1 /*
2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <float.h>
12 #include <limits.h>
13 #include <math.h>
14 #include <stdio.h>
15
16 #include "./vp9_rtcd.h"
17 #include "./vpx_dsp_rtcd.h"
18 #include "./vpx_config.h"
19
20 #include "vpx_dsp/vpx_dsp_common.h"
21 #include "vpx_ports/mem.h"
22 #include "vpx_ports/vpx_timer.h"
23 #include "vpx_ports/system_state.h"
24
25 #if CONFIG_MISMATCH_DEBUG
26 #include "vpx_util/vpx_debug_util.h"
27 #endif // CONFIG_MISMATCH_DEBUG
28
29 #include "vp9/common/vp9_common.h"
30 #include "vp9/common/vp9_entropy.h"
31 #include "vp9/common/vp9_entropymode.h"
32 #include "vp9/common/vp9_idct.h"
33 #include "vp9/common/vp9_mvref_common.h"
34 #include "vp9/common/vp9_pred_common.h"
35 #include "vp9/common/vp9_quant_common.h"
36 #include "vp9/common/vp9_reconintra.h"
37 #include "vp9/common/vp9_reconinter.h"
38 #include "vp9/common/vp9_seg_common.h"
39 #include "vp9/common/vp9_tile_common.h"
40 #if !CONFIG_REALTIME_ONLY
41 #include "vp9/encoder/vp9_aq_360.h"
42 #include "vp9/encoder/vp9_aq_complexity.h"
43 #endif
44 #include "vp9/encoder/vp9_aq_cyclicrefresh.h"
45 #if !CONFIG_REALTIME_ONLY
46 #include "vp9/encoder/vp9_aq_variance.h"
47 #endif
48 #include "vp9/encoder/vp9_encodeframe.h"
49 #include "vp9/encoder/vp9_encodemb.h"
50 #include "vp9/encoder/vp9_encodemv.h"
51 #include "vp9/encoder/vp9_ethread.h"
52 #include "vp9/encoder/vp9_extend.h"
53 #include "vp9/encoder/vp9_multi_thread.h"
54 #include "vp9/encoder/vp9_partition_models.h"
55 #include "vp9/encoder/vp9_pickmode.h"
56 #include "vp9/encoder/vp9_rd.h"
57 #include "vp9/encoder/vp9_rdopt.h"
58 #include "vp9/encoder/vp9_segmentation.h"
59 #include "vp9/encoder/vp9_tokenize.h"
60
61 static void encode_superblock(VP9_COMP *cpi, ThreadData *td, TOKENEXTRA **t,
62 int output_enabled, int mi_row, int mi_col,
63 BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx);
64
65 // This is used as a reference when computing the source variance for the
66 // purpose of activity masking.
67 // Eventually this should be replaced by custom no-reference routines,
68 // which will be faster.
69 static const uint8_t VP9_VAR_OFFS[64] = {
70 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
71 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
72 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
73 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
74 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128
75 };
76
77 #if CONFIG_VP9_HIGHBITDEPTH
78 static const uint16_t VP9_HIGH_VAR_OFFS_8[64] = {
79 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
80 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
81 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
82 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
83 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128
84 };
85
86 static const uint16_t VP9_HIGH_VAR_OFFS_10[64] = {
87 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
88 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
89 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
90 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
91 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
92 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
93 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
94 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4
95 };
96
97 static const uint16_t VP9_HIGH_VAR_OFFS_12[64] = {
98 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
99 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
100 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
101 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
102 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
103 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
104 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
105 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
