1 /*
2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <stdlib.h>
12 #include <stdio.h>
13 #include <string.h>
14 #include <limits.h>
15 #include <assert.h>
16
17 #include "math.h"
18 #include "vp8/common/common.h"
19 #include "ratectrl.h"
20 #include "vp8/common/entropymode.h"
21 #include "vpx_mem/vpx_mem.h"
22 #include "vp8/common/systemdependent.h"
23 #include "encodemv.h"
24 #include "vpx_dsp/vpx_dsp_common.h"
25 #include "vpx_ports/system_state.h"
26
27 #define MIN_BPB_FACTOR 0.01
28 #define MAX_BPB_FACTOR 50
29
30 extern const MB_PREDICTION_MODE vp8_mode_order[MAX_MODES];
31
32 #ifdef MODE_STATS
33 extern int y_modes[5];
34 extern int uv_modes[4];
35 extern int b_modes[10];
36
37 extern int inter_y_modes[10];
38 extern int inter_uv_modes[4];
39 extern int inter_b_modes[10];
40 #endif
41
42 /* Bits Per MB at different Q (Multiplied by 512) */
43 #define BPER_MB_NORMBITS 9
44
45 /* Work in progress recalibration of baseline rate tables based on
46 * the assumption that bits per mb is inversely proportional to the
47 * quantizer value.
48 */
49 const int vp8_bits_per_mb[2][QINDEX_RANGE] = {
50 /* Intra case 450000/Qintra */
51 {
52 1125000, 900000, 750000, 642857, 562500, 500000, 450000, 450000, 409090,
53 375000, 346153, 321428, 300000, 281250, 264705, 264705, 250000, 236842,
54 225000, 225000, 214285, 214285, 204545, 204545, 195652, 195652, 187500,
55 180000, 180000, 173076, 166666, 160714, 155172, 150000, 145161, 140625,
56 136363, 132352, 128571, 125000, 121621, 121621, 118421, 115384, 112500,
57 109756, 107142, 104651, 102272, 100000, 97826, 97826, 95744, 93750,
58 91836, 90000, 88235, 86538, 84905, 83333, 81818, 80357, 78947,
59 77586, 76271, 75000, 73770, 72580, 71428, 70312, 69230, 68181,
60 67164, 66176, 65217, 64285, 63380, 62500, 61643, 60810, 60000,
61 59210, 59210, 58441, 57692, 56962, 56250, 55555, 54878, 54216,
62 53571, 52941, 52325, 51724, 51136, 50561, 49450, 48387, 47368,
63 46875, 45918, 45000, 44554, 44117, 43269, 42452, 41666, 40909,
64 40178, 39473, 38793, 38135, 36885, 36290, 35714, 35156, 34615,
65 34090, 33582, 33088, 32608, 32142, 31468, 31034, 30405, 29801,
66 29220, 28662,
67 },
68 /* Inter case 285000/Qinter */
69 {
70 712500, 570000, 475000, 407142, 356250, 316666, 285000, 259090, 237500,
71 219230, 203571, 190000, 178125, 167647, 158333, 150000, 142500, 135714,
72 129545, 123913, 118750, 114000, 109615, 105555, 101785, 98275, 95000,
73 91935, 89062, 86363, 83823, 81428, 79166, 77027, 75000, 73076,
74 71250, 69512, 67857, 66279, 64772, 63333, 61956, 60638, 59375,
75 58163, 57000, 55882, 54807, 53773, 52777, 51818, 50892, 50000,
76 49137, 47500, 45967, 44531, 43181, 41911, 40714, 39583, 38513,
77 37500, 36538, 35625, 34756, 33928, 33139, 32386, 31666, 30978,
78 30319, 29687, 29081, 28500, 27941, 27403, 26886, 26388, 25909,
79 25446, 25000, 24568, 23949, 23360, 22800, 22265, 21755, 21268,
80 20802, 20357, 19930, 19520, 19127, 18750, 18387, 18037, 17701,
81 17378, 17065, 16764, 16473, 16101, 15745, 15405, 15079, 14766,
82 14467, 14179, 13902, 13636, 13380, 13133, 12895, 12666, 12445,
83 12179, 11924, 11632, 11445, 11220, 11003, 10795, 10594, 10401,
84 10215, 10035,
85 }
86 };
87
88 static const int kf_boost_qadjustment[QINDEX_RANGE] = {
89 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142,
90 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157,
91 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172,
92 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187,
93 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 200, 201,
94 201, 202, 203, 203, 203, 204, 204, 205, 205, 206, 206, 207, 207, 208, 208,
95 209, 209, 210, 210, 211, 211, 212, 212, 213, 213, 214, 214, 215, 215, 216,
96 216, 217, 217, 218, 218, 219, 219, 220, 220, 220, 220, 220, 220, 220, 220,
97 220, 220, 220, 220, 220, 220, 220, 220,
98 };
99
100 /* #define GFQ_ADJUSTMENT (Q+100) */
101 #define GFQ_ADJUSTMENT vp8_gf_boost_qadjustment[Q]
102 const int vp8_gf_boost_qadjustment[QINDEX_RANGE] = {
103 80, 82, 84, 86, 88, 90, 92, 94, 96, 97, 98, 99, 100, 101, 102,
104 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
105 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
106 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147,
107 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162,
108 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177,
109 178, 179, 180, 181, 182, 183, 184, 184, 185, 185, 186, 186, 187, 187, 188,
110 188, 189, 189, 190, 190, 191, 191, 192, 192, 193, 193, 194, 194, 194, 194,
111 195, 195, 196, 196, 197, 197, 198, 198
112 };
113
114 /*
115 const int vp8_gf_boost_qadjustment[QINDEX_RANGE] =
116 {
117 100,101,102,103,104,105,105,106,
118 106,107,107,108,109,109,110,111,
119 112,113,114,115,116,117,118,119,
120 120,121,122,123,124,125,126,127,
121 128,129,130,131,132,133,134,135,
122 136,137,138,139,140,141,142,143,
123 144,145,146,147,148,149,150,151,
124 152,153,154,155,156,157,158,159,
125 160,161,162,163,164,165,166,167,
126 168,169,170,170,171,171,172,172,
127 173,173,173,174,174,174,175,175,
128 175,176,176,176,177,177,177,177,
129 178,178,179,179,180,180,181,181,
130 182,182,183,183,184,184,185,185,
131 186,186,187,187,188,188,189,189,
132 190,190,191,191,192,192,193,193,
133 };
134 */
135
136 static const int kf_gf_boost_qlimits[QINDEX_RANGE] = {
137 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220,
138 225, 230, 235, 240, 245, 250, 255, 260, 265, 270, 275, 280, 285, 290, 295,
139 300, 305, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430,
140 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580,
141 590, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600,
142 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600,
143 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600,
144 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600,
145 600, 600, 600, 600, 600, 600, 600, 600,
146 };
147
148 static const int gf_adjust_table[101] = {
149 100, 115, 130, 145, 160, 175, 190, 200, 210, 220, 230, 240, 260, 270, 280,
150 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 400, 400, 400,
151 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
152 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
153 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
154 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
155 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
156 };
157
158 static const int gf_intra_usage_adjustment[20] = {
159 125, 120, 115, 110, 105, 100, 95, 85, 80, 75,
160 70, 65, 60, 55, 50, 50, 50, 50, 50, 50,
161 };
162
163 static const int gf_interval_table[101] = {
164 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
165 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8,
166 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
167 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
168 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
169 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
170 };
171
172 static const unsigned int prior_key_frame_weight[KEY_FRAME_CONTEXT] = { 1, 2, 3,
173 4, 5 };
174
vp8_save_coding_context(VP8_COMP * cpi)175 void vp8_save_coding_context(VP8_COMP *cpi) {
176 CODING_CONTEXT *const cc = &cpi->coding_context;
177
178 /* Stores a snapshot of key state variables which can subsequently be
179 * restored with a call to vp8_restore_coding_context. These functions are
180 * intended for use in a re-code loop in vp8_compress_frame where the
181 * quantizer value is adjusted between loop iterations.
