassRegistryRef R)4040 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
4041   initializeInstructionCombiningPassPass(*unwrap(R));
4042 }
4043 
createInstructionCombiningPass()4044 FunctionPass *llvm::createInstructionCombiningPass() {
4045   return new InstructionCombiningPass();
4046 }
4047 
createInstructionCombiningPass(unsigned MaxIterations)4048 FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) {
4049   return new InstructionCombiningPass(MaxIterations);
4050 }
4051 
LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM)4052 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) {
4053   unwrap(PM)->add(createInstructionCombiningPass());
4054 }
4055