106 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
107 128 * 16
108 };
109 #endif // CONFIG_VP9_HIGHBITDEPTH
110
vp9_get_sby_variance(VP9_COMP * cpi,const struct buf_2d * ref,BLOCK_SIZE bs)111 unsigned int vp9_get_sby_variance(VP9_COMP *cpi, const struct buf_2d *ref,
112 BLOCK_SIZE bs) {
113 unsigned int sse;
114 const unsigned int var =
115 cpi->fn_ptr[bs].vf(ref->buf, ref->stride, VP9_VAR_OFFS, 0, &sse);
116 return var;
117 }
118
119 #if CONFIG_VP9_HIGHBITDEPTH
vp9_high_get_sby_variance(VP9_COMP * cpi,const struct buf_2d * ref,BLOCK_SIZE bs,int bd)120 unsigned int vp9_high_get_sby_variance(VP9_COMP *cpi, const struct buf_2d *ref,
121 BLOCK_SIZE bs, int bd) {
122 unsigned int var, sse;
123 switch (bd) {
124 case 10:
125 var =
126 cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
127 CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_10), 0, &sse);
128 break;
129 case 12:
130 var =
131 cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
132 CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_12), 0, &sse);
133 break;
134 case 8:
135 default:
136 var =
137 cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
138 CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_8), 0, &sse);
139 break;
140 }
141 return var;
142 }
143 #endif // CONFIG_VP9_HIGHBITDEPTH
144
vp9_get_sby_perpixel_variance(VP9_COMP * cpi,const struct buf_2d * ref,BLOCK_SIZE bs)145 unsigned int vp9_get_sby_perpixel_variance(VP9_COMP *cpi,
146 const struct buf_2d *ref,
147 BLOCK_SIZE bs) {
148 return ROUND_POWER_OF_TWO(vp9_get_sby_variance(cpi, ref, bs),
149 num_pels_log2_lookup[bs]);
150 }
151
152 #if CONFIG_VP9_HIGHBITDEPTH
vp9_high_get_sby_perpixel_variance(VP9_COMP * cpi,const struct buf_2d * ref,BLOCK_SIZE bs,int bd)153 unsigned int vp9_high_get_sby_perpixel_variance(VP9_COMP *cpi,
154 const struct buf_2d *ref,
155 BLOCK_SIZE bs, int bd) {
156 return (unsigned int)ROUND64_POWER_OF_TWO(
157 (int64_t)vp9_high_get_sby_variance(cpi, ref, bs, bd),
158 num_pels_log2_lookup[bs]);
159 }
160 #endif // CONFIG_VP9_HIGHBITDEPTH
161
162 #if !CONFIG_REALTIME_ONLY
get_sby_perpixel_diff_variance(VP9_COMP * cpi,const struct buf_2d * ref,int mi_row,int mi_col,BLOCK_SIZE bs)163 static unsigned int get_sby_perpixel_diff_variance(VP9_COMP *cpi,
164 const struct buf_2d *ref,
165 int mi_row, int mi_col,
166 BLOCK_SIZE bs) {
167 unsigned int sse, var;
168 uint8_t *last_y;
169 const YV12_BUFFER_CONFIG *last = get_ref_frame_buffer(cpi, LAST_FRAME);
170
171 assert(last != NULL);
172 last_y =
173 &last->y_buffer[mi_row * MI_SIZE * last->y_stride + mi_col * MI_SIZE];
174 var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride, last_y, last->y_stride, &sse);
175 return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
176 }
177
get_rd_var_based_fixed_partition(VP9_COMP * cpi,MACROBLOCK * x,int mi_row,int mi_col)178 static BLOCK_SIZE get_rd_var_based_fixed_partition(VP9_COMP *cpi, MACROBLOCK *x,
179 int mi_row, int mi_col) {
180 unsigned int var = get_sby_perpixel_diff_variance(
181 cpi, &x->plane[0].src, mi_row, mi_col, BLOCK_64X64);
182 if (var < 8)
183 return BLOCK_64X64;
184 else if (var < 128)
185 return BLOCK_32X32;
186 else if (var < 2048)
187 return BLOCK_16X16;
188 else
189 return BLOCK_8X8;
190 }
191 #endif // !CONFIG_REALTIME_ONLY
192
set_segment_index(VP9_COMP * cpi,MACROBLOCK * const x,int mi_row,int mi_col,BLOCK_SIZE bsize,int segment_index)193 static void set_segment_index(VP9_COMP *cpi, MACROBLOCK *const x, int mi_row,
194 int mi_col, BLOCK_SIZE bsize, int segment_index) {
195 VP9_COMMON *const cm = &cpi->common;
196 const struct segmentation *const seg = &cm->seg;
197 MACROBLOCKD *const xd = &x->e_mbd;
198 MODE_INFO *mi = xd->mi[0];
199
200 const AQ_MODE aq_mode = cpi->oxcf.aq_mode;
201 const uint8_t *const map =
202 seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
203
204 // Initialize the segmentation index as 0.