182 */
183
184 cc->frames_since_key = cpi->frames_since_key;
185 cc->filter_level = cpi->common.filter_level;
186 cc->frames_till_gf_update_due = cpi->frames_till_gf_update_due;
187 cc->frames_since_golden = cpi->frames_since_golden;
188
189 vp8_copy(cc->mvc, cpi->common.fc.mvc);
190 vp8_copy(cc->mvcosts, cpi->rd_costs.mvcosts);
191
192 vp8_copy(cc->ymode_prob, cpi->common.fc.ymode_prob);
193 vp8_copy(cc->uv_mode_prob, cpi->common.fc.uv_mode_prob);
194
195 vp8_copy(cc->ymode_count, cpi->mb.ymode_count);
196 vp8_copy(cc->uv_mode_count, cpi->mb.uv_mode_count);
197
198 /* Stats */
199 #ifdef MODE_STATS
200 vp8_copy(cc->y_modes, y_modes);
201 vp8_copy(cc->uv_modes, uv_modes);
202 vp8_copy(cc->b_modes, b_modes);
203 vp8_copy(cc->inter_y_modes, inter_y_modes);
204 vp8_copy(cc->inter_uv_modes, inter_uv_modes);
205 vp8_copy(cc->inter_b_modes, inter_b_modes);
206 #endif
207
208 cc->this_frame_percent_intra = cpi->this_frame_percent_intra;
209 }
210
vp8_restore_coding_context(VP8_COMP * cpi)211 void vp8_restore_coding_context(VP8_COMP *cpi) {
212 CODING_CONTEXT *const cc = &cpi->coding_context;
213
214 /* Restore key state variables to the snapshot state stored in the
215 * previous call to vp8_save_coding_context.
216 */
217
218 cpi->frames_since_key = cc->frames_since_key;
219 cpi->common.filter_level = cc->filter_level;
220 cpi->frames_till_gf_update_due = cc->frames_till_gf_update_due;
221 cpi->frames_since_golden = cc->frames_since_golden;
222
223 vp8_copy(cpi->common.fc.mvc, cc->mvc);
224
225 vp8_copy(cpi->rd_costs.mvcosts, cc->mvcosts);
226
227 vp8_copy(cpi->common.fc.ymode_prob, cc->ymode_prob);
228 vp8_copy(cpi->common.fc.uv_mode_prob, cc->uv_mode_prob);
229
230 vp8_copy(cpi->mb.ymode_count, cc->ymode_count);
231 vp8_copy(cpi->mb.uv_mode_count, cc->uv_mode_count);
232
233 /* Stats */
234 #ifdef MODE_STATS
235 vp8_copy(y_modes, cc->y_modes);
236 vp8_copy(uv_modes, cc->uv_modes);
237 vp8_copy(b_modes, cc->b_modes);
238 vp8_copy(inter_y_modes, cc->inter_y_modes);
239 vp8_copy(inter_uv_modes, cc->inter_uv_modes);
240 vp8_copy(inter_b_modes, cc->inter_b_modes);
241 #endif
242
243 cpi->this_frame_percent_intra = cc->this_frame_percent_intra;
244 }
245
vp8_setup_key_frame(VP8_COMP * cpi)246 void vp8_setup_key_frame(VP8_COMP *cpi) {
247 /* Setup for Key frame: */
248
249 vp8_default_coef_probs(&cpi->common);
250
251 memcpy(cpi->common.fc.mvc, vp8_default_mv_context,
252 sizeof(vp8_default_mv_context));
253 {
254 int flag[2] = { 1, 1 };
255 vp8_build_component_cost_table(
256 cpi->mb.mvcost, (const MV_CONTEXT *)cpi->common.fc.mvc, flag);
257 }
258
259 /* Make sure we initialize separate contexts for altref,gold, and normal.
260 * TODO shouldn't need 3 different copies of structure to do this!
261 */
262 memcpy(&cpi->lfc_a, &cpi->common.fc, sizeof(cpi->common.fc));
263 memcpy(&cpi->lfc_g, &cpi->common.fc, sizeof(cpi->common.fc));
264 memcpy(&cpi->lfc_n, &cpi->common.fc, sizeof(cpi->common.fc));
265
266 cpi->common.filter_level = cpi->common.base_qindex * 3 / 8;
267
268 /* Provisional interval before next GF */
269 if (cpi->auto_gold) {
270 cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
271 } else {
272 cpi->frames_till_gf_update_due = DEFAULT_GF_INTERVAL;
273 }
274
275 cpi->common.refresh_golden_frame = 1;
276 cpi->common.refresh_alt_ref_frame = 1;
277 }
278
estimate_bits_at_q(int frame_kind,int Q,int MBs,double correction_factor)279 static int estimate_bits_at_q(int frame_kind, int Q, int MBs,
280 double correction_factor) {
281 int Bpm = (int)(.5 + correction_factor * vp8_bits_per_mb[frame_kind][Q]);
282
283 /* Attempt to retain reasonable accuracy without overflow. The cutoff is
284 * chosen such that the maximum product of Bpm and MBs fits 31 bits. The
285 * largest Bpm takes 20 bits.
286 */
287 if (MBs > (1 << 11)) {
288 return (Bpm >> BPER_MB_NORMBITS) * MBs;
289 } else {
290 return (Bpm * MBs) >> BPER_MB_NORMBITS;
291 }
292 }
293
calc_iframe_target_size(VP8_COMP * cpi)294 static void calc_iframe_target_size(VP8_COMP *cpi) {
295 /* boost defaults to half second */
296 int kf_boost;
297 uint64_t target;
298
299 /* Clear down mmx registers to allow floating point in what follows */
300 vpx_clear_system_state();
301
302 if (cpi->oxcf.fixed_q >= 0) {
303 int Q = cpi->oxcf.key_q;
304
305 target = estimate_bits_at_q(INTRA_FRAME, Q, cpi->common.MBs,
306 cpi->key_frame_rate_correction_factor);
307 } else if (cpi->pass == 2) {
308 /* New Two pass RC */
309 target = cpi->per_frame_bandwidth;
310 }
311 /* First Frame is a special case */
312 else if (cpi->common.current_video_frame == 0) {
313 /* 1 Pass there is no information on which to base size so use
314 * bandwidth per second * fraction of the initial buffer
315 * level
316 */
317 target = cpi->oxcf.starting_buffer_level / 2;
318
319 if (target > cpi->oxcf.target_bandwidth * 3 / 2) {
320 target = cpi->oxcf.target_bandwidth * 3 / 2;
321 }
322 } else {
323 /* if this keyframe was forced, use a more recent Q estimate */
324 int Q = (cpi->common.frame_flags & FRAMEFLAGS_KEY) ? cpi->avg_frame_qindex
325 : cpi->ni_av_qi;
326
327 int initial_boost = 32; /* |3.0 * per_frame_bandwidth| */
328 /* Boost depends somewhat on frame rate: only used for 1 layer case. */
329 if (cpi->oxcf.number_of_layers == 1) {
330 kf_boost = VPXMAX(initial_boost, (int)(2 * cpi->output_framerate - 16));
331 } else {
332 /* Initial factor: set target size to: |3.0 * per_frame_bandwidth|. */
333 kf_boost = initial_boost;
334 }
335
336 /* adjustment up based on q: this factor ranges from ~1.2 to 2.2. */
337 kf_boost = kf_boost * kf_boost_qadjustment[Q] / 100;
338
339 /* frame separation adjustment ( down) */
340 if (cpi->frames_since_key < cpi->output_framerate / 2) {
341 kf_boost =
342 (int)(kf_boost * cpi->frames_since_key / (cpi->output_framerate / 2));
343 }
344
345 /* Minimal target size is |2* per_frame_bandwidth|. */
346 if (kf_boost < 16) kf_boost = 16;
347
348 target = ((16 + kf_boost) * cpi->per_frame_bandwidth) >> 4;
349 }
350
351 if (cpi->oxcf.rc_max_intra_bitrate_pct) {
352 unsigned int max_rate;
353 // This product may overflow unsigned int
354 uint64_t product = cpi->per_frame_bandwidth;
355 product *= cpi->oxcf.rc_max_intra_bitrate_pct;
356 product /= 100;
357 max_rate = (unsigned int)VPXMIN(INT_MAX, product);
358
359 if (target > max_rate) target = max_rate;
360 }
361
362 cpi->this_frame_target = (int)target;
363
364 /* TODO: if we separate rate targeting from Q targetting, move this.
365 * Reset the active worst quality to the baseline value for key frames.
366 */
367 if (cpi->pass != 2) cpi->active_worst_quality = cpi->worst_quality;
368
369 #if 0
370 {
371 FILE *f;
372
373 f = fopen("kf_boost.stt", "a");
374 fprintf(f, " %8u %10d %10d %10d\n",
375 cpi->common.current_video_frame, cpi->gfu_boost, cpi->baseline_gf_interval, cpi->source_alt_ref_pending);
376
377 fclose(f);
378 }
379 #endif
380 }
381
382 /* Do the best we can to define the parameters for the next GF based on what
383 * information we have available.
384 */
calc_gf_params(VP8_COMP * cpi)385 static void calc_gf_params(VP8_COMP *cpi) {
386 int Q =
387 (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q;
388 int Boost = 0;
389
390 int gf_frame_useage = 0; /* Golden frame useage since last GF */
391 int tot_mbs = cpi->recent_ref_frame_usage[INTRA_FRAME] +
392 cpi->recent_ref_frame_usage[LAST_FRAME] +
393 cpi->recent_ref_frame_usage[GOLDEN_FRAME] +
394 cpi->recent_ref_frame_usage[ALTREF_FRAME];
395
396 int pct_gf_active = (100 * cpi->gf_active_count) /
397 (cpi->common.mb_rows * cpi->common.mb_cols);
398
399 if (tot_mbs) {
400 gf_frame_useage = (cpi->recent_ref_frame_usage[GOLDEN_FRAME] +
401 cpi->recent_ref_frame_usage[ALTREF_FRAME]) *
402 100 / tot_mbs;
403 }
404
405 if (pct_gf_active > gf_frame_useage) gf_frame_useage = pct_gf_active;
406
407 /* Not two pass */
408 if (cpi->pass != 2) {
409 /* Single Pass lagged mode: TBD */
410 if (0) {
411 }
412
413 /* Single Pass compression: Has to use current and historical data */
414 else {
415 #if 0
416 /* Experimental code */
417 int index = cpi->one_pass_frame_index;
418 int frames_to_scan = (cpi->max_gf_interval <= MAX_LAG_BUFFERS) ? cpi->max_gf_interval : MAX_LAG_BUFFERS;
419
420 /* ************** Experimental code - incomplete */
421 /*
422 double decay_val = 1.0;
423 double IIAccumulator = 0.0;
424 double last_iiaccumulator = 0.0;
425 double IIRatio;
426
427 cpi->one_pass_frame_index = cpi->common.current_video_frame%MAX_LAG_BUFFERS;
428
429 for ( i = 0; i < (frames_to_scan - 1); i++ )
430 {
431 if ( index < 0 )
432 index = MAX_LAG_BUFFERS;
433 index --;
434
435 if ( cpi->one_pass_frame_stats[index].frame_coded_error > 0.0 )
436 {
437 IIRatio = cpi->one_pass_frame_stats[index].frame_intra_error / cpi->one_pass_frame_stats[index].frame_coded_error;
438
439 if ( IIRatio > 30.0 )
440 IIRatio = 30.0;
441 }
442 else
443 IIRatio = 30.0;
444
445 IIAccumulator += IIRatio * decay_val;
446
447 decay_val = decay_val * cpi->one_pass_frame_stats[index].frame_pcnt_inter;
448
449 if ( (i > MIN_GF_INTERVAL) &&
450 ((IIAccumulator - last_iiaccumulator) < 2.0) )
451 {
452 break;
453 }
454 last_iiaccumulator = IIAccumulator;
455 }
456
457 Boost = IIAccumulator*100.0/16.0;
458 cpi->baseline_gf_interval = i;
459
460 */
461 #else
462
463 /*************************************************************/
464 /* OLD code */
465
466 /* Adjust boost based upon ambient Q */
467 Boost = GFQ_ADJUSTMENT;
468
469 /* Adjust based upon most recently measure intra useage */
470 Boost = Boost *
471 gf_intra_usage_adjustment[(cpi->this_frame_percent_intra < 15)
472 ? cpi->this_frame_percent_intra
473 : 14] /
474 100;
475
476 /* Adjust gf boost based upon GF usage since last GF */
477 Boost = Boost * gf_adjust_table[gf_frame_useage] / 100;
478 #endif
479 }
480
481 /* golden frame boost without recode loop often goes awry. be
482 * safe by keeping numbers down.
483 */
484 if (!cpi->sf.recode_loop) {
485 if (cpi->compressor_speed == 2) Boost = Boost / 2;
486 }
487
488 /* Apply an upper limit based on Q for 1 pass encodes */
489 if (Boost > kf_gf_boost_qlimits[Q] && (cpi->pass == 0)) {
490 Boost = kf_gf_boost_qlimits[Q];
491
492 /* Apply lower limits to boost. */
493 } else if (Boost < 110) {
494 Boost = 110;
495 }
496
497 /* Note the boost used */
498 cpi->last_boost = Boost;
499 }
500
501 /* Estimate next interval
502 * This is updated once the real frame size/boost is known.
503 */
504 if (cpi->oxcf.fixed_q == -1) {
505 if (cpi->pass == 2) { /* 2 Pass */
506 cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
507 } else { /* 1 Pass */
508 cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
509
510 if (cpi->last_boost > 750) cpi->frames_till_gf_update_due++;
511
512 if (cpi->last_boost > 1000) cpi->frames_till_gf_update_due++;
513
514 if (cpi->last_boost > 1250) cpi->frames_till_gf_update_due++;
515
516 if (cpi->last_boost >= 1500) cpi->frames_till_gf_update_due++;
517
518 if (gf_interval_table[gf_frame_useage] > cpi->frames_till_gf_update_due) {
519 cpi->frames_till_gf_update_due = gf_interval_table[gf_frame_useage];
520 }
521
522 if (cpi->frames_till_gf_update_due > cpi->max_gf_interval) {
523 cpi->frames_till_gf_update_due = cpi->max_gf_interval;
524 }
525 }
526 } else {
527 cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
528 }
529
530 /* ARF on or off */
531 if (cpi->pass != 2) {
532 /* For now Alt ref is not allowed except in 2 pass modes. */
533 cpi->source_alt_ref_pending = 0;
534
535 /*if ( cpi->oxcf.fixed_q == -1)
536 {
537 if ( cpi->oxcf.play_alternate && (cpi->last_boost > (100 +
538 (AF_THRESH*cpi->frames_till_gf_update_due)) ) )
539 cpi->source_alt_ref_pending = 1;
540 else
541 cpi->source_alt_ref_pending = 0;
542 }*/
543 }
544 }
545
calc_pframe_target_size(VP8_COMP * cpi)546 static void calc_pframe_target_size(VP8_COMP *cpi) {
547 int min_frame_target;
548 int old_per_frame_bandwidth = cpi->per_frame_bandwidth;
549
550 if (cpi->current_layer > 0) {
551 cpi->per_frame_bandwidth =
552 cpi->layer_context[cpi->current_layer].avg_frame_size_for_layer;
553 }
554
555 min_frame_target = 0;
556
557 if (cpi->pass == 2) {
558 min_frame_target = cpi->min_frame_bandwidth;
559
560 if (min_frame_target < (cpi->av_per_frame_bandwidth >> 5)) {
561 min_frame_target = cpi->av_per_frame_bandwidth >> 5;
562 }
563 } else if (min_frame_target < cpi->per_frame_bandwidth / 4) {
564 min_frame_target = cpi->per_frame_bandwidth / 4;
565 }
566
567 /* Special alt reference frame case */
568 if ((cpi->common.refresh_alt_ref_frame) &&
569 (cpi->oxcf.number_of_layers == 1)) {
570 if (cpi->pass == 2) {
571 /* Per frame bit target for the alt ref frame */
572 cpi->per_frame_bandwidth = cpi->twopass.gf_bits;
573 cpi->this_frame_target = cpi->per_frame_bandwidth;
574 }
575
576 /* One Pass ??? TBD */
577 }
578
579 /* Normal frames (gf,and inter) */
580 else {
581 /* 2 pass */
582 if (cpi->pass == 2) {
583 cpi->this_frame_target = cpi->per_frame_bandwidth;
584 }
585 /* 1 pass */
586 else {
587 int Adjustment;
588 /* Make rate adjustment to recover bits spent in key frame
589 * Test to see if the key frame inter data rate correction
590 * should still be in force
591 */
592 if (cpi->kf_overspend_bits > 0) {
593 Adjustment = (cpi->kf_bitrate_adjustment <= cpi->kf_overspend_bits)
594 ? cpi->kf_bitrate_adjustment
595 : cpi->kf_overspend_bits;
596
597 if (Adjustment > (cpi->per_frame_bandwidth - min_frame_target)) {
598 Adjustment = (cpi->per_frame_bandwidth - min_frame_target);
599 }
600
601 cpi->kf_overspend_bits -= Adjustment;
602
603 /* Calculate an inter frame bandwidth target for the next
604 * few frames designed to recover any extra bits spent on
605 * the key frame.
606 */
607 cpi->this_frame_target = cpi->per_frame_bandwidth - Adjustment;
608
609 if (cpi->this_frame_target < min_frame_target) {
610 cpi->this_frame_target = min_frame_target;
611 }
612 } else {
613 cpi->this_frame_target = cpi->per_frame_bandwidth;
614 }
615
616 /* If appropriate make an adjustment to recover bits spent on a
617 * recent GF
618 */
619 if ((cpi->gf_overspend_bits > 0) &&
620 (cpi->this_frame_target > min_frame_target)) {
621 Adjustment = (cpi->non_gf_bitrate_adjustment <= cpi->gf_overspend_bits)
622 ? cpi->non_gf_bitrate_adjustment
623 : cpi->gf_overspend_bits;
624
625 if (Adjustment > (cpi->this_frame_target - min_frame_target)) {
626 Adjustment = (cpi->this_frame_target - min_frame_target);
627 }
628
629 cpi->gf_overspend_bits -= Adjustment;
630 cpi->this_frame_target -= Adjustment;
631 }
632
633 /* Apply small + and - boosts for non gf frames */
634 if ((cpi->last_boost > 150) && (cpi->frames_till_gf_update_due > 0) &&
635 (cpi->current_gf_interval >= (MIN_GF_INTERVAL << 1))) {
636 /* % Adjustment limited to the range 1% to 10% */
637 Adjustment = (cpi->last_boost - 100) >> 5;
638
639 if (Adjustment < 1) {
640 Adjustment = 1;
641 } else if (Adjustment > 10) {
642 Adjustment = 10;
643 }
644
645 /* Convert to bits */
646 Adjustment = (cpi->this_frame_target * Adjustment) / 100;
647
648 if (Adjustment > (cpi->this_frame_target - min_frame_target)) {
649 Adjustment = (cpi->this_frame_target - min_frame_target);
650 }
651
652 if (cpi->frames_since_golden == (cpi->current_gf_interval >> 1)) {
653 Adjustment = (cpi->current_gf_interval - 1) * Adjustment;
654 // Limit adjustment to 10% of current target.
655 if (Adjustment > (10 * cpi->this_frame_target) / 100) {
656 Adjustment = (10 * cpi->this_frame_target) / 100;
657 }
658 cpi->this_frame_target += Adjustment;
659 } else {
660 cpi->this_frame_target -= Adjustment;
661 }
662 }
663 }
664 }
665
666 /* Sanity check that the total sum of adjustments is not above the
667 * maximum allowed That is that having allowed for KF and GF penalties
668 * we have not pushed the current interframe target to low. If the
669 * adjustment we apply here is not capable of recovering all the extra
670 * bits we have spent in the KF or GF then the remainder will have to
671 * be recovered over a longer time span via other buffer / rate control
672 * mechanisms.
673 */
674 if (cpi->this_frame_target < min_frame_target) {
675 cpi->this_frame_target = min_frame_target;
676 }
677
678 if (!cpi->common.refresh_alt_ref_frame) {
679 /* Note the baseline target data rate for this inter frame. */
680 cpi->inter_frame_target = cpi->this_frame_target;
681 }
682
683 /* One Pass specific code */
684 if (cpi->pass == 0) {
685 /* Adapt target frame size with respect to any buffering constraints: */
686 if (cpi->buffered_mode) {
687 int one_percent_bits = (int)(1 + cpi->oxcf.optimal_buffer_level / 100);
688
689 if ((cpi->buffer_level < cpi->oxcf.optimal_buffer_level) ||
690 (cpi->bits_off_target < cpi->oxcf.optimal_buffer_level)) {
691 int percent_low = 0;
692
693 /* Decide whether or not we need to adjust the frame data
694 * rate target.
695 *
696 * If we are are below the optimal buffer fullness level
697 * and adherence to buffering constraints is important to
698 * the end usage then adjust the per frame target.
699 */
700 if ((cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) &&
701 (cpi->buffer_level < cpi->oxcf.optimal_buffer_level)) {
702 percent_low =
703 (int)((cpi->oxcf.optimal_buffer_level - cpi->buffer_level) /
704 one_percent_bits);
705 }
706 /* Are we overshooting the long term clip data rate... */
707 else if (cpi->bits_off_target < 0) {
708 /* Adjust per frame data target downwards to compensate. */
709 percent_low =
710 (int)(100 * -cpi->bits_off_target / (cpi->total_byte_count * 8));
711 }
712
713 if (percent_low > cpi->oxcf.under_shoot_pct) {
714 percent_low = cpi->oxcf.under_shoot_pct;
715 } else if (percent_low < 0) {
716 percent_low = 0;
717 }
718
719 /* lower the target bandwidth for this frame. */
720 cpi->this_frame_target -= (cpi->this_frame_target * percent_low) / 200;
721
722 /* Are we using allowing control of active_worst_allowed_q
723 * according to buffer level.
724 */
725 if (cpi->auto_worst_q && cpi->ni_frames > 150) {
726 int64_t critical_buffer_level;
727
728 /* For streaming applications the most important factor is
729 * cpi->buffer_level as this takes into account the
730 * specified short term buffering constraints. However,
731 * hitting the long term clip data rate target is also
732 * important.
733 */
734 if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) {
735 /* Take the smaller of cpi->buffer_level and
736 * cpi->bits_off_target
737 */
738 critical_buffer_level = (cpi->buffer_level < cpi->bits_off_target)
739 ? cpi->buffer_level
740 : cpi->bits_off_target;
741 }
742 /* For local file playback short term buffering constraints
743 * are less of an issue
744 */
745 else {
746 /* Consider only how we are doing for the clip as a
747 * whole
748 */
749 critical_buffer_level = cpi->bits_off_target;
750 }
751
752 /* Set the active worst quality based upon the selected
753 * buffer fullness number.
754 */
755 if (critical_buffer_level < cpi->oxcf.optimal_buffer_level) {
756 if (critical_buffer_level > (cpi->oxcf.optimal_buffer_level >> 2)) {
757 int64_t qadjustment_range = cpi->worst_quality - cpi->ni_av_qi;
758 int64_t above_base = (critical_buffer_level -
759 (cpi->oxcf.optimal_buffer_level >> 2));
760
761 /* Step active worst quality down from
762 * cpi->ni_av_qi when (critical_buffer_level ==
763 * cpi->optimal_buffer_level) to
764 * cpi->worst_quality when
765 * (critical_buffer_level ==
766 * cpi->optimal_buffer_level >> 2)
767 */
768 cpi->active_worst_quality =
769 cpi->worst_quality -
770 (int)((qadjustment_range * above_base) /
771 (cpi->oxcf.optimal_buffer_level * 3 >> 2));
772 } else {
773 cpi->active_worst_quality = cpi->worst_quality;
774 }
775 } else {
776 cpi->active_worst_quality = cpi->ni_av_qi;
777 }
778 } else {
779 cpi->active_worst_quality = cpi->worst_quality;
780 }
781 } else {
782 int percent_high = 0;
783
784 if ((cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) &&
785 (cpi->buffer_level > cpi->oxcf.optimal_buffer_level)) {
786 percent_high =
787 (int)((cpi->buffer_level - cpi->oxcf.optimal_buffer_level) /
788 one_percent_bits);
789 } else if (cpi->bits_off_target > cpi->oxcf.optimal_buffer_level) {
790 percent_high =
791 (int)((100 * cpi->bits_off_target) / (cpi->total_byte_count * 8));
792 }
793
794 if (percent_high > cpi->oxcf.over_shoot_pct) {
795 percent_high = cpi->oxcf.over_shoot_pct;
796 } else if (percent_high < 0) {
797 percent_high = 0;
798 }
799
800 cpi->this_frame_target += (cpi->this_frame_target * percent_high) / 200;
801
802 /* Are we allowing control of active_worst_allowed_q according
803 * to buffer level.
804 */
805 if (cpi->auto_worst_q && cpi->ni_frames > 150) {
806 /* When using the relaxed buffer model stick to the
807 * user specified value
808 */
809 cpi->active_worst_quality = cpi->ni_av_qi;
810 } else {
811 cpi->active_worst_quality = cpi->worst_quality;
812 }
813 }
814
815 /* Set active_best_quality to prevent quality rising too high */
816 cpi->active_best_quality = cpi->best_quality;
817
818 /* Worst quality obviously must not be better than best quality */
819 if (cpi->active_worst_quality <= cpi->active_best_quality) {
820 cpi->active_worst_quality = cpi->active_best_quality + 1;
821 }
822
823 if (cpi->active_worst_quality > 127) cpi->active_worst_quality = 127;
824 }
825 /* Unbuffered mode (eg. video conferencing) */
826 else {
827 /* Set the active worst quality */
828 cpi->active_worst_quality = cpi->worst_quality;
829 }
830
831 /* Special trap for constrained quality mode
832 * "active_worst_quality" may never drop below cq level
833 * for any frame type.
834 */
835 if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY &&
836 cpi->active_worst_quality < cpi->cq_target_quality) {
837 cpi->active_worst_quality = cpi->cq_target_quality;
838 }
839 }
840
841 /* Test to see if we have to drop a frame
842 * The auto-drop frame code is only used in buffered mode.
843 * In unbufferd mode (eg vide conferencing) the descision to
844 * code or drop a frame is made outside the codec in response to real
845 * world comms or buffer considerations.
846 */
847 if (cpi->drop_frames_allowed &&
848 (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) &&
849 ((cpi->common.frame_type != KEY_FRAME))) {
850 /* Check for a buffer underun-crisis in which case we have to drop
851 * a frame
852 */
853 if ((cpi->buffer_level < 0)) {
854 #if 0
855 FILE *f = fopen("dec.stt", "a");
856 fprintf(f, "%10d %10d %10d %10d ***** BUFFER EMPTY\n",
857 (int) cpi->common.current_video_frame,
858 cpi->decimation_factor, cpi->common.horiz_scale,
859 (cpi->buffer_level * 100) / cpi->oxcf.optimal_buffer_level);
860 fclose(f);
861 #endif
862 cpi->drop_frame = 1;
863
864 /* Update the buffer level variable. */
865 cpi->bits_off_target += cpi->av_per_frame_bandwidth;
866 if (cpi->bits_off_target > cpi->oxcf.maximum_buffer_size) {
867 cpi->bits_off_target = (int)cpi->oxcf.maximum_buffer_size;
868 }
869 cpi->buffer_level = cpi->bits_off_target;
870
871 if (cpi->oxcf.number_of_layers > 1) {
872 unsigned int i;
873
874 // Propagate bits saved by dropping the frame to higher layers.
875 for (i = cpi->current_layer + 1; i < cpi->oxcf.number_of_layers; ++i) {
876 LAYER_CONTEXT *lc = &cpi->layer_context[i];
877 lc->bits_off_target += (int)(lc->target_bandwidth / lc->framerate);
878 if (lc->bits_off_target > lc->maximum_buffer_size) {
879 lc->bits_off_target = lc->maximum_buffer_size;
880 }
881 lc->buffer_level = lc->bits_off_target;
882 }
883 }
884 }
885 }
886
887 /* Adjust target frame size for Golden Frames: */
888 if (cpi->oxcf.error_resilient_mode == 0 &&
889 (cpi->frames_till_gf_update_due == 0) && !cpi->drop_frame) {
890 if (!cpi->gf_update_onepass_cbr) {
891 int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME]
892 : cpi->oxcf.fixed_q;
893
894 int gf_frame_useage = 0; /* Golden frame useage since last GF */
895 int tot_mbs = cpi->recent_ref_frame_usage[INTRA_FRAME] +
896 cpi->recent_ref_frame_usage[LAST_FRAME] +
897 cpi->recent_ref_frame_usage[GOLDEN_FRAME] +
898 cpi->recent_ref_frame_usage[ALTREF_FRAME];
899
900 int pct_gf_active = (100 * cpi->gf_active_count) /
901 (cpi->common.mb_rows * cpi->common.mb_cols);
902
903 if (tot_mbs) {
904 gf_frame_useage = (cpi->recent_ref_frame_usage[GOLDEN_FRAME] +
905 cpi->recent_ref_frame_usage[ALTREF_FRAME]) *
906 100 / tot_mbs;
907 }
908
909 if (pct_gf_active > gf_frame_useage) gf_frame_useage = pct_gf_active;
910
911 /* Is a fixed manual GF frequency being used */
912 if (cpi->auto_gold) {
913 /* For one pass throw a GF if recent frame intra useage is
914 * low or the GF useage is high
915 */
916 if ((cpi->pass == 0) &&
917 (cpi->this_frame_percent_intra < 15 || gf_frame_useage >= 5)) {
918 cpi->common.refresh_golden_frame = 1;
919
920 /* Two pass GF descision */
921 } else if (cpi->pass == 2) {
922 cpi->common.refresh_golden_frame = 1;
923 }
924 }
925
926 #if 0
927
928 /* Debug stats */
929 if (0) {
930 FILE *f;
931
932 f = fopen("gf_useaget.stt", "a");
933 fprintf(f, " %8ld %10ld %10ld %10ld %10ld\n",
934 cpi->common.current_video_frame, cpi->gfu_boost,
935 GFQ_ADJUSTMENT, cpi->gfu_boost, gf_frame_useage);
936 fclose(f);
937 }
938
939 #endif
940
941 if (cpi->common.refresh_golden_frame == 1) {
942 #if 0
943
944 if (0) {
945 FILE *f;
946
947 f = fopen("GFexit.stt", "a");
948 fprintf(f, "%8ld GF coded\n", cpi->common.current_video_frame);
949 fclose(f);
950 }
951
952 #endif
953
954 if (cpi->auto_adjust_gold_quantizer) {
955 calc_gf_params(cpi);
956 }
957
958 /* If we are using alternate ref instead of gf then do not apply the
959 * boost It will instead be applied to the altref update Jims
960 * modified boost
961 */
962 if (!cpi->source_alt_ref_active) {
963 if (cpi->oxcf.fixed_q < 0) {
964 if (cpi->pass == 2) {
965 /* The spend on the GF is defined in the two pass
966 * code for two pass encodes
967 */
968 cpi->this_frame_target = cpi->per_frame_bandwidth;
969 } else {
970 int Boost = cpi->last_boost;
971 int frames_in_section = cpi->frames_till_gf_update_due + 1;
972 int allocation_chunks = (frames_in_section * 100) + (Boost - 100);
973 int bits_in_section = cpi->inter_frame_target * frames_in_section;
974
975 /* Normalize Altboost and allocations chunck down to
976 * prevent overflow
977 */
978 while (Boost > 1000) {
979 Boost /= 2;
980 allocation_chunks /= 2;
981 }
982
983 /* Avoid loss of precision but avoid overflow */
984 if ((bits_in_section >> 7) > allocation_chunks) {
985 cpi->this_frame_target =
986 Boost * (bits_in_section / allocation_chunks);
987 } else {
988 cpi->this_frame_target =
989 (Boost * bits_in_section) / allocation_chunks;
990 }
991 }
992 } else {
993 cpi->this_frame_target =
994 (estimate_bits_at_q(1, Q, cpi->common.MBs, 1.0) *
995 cpi->last_boost) /
996 100;
997 }
998 } else {
999 /* If there is an active ARF at this location use the minimum
1000 * bits on this frame even if it is a contructed arf.
1001 * The active maximum quantizer insures that an appropriate
1002 * number of bits will be spent if needed for contstructed ARFs.
1003 */
1004 cpi->this_frame_target = 0;
1005 }
1006
1007 cpi->current_gf_interval = cpi->frames_till_gf_update_due;
1008 }
1009 } else {
1010 // Special case for 1 pass CBR: fixed gf period.
1011 // TODO(marpan): Adjust this boost/interval logic.
1012 // If gf_cbr_boost_pct is small (below threshold) set the flag
1013 // gf_noboost_onepass_cbr = 1, which forces the gf to use the same
1014 // rate correction factor as last.
1015 cpi->gf_noboost_onepass_cbr = (cpi->oxcf.gf_cbr_boost_pct <= 100);
1016 cpi->baseline_gf_interval = cpi->gf_interval_onepass_cbr;
1017 // Skip this update if the zero_mvcount is low.
1018 if (cpi->zeromv_count > (cpi->common.MBs >> 1)) {
1019 cpi->common.refresh_golden_frame = 1;
1020 cpi->this_frame_target =
1021 (cpi->this_frame_target * (100 + cpi->oxcf.gf_cbr_boost_pct)) / 100;
1022 }
1023 cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
1024 cpi->current_gf_interval = cpi->frames_till_gf_update_due;
1025 }
1026 }
1027
1028 cpi->per_frame_bandwidth = old_per_frame_bandwidth;
1029 }
1030
vp8_update_rate_correction_factors(VP8_COMP * cpi,int damp_var)1031 void vp8_update_rate_correction_factors(VP8_COMP *cpi, int damp_var) {
1032 int Q = cpi->common.base_qindex;
1033 int correction_factor = 100;
1034 double rate_correction_factor;
1035 double adjustment_limit;
1036
1037 int projected_size_based_on_q = 0;
1038
1039 /* Clear down mmx registers to allow floating point in what follows */
1040 vpx_clear_system_state();
1041
1042 if (cpi->common.frame_type == KEY_FRAME) {
1043 rate_correction_factor = cpi->key_frame_rate_correction_factor;
1044 } else {
1045 if (cpi->oxcf.number_of_layers == 1 && !cpi->gf_noboost_onepass_cbr &&
1046 (cpi->common.refresh_alt_ref_frame ||
1047 cpi->common.refresh_golden_frame)) {
1048 rate_correction_factor = cpi->gf_rate_correction_factor;
1049 } else {
1050 rate_correction_factor = cpi->rate_correction_factor;
1051 }
1052 }
1053
1054 /* Work out how big we would have expected the frame to be at this Q
1055 * given the current correction factor. Stay in double to avoid int
1056 * overflow when values are large
1057 */
1058 projected_size_based_on_q =
1059 (int)(((.5 + rate_correction_factor *
1060 vp8_bits_per_mb[cpi->common.frame_type][Q]) *
1061 cpi->common.MBs) /
1062 (1 << BPER_MB_NORMBITS));
1063
1064 /* Make some allowance for cpi->zbin_over_quant */
1065 if (cpi->mb.zbin_over_quant > 0) {
1066 int Z = cpi->mb.zbin_over_quant;
1067 double Factor = 0.99;
1068 double factor_adjustment = 0.01 / 256.0;
1069
1070 while (Z > 0) {
1071 Z--;
1072 projected_size_based_on_q = (int)(Factor * projected_size_based_on_q);
1073 Factor += factor_adjustment;
1074
1075 if (Factor >= 0.999) Factor = 0.999;
1076 }
1077 }
1078
1079 /* Work out a size correction factor. */
1080 if (projected_size_based_on_q > 0) {
1081 correction_factor =
1082 (100 * cpi->projected_frame_size) / projected_size_based_on_q;
1083 }
1084
1085 /* More heavily damped adjustment used if we have been oscillating
1086 * either side of target
1087 */
1088 switch (damp_var) {
1089 case 0: adjustment_limit = 0.75; break;
1090 case 1: adjustment_limit = 0.375; break;
1091 case 2:
1092 default: adjustment_limit = 0.25; break;
1093 }
1094
1095 if (correction_factor > 102) {
1096 /* We are not already at the worst allowable quality */
1097 correction_factor =
1098 (int)(100.5 + ((correction_factor - 100) * adjustment_limit));
1099 rate_correction_factor =
1100 ((rate_correction_factor * correction_factor) / 100);
1101
1102 /* Keep rate_correction_factor within limits */
1103 if (rate_correction_factor > MAX_BPB_FACTOR) {
1104 rate_correction_factor = MAX_BPB_FACTOR;
1105 }
1106 } else if (correction_factor < 99) {
1107 /* We are not already at the best allowable quality */
1108 correction_factor =
1109 (int)(100.5 - ((100 - correction_factor) * adjustment_limit));
1110 rate_correction_factor =
1111 ((rate_correction_factor * correction_factor) / 100);
1112
1113 /* Keep rate_correction_factor within limits */
1114 if (rate_correction_factor < MIN_BPB_FACTOR) {
1115 rate_correction_factor = MIN_BPB_FACTOR;
1116 }
1117 }
1118
1119 if (cpi->common.frame_type == KEY_FRAME) {
1120 cpi->key_frame_rate_correction_factor = rate_correction_factor;
1121 } else {
1122 if (cpi->oxcf.number_of_layers == 1 && !cpi->gf_noboost_onepass_cbr &&
1123 (cpi->common.refresh_alt_ref_frame ||
1124 cpi->common.refresh_golden_frame)) {
1125 cpi->gf_rate_correction_factor = rate_correction_factor;
1126 } else {
1127 cpi->rate_correction_factor = rate_correction_factor;
1128 }
1129 }
1130 }
1131
limit_q_cbr_inter(int last_q,int current_q)1132 static int limit_q_cbr_inter(int last_q, int current_q) {
1133 int limit_down = 12;
1134 if (last_q - current_q > limit_down)
1135 return (last_q - limit_down);
1136 else
1137 return current_q;
1138 }
1139
vp8_regulate_q(VP8_COMP * cpi,int target_bits_per_frame)1140 int vp8_regulate_q(VP8_COMP *cpi, int target_bits_per_frame) {
1141 int Q = cpi->active_worst_quality;
1142
1143 if (cpi->force_maxqp == 1) {
1144 cpi->active_worst_quality = cpi->worst_quality;
1145 return cpi->worst_quality;
1146 }
1147 /* Reset Zbin OQ value */
1148 cpi->mb.zbin_over_quant = 0;
1149
1150 if (cpi->oxcf.fixed_q >= 0) {
1151 Q = cpi->oxcf.fixed_q;
1152
1153 if (cpi->common.frame_type == KEY_FRAME) {
1154 Q = cpi->oxcf.key_q;
1155 } else if (cpi->oxcf.number_of_layers == 1 &&
1156 cpi->common.refresh_alt_ref_frame &&
1157 !cpi->gf_noboost_onepass_cbr) {
1158 Q = cpi->oxcf.alt_q;
1159 } else if (cpi->oxcf.number_of_layers == 1 &&
1160 cpi->common.refresh_golden_frame &&
1161 !cpi->gf_noboost_onepass_cbr) {
1162 Q = cpi->oxcf.gold_q;
1163 }
1164 } else {
1165 int i;
1166 int last_error = INT_MAX;
1167 int target_bits_per_mb;
1168 int bits_per_mb_at_this_q;
1169 double correction_factor;
1170
1171 /* Select the appropriate correction factor based upon type of frame. */
1172 if (cpi->common.frame_type == KEY_FRAME) {
1173 correction_factor = cpi->key_frame_rate_correction_factor;
1174 } else {
1175 if (cpi->oxcf.number_of_layers == 1 && !cpi->gf_noboost_onepass_cbr &&
1176 (cpi->common.refresh_alt_ref_frame ||
1177 cpi->common.refresh_golden_frame)) {
1178 correction_factor = cpi->gf_rate_correction_factor;
1179 } else {
1180 correction_factor = cpi->rate_correction_factor;
1181 }
1182 }
1183
1184 /* Calculate required scaling factor based on target frame size and
1185 * size of frame produced using previous Q
1186 */
1187 if (target_bits_per_frame >= (INT_MAX >> BPER_MB_NORMBITS)) {
1188 /* Case where we would overflow int */
1189 target_bits_per_mb = (target_bits_per_frame / cpi->common.MBs)
1190 << BPER_MB_NORMBITS;
1191 } else {
1192 target_bits_per_mb =
1193 (target_bits_per_frame << BPER_MB_NORMBITS) / cpi->common.MBs;
1194 }
1195
1196 i = cpi->active_best_quality;
1197
1198 do {
1199 bits_per_mb_at_this_q =
1200 (int)(.5 +
1201 correction_factor * vp8_bits_per_mb[cpi->common.frame_type][i]);
1202
1203 if (bits_per_mb_at_this_q <= target_bits_per_mb) {
1204 if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error) {
1205 Q = i;
1206 } else {
1207 Q = i - 1;
1208 }
1209
1210 break;
1211 } else {
1212 last_error = bits_per_mb_at_this_q - target_bits_per_mb;
1213 }
1214 } while (++i <= cpi->active_worst_quality);
1215
1216 /* If we are at MAXQ then enable Q over-run which seeks to claw
1217 * back additional bits through things like the RD multiplier
1218 * and zero bin size.
1219 */
1220 if (Q >= MAXQ) {
1221 int zbin_oqmax;
1222
1223 double Factor = 0.99;
1224 double factor_adjustment = 0.01 / 256.0;
1225
1226 if (cpi->common.frame_type == KEY_FRAME) {
1227 zbin_oqmax = 0;
1228 } else if (cpi->oxcf.number_of_layers == 1 &&
1229 !cpi->gf_noboost_onepass_cbr &&
1230 (cpi->common.refresh_alt_ref_frame ||
1231 (cpi->common.refresh_golden_frame &&
1232 !cpi->source_alt_ref_active))) {
1233 zbin_oqmax = 16;
1234 } else {
1235 zbin_oqmax = ZBIN_OQ_MAX;
1236 }
1237
1238 /*{
1239 double Factor =
1240 (double)target_bits_per_mb/(double)bits_per_mb_at_this_q;
1241 double Oq;
1242
1243 Factor = Factor/1.2683;
1244
1245 Oq = pow( Factor, (1.0/-0.165) );
1246
1247 if ( Oq > zbin_oqmax )
1248 Oq = zbin_oqmax;
1249
1250 cpi->zbin_over_quant = (int)Oq;
1251 }*/
1252
1253 /* Each incrment in the zbin is assumed to have a fixed effect
1254 * on bitrate. This is not of course true. The effect will be
1255 * highly clip dependent and may well have sudden steps. The
1256 * idea here is to acheive higher effective quantizers than the
1257 * normal maximum by expanding the zero bin and hence
1258 * decreasing the number of low magnitude non zero coefficients.
1259 */
1260 while (cpi->mb.zbin_over_quant < zbin_oqmax) {
1261 cpi->mb.zbin_over_quant++;
1262
1263 if (cpi->mb.zbin_over_quant > zbin_oqmax) {
1264 cpi->mb.zbin_over_quant = zbin_oqmax;
1265 }
1266
1267 /* Adjust bits_per_mb_at_this_q estimate */
1268 bits_per_mb_at_this_q = (int)(Factor * bits_per_mb_at_this_q);
1269 Factor += factor_adjustment;
1270
1271 if (Factor >= 0.999) Factor = 0.999;
1272
1273 /* Break out if we get down to the target rate */
1274 if (bits_per_mb_at_this_q <= target_bits_per_mb) break;
1275 }
1276 }
1277 }
1278
1279 // Limit decrease in Q for 1 pass CBR screen content mode.
1280 if (cpi->common.frame_type != KEY_FRAME && cpi->pass == 0 &&
1281 cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER &&
1282 cpi->oxcf.screen_content_mode)
1283 Q = limit_q_cbr_inter(cpi->last_q[1], Q);
1284
1285 return Q;
1286 }
1287
estimate_keyframe_frequency(VP8_COMP * cpi)1288 static int estimate_keyframe_frequency(VP8_COMP *cpi) {
1289 int i;
1290
1291 /* Average key frame frequency */
1292 int av_key_frame_frequency = 0;
1293
1294 /* First key frame at start of sequence is a special case. We have no
1295 * frequency data.
1296 */
1297 if (cpi->key_frame_count == 1) {
1298 /* Assume a default of 1 kf every 2 seconds, or the max kf interval,
1299 * whichever is smaller.
1300 */
1301 int key_freq = cpi->oxcf.key_freq > 0 ? cpi->oxcf.key_freq : 1;
1302 av_key_frame_frequency = 1 + (int)cpi->output_framerate * 2;
1303
1304 if (cpi->oxcf.auto_key && av_key_frame_frequency > key_freq) {
1305 av_key_frame_frequency = key_freq;
1306 }
1307
1308 cpi->prior_key_frame_distance[KEY_FRAME_CONTEXT - 1] =
1309 av_key_frame_frequency;
1310 } else {
1311 unsigned int total_weight = 0;
1312 int last_kf_interval =
1313 (cpi->frames_since_key > 0) ? cpi->frames_since_key : 1;
1314
1315 /* reset keyframe context and calculate weighted average of last
1316 * KEY_FRAME_CONTEXT keyframes
1317 */
1318 for (i = 0; i < KEY_FRAME_CONTEXT; ++i) {
1319 if (i < KEY_FRAME_CONTEXT - 1) {
1320 cpi->prior_key_frame_distance[i] = cpi->prior_key_frame_distance[i + 1];
1321 } else {
1322 cpi->prior_key_frame_distance[i] = last_kf_interval;
1323 }
1324
1325 av_key_frame_frequency +=
1326 prior_key_frame_weight[i] * cpi->prior_key_frame_distance[i];
1327 total_weight += prior_key_frame_weight[i];
1328 }
1329
1330 av_key_frame_frequency /= total_weight;
1331 }
1332 // TODO (marpan): Given the checks above, |av_key_frame_frequency|
1333 // should always be above 0. But for now we keep the sanity check in.
1334 if (av_key_frame_frequency == 0) av_key_frame_frequency = 1;
1335 return av_key_frame_frequency;
1336 }
1337
vp8_adjust_key_frame_context(VP8_COMP * cpi)1338 void vp8_adjust_key_frame_context(VP8_COMP *cpi) {
1339 /* Clear down mmx registers to allow floating point in what follows */
1340 vpx_clear_system_state();
1341
1342 /* Do we have any key frame overspend to recover? */
1343 /* Two-pass overspend handled elsewhere. */
1344 if ((cpi->pass != 2) &&
1345 (cpi->projected_frame_size > cpi->per_frame_bandwidth)) {
1346 int overspend;
1347
1348 /* Update the count of key frame overspend to be recovered in
1349 * subsequent frames. A portion of the KF overspend is treated as gf
1350 * overspend (and hence recovered more quickly) as the kf is also a
1351 * gf. Otherwise the few frames following each kf tend to get more
1352 * bits allocated than those following other gfs.
1353 */
1354 overspend = (cpi->projected_frame_size - cpi->per_frame_bandwidth);
1355
1356 if (cpi->oxcf.number_of_layers > 1) {
1357 cpi->kf_overspend_bits += overspend;
1358 } else {
1359 cpi->kf_overspend_bits += overspend * 7 / 8;
1360 cpi->gf_overspend_bits += overspend * 1 / 8;
1361 }
1362
1363 /* Work out how much to try and recover per frame. */
1364 cpi->kf_bitrate_adjustment =
1365 cpi->kf_overspend_bits / estimate_keyframe_frequency(cpi);
1366 }
1367
1368 cpi->frames_since_key = 0;
1369 cpi->key_frame_count++;
1370 }
1371
vp8_compute_frame_size_bounds(VP8_COMP * cpi,int * frame_under_shoot_limit,int * frame_over_shoot_limit)1372 void vp8_compute_frame_size_bounds(VP8_COMP *cpi, int *frame_under_shoot_limit,
1373 int *frame_over_shoot_limit) {
1374 /* Set-up bounds on acceptable frame size: */
1375 if (cpi->oxcf.fixed_q >= 0) {
1376 /* Fixed Q scenario: frame size never outranges target
1377 * (there is no target!)
1378 */
1379 *frame_under_shoot_limit = 0;
1380 *frame_over_shoot_limit = INT_MAX;
1381 } else {
1382 const int64_t this_frame_target = cpi->this_frame_target;
1383 int64_t over_shoot_limit, under_shoot_limit;
1384
1385 if (cpi->common.frame_type == KEY_FRAME) {
1386 over_shoot_limit = this_frame_target * 9 / 8;
1387 under_shoot_limit = this_frame_target * 7 / 8;
1388 } else {
1389 if (cpi->oxcf.number_of_layers > 1 || cpi->common.refresh_alt_ref_frame ||
1390 cpi->common.refresh_golden_frame) {
1391 over_shoot_limit = this_frame_target * 9 / 8;
1392 under_shoot_limit = this_frame_target * 7 / 8;
1393 } else {
1394 /* For CBR take buffer fullness into account */
1395 if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) {
1396 if (cpi->buffer_level >= ((cpi->oxcf.optimal_buffer_level +
1397 cpi->oxcf.maximum_buffer_size) >>
1398 1)) {
1399 /* Buffer is too full so relax overshoot and tighten
1400 * undershoot
1401 */
1402 over_shoot_limit = this_frame_target * 12 / 8;
1403 under_shoot_limit = this_frame_target * 6 / 8;
1404 } else if (cpi->buffer_level <=
1405 (cpi->oxcf.optimal_buffer_level >> 1)) {
1406 /* Buffer is too low so relax undershoot and tighten
1407 * overshoot
1408 */
1409 over_shoot_limit = this_frame_target * 10 / 8;
1410 under_shoot_limit = this_frame_target * 4 / 8;
1411 } else {
1412 over_shoot_limit = this_frame_target * 11 / 8;
1413 under_shoot_limit = this_frame_target * 5 / 8;
1414 }
1415 }
1416 /* VBR and CQ mode */
1417 /* Note that tighter restrictions here can help quality
1418 * but hurt encode speed
1419 */
1420 else {
1421 /* Stron overshoot limit for constrained quality */
1422 if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
1423 over_shoot_limit = this_frame_target * 11 / 8;
1424 under_shoot_limit = this_frame_target * 2 / 8;
1425 } else {
1426 over_shoot_limit = this_frame_target * 11 / 8;
1427 under_shoot_limit = this_frame_target * 5 / 8;
1428 }
1429 }
1430 }
1431 }
1432
1433 /* For very small rate targets where the fractional adjustment
1434 * (eg * 7/8) may be tiny make sure there is at least a minimum
1435 * range.
1436 */
1437 over_shoot_limit += 200;
1438 under_shoot_limit -= 200;
1439 if (under_shoot_limit < 0) under_shoot_limit = 0;
1440 if (under_shoot_limit > INT_MAX) under_shoot_limit = INT_MAX;
1441 if (over_shoot_limit > INT_MAX) over_shoot_limit = INT_MAX;
1442 *frame_under_shoot_limit = (int)under_shoot_limit;
1443 *frame_over_shoot_limit = (int)over_shoot_limit;
1444 }
1445 }
1446
1447 /* return of 0 means drop frame */
vp8_pick_frame_size(VP8_COMP * cpi)1448 int vp8_pick_frame_size(VP8_COMP *cpi) {
1449 VP8_COMMON *cm = &cpi->common;
1450
1451 if (cm->frame_type == KEY_FRAME) {
1452 calc_iframe_target_size(cpi);
1453 } else {
1454 calc_pframe_target_size(cpi);
1455
1456 /* Check if we're dropping the frame: */
1457 if (cpi->drop_frame) {
1458 cpi->drop_frame = 0;
1459 return 0;
1460 }
1461 }
1462 return 1;
1463 }
1464 // If this just encoded frame (mcomp/transform/quant, but before loopfilter and
1465 // pack_bitstream) has large overshoot, and was not being encoded close to the
1466 // max QP, then drop this frame and force next frame to be encoded at max QP.
1467 // Allow this for screen_content_mode = 2, or if drop frames is allowed.
1468 // TODO(marpan): Should do this exit condition during the encode_frame
1469 // (i.e., halfway during the encoding of the frame) to save cycles.
vp8_drop_encodedframe_overshoot(VP8_COMP * cpi,int Q)1470 int vp8_drop_encodedframe_overshoot(VP8_COMP *cpi, int Q) {
1471 int force_drop_overshoot = 0;
1472 #if CONFIG_MULTI_RES_ENCODING
1473 // Only check for dropping due to overshoot on the lowest stream.
1474 // If the lowest stream of the multi-res encoding was dropped due to
1475 // overshoot, then force dropping on all upper layer streams
1476 // (mr_encoder_id > 0).
1477 LOWER_RES_FRAME_INFO *low_res_frame_info =
1478 (LOWER_RES_FRAME_INFO *)cpi->oxcf.mr_low_res_mode_info;
1479 if (cpi->oxcf.mr_total_resolutions > 1 && cpi->oxcf.mr_encoder_id > 0) {
1480 force_drop_overshoot = low_res_frame_info->is_frame_dropped_overshoot_maxqp;
1481 if (!force_drop_overshoot) {
1482 cpi->force_maxqp = 0;
1483 cpi->frames_since_last_drop_overshoot++;
1484 return 0;
1485 }
1486 }
1487 #endif
1488 if (cpi->common.frame_type != KEY_FRAME &&
1489 (cpi->oxcf.screen_content_mode == 2 ||
1490 (cpi->drop_frames_allowed &&
1491 (force_drop_overshoot ||
1492 (cpi->rate_correction_factor < (8.0f * MIN_BPB_FACTOR) &&
1493 cpi->frames_since_last_drop_overshoot > (int)cpi->framerate))))) {
1494 // Note: the "projected_frame_size" from encode_frame() only gives estimate
1495 // of mode/motion vector rate (in non-rd mode): so below we only require
1496 // that projected_frame_size is somewhat greater than per-frame-bandwidth,
1497 // but add additional condition with high threshold on prediction residual.
1498
1499 // QP threshold: only allow dropping if we are not close to qp_max.
1500 int thresh_qp = 3 * cpi->worst_quality >> 2;
1501 // Rate threshold, in bytes.
1502 int thresh_rate = 2 * (cpi->av_per_frame_bandwidth >> 3);
1503 // Threshold for the average (over all macroblocks) of the pixel-sum
1504 // residual error over 16x16 block.
1505 int thresh_pred_err_mb = (200 << 4);
1506 int pred_err_mb = (int)(cpi->mb.prediction_error / cpi->common.MBs);
1507 // Reduce/ignore thresh_rate if pred_err_mb much larger than its threshold,
1508 // give more weight to pred_err metric for overshoot detection.
1509 if (cpi->drop_frames_allowed && pred_err_mb > (thresh_pred_err_mb << 4))
1510 thresh_rate = thresh_rate >> 3;
1511 if ((Q < thresh_qp && cpi->projected_frame_size > thresh_rate &&
1512 pred_err_mb > thresh_pred_err_mb &&
1513 pred_err_mb > 2 * cpi->last_pred_err_mb) ||
1514 force_drop_overshoot) {
1515 unsigned int i;
1516 double new_correction_factor;
1517 int target_bits_per_mb;
1518 const int target_size = cpi->av_per_frame_bandwidth;
1519 // Flag to indicate we will force next frame to be encoded at max QP.
1520 cpi->force_maxqp = 1;
1521 // Reset the buffer levels.
1522 cpi->buffer_level = cpi->oxcf.optimal_buffer_level;
1523 cpi->bits_off_target = cpi->oxcf.optimal_buffer_level;
1524 // Compute a new rate correction factor, corresponding to the current
1525 // target frame size and max_QP, and adjust the rate correction factor
1526 // upwards, if needed.
1527 // This is to prevent a bad state where the re-encoded frame at max_QP
1528 // undershoots significantly, and then we end up dropping every other
1529 // frame because the QP/rate_correction_factor may have been too low
1530 // before the drop and then takes too long to come up.
1531 if (target_size >= (INT_MAX >> BPER_MB_NORMBITS)) {
1532 target_bits_per_mb = (target_size / cpi->common.MBs)
1533 << BPER_MB_NORMBITS;
1534 } else {
1535 target_bits_per_mb =
1536 (target_size << BPER_MB_NORMBITS) / cpi->common.MBs;
1537 }
1538 // Rate correction factor based on target_size_per_mb and max_QP.
1539 new_correction_factor =
1540 (double)target_bits_per_mb /
1541 (double)vp8_bits_per_mb[INTER_FRAME][cpi->worst_quality];
1542 if (new_correction_factor > cpi->rate_correction_factor) {
1543 cpi->rate_correction_factor =
1544 VPXMIN(2.0 * cpi->rate_correction_factor, new_correction_factor);
1545 }
1546 if (cpi->rate_correction_factor > MAX_BPB_FACTOR) {
1547 cpi->rate_correction_factor = MAX_BPB_FACTOR;
1548 }
1549 // Drop this frame: update frame counters.
1550 cpi->common.current_video_frame++;
1551 cpi->frames_since_key++;
1552 cpi->temporal_pattern_counter++;
1553 cpi->frames_since_last_drop_overshoot = 0;
1554 if (cpi->oxcf.number_of_layers > 1) {
1555 // Set max_qp and rate correction for all temporal layers if overshoot
1556 // is detected.
1557 for (i = 0; i < cpi->oxcf.number_of_layers; ++i) {
1558 LAYER_CONTEXT *lc = &cpi->layer_context[i];
1559 lc->force_maxqp = 1;
1560 lc->frames_since_last_drop_overshoot = 0;
1561 lc->rate_correction_factor = cpi->rate_correction_factor;
1562 }
1563 }
1564 #if CONFIG_MULTI_RES_ENCODING
1565 if (cpi->oxcf.mr_total_resolutions > 1)
1566 low_res_frame_info->is_frame_dropped_overshoot_maxqp = 1;
1567 #endif
1568 return 1;
1569 }
1570 cpi->force_maxqp = 0;
1571 cpi->frames_since_last_drop_overshoot++;
1572 #if CONFIG_MULTI_RES_ENCODING
1573 if (cpi->oxcf.mr_total_resolutions > 1)
1574 low_res_frame_info->is_frame_dropped_overshoot_maxqp = 0;
1575 #endif
1576 return 0;
1577 }
1578 cpi->force_maxqp = 0;
1579 cpi->frames_since_last_drop_overshoot++;
1580 #if CONFIG_MULTI_RES_ENCODING
1581 if (cpi->oxcf.mr_total_resolutions > 1)
1582 low_res_frame_info->is_frame_dropped_overshoot_maxqp = 0;
1583 #endif
1584 return 0;
1585 }
1586