205 mi->segment_id = 0;
206
207 // Skip the rest if AQ mode is disabled.
208 if (!seg->enabled) return;
209
210 switch (aq_mode) {
211 case CYCLIC_REFRESH_AQ:
212 mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
213 break;
214 #if !CONFIG_REALTIME_ONLY
215 case VARIANCE_AQ:
216 if (cm->frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame ||
217 cpi->force_update_segmentation ||
218 (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref)) {
219 int min_energy;
220 int max_energy;
221 // Get sub block energy range
222 if (bsize >= BLOCK_32X32) {
223 vp9_get_sub_block_energy(cpi, x, mi_row, mi_col, bsize, &min_energy,
224 &max_energy);
225 } else {
226 min_energy = bsize <= BLOCK_16X16 ? x->mb_energy
227 : vp9_block_energy(cpi, x, bsize);
228 }
229 mi->segment_id = vp9_vaq_segment_id(min_energy);
230 } else {
231 mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
232 }
233 break;
234 case EQUATOR360_AQ:
235 if (cm->frame_type == KEY_FRAME || cpi->force_update_segmentation)
236 mi->segment_id = vp9_360aq_segment_id(mi_row, cm->mi_rows);
237 else
238 mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
239 break;
240 #endif
241 case LOOKAHEAD_AQ:
242 mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
243 break;
244 case PSNR_AQ: mi->segment_id = segment_index; break;
245 case PERCEPTUAL_AQ: mi->segment_id = x->segment_id; break;
246 default:
247 // NO_AQ or PSNR_AQ
248 break;
249 }
250
251 // Set segment index from ROI map if it's enabled.
252 if (cpi->roi.enabled)
253 mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
254
255 vp9_init_plane_quantizers(cpi, x);
256 }
257
258 // Lighter version of set_offsets that only sets the mode info
259 // pointers.
set_mode_info_offsets(VP9_COMMON * const cm,MACROBLOCK * const x,MACROBLOCKD * const xd,int mi_row,int mi_col)260 static INLINE void set_mode_info_offsets(VP9_COMMON *const cm,
261 MACROBLOCK *const x,
262 MACROBLOCKD *const xd, int mi_row,
263 int mi_col) {
264 const int idx_str = xd->mi_stride * mi_row + mi_col;
265 xd->mi = cm->mi_grid_visible + idx_str;
266 xd->mi[0] = cm->mi + idx_str;
267 x->mbmi_ext = x->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col);
268 }
269
set_ssim_rdmult(VP9_COMP * const cpi,MACROBLOCK * const x,const BLOCK_SIZE bsize,const int mi_row,const int mi_col,int * const rdmult)270 static void set_ssim_rdmult(VP9_COMP *const cpi, MACROBLOCK *const x,
271 const BLOCK_SIZE bsize, const int mi_row,
272 const int mi_col, int *const rdmult) {
273 const VP9_COMMON *const cm = &cpi->common;
274
275 const int bsize_base = BLOCK_16X16;
276 const int num_8x8_w = num_8x8_blocks_wide_lookup[bsize_base];
277 const int num_8x8_h = num_8x8_blocks_high_lookup[bsize_base];
278 const int num_cols = (cm->mi_cols + num_8x8_w - 1) / num_8x8_w;
279 const int num_rows = (cm->mi_rows + num_8x8_h - 1) / num_8x8_h;
280 const int num_bcols =
281 (num_8x8_blocks_wide_lookup[bsize] + num_8x8_w - 1) / num_8x8_w;
282 const int num_brows =
283 (num_8x8_blocks_high_lookup[bsize] + num_8x8_h - 1) / num_8x8_h;
284 int row, col;
285 double num_of_mi = 0.0;
286 double geom_mean_of_scale = 0.0;
287
288 assert(cpi->oxcf.tuning == VP8_TUNE_SSIM);
289
290 for (row = mi_row / num_8x8_w;
291 row < num_rows && row < mi_row / num_8x8_w + num_brows; ++row) {
292 for (col = mi_col / num_8x8_h;
293 col < num_cols && col < mi_col / num_8x8_h + num_bcols; ++col) {
294 const int index = row * num_cols + col;
295 geom_mean_of_scale += log(cpi->mi_ssim_rdmult_scaling_factors[index]);
296 num_of_mi += 1.0;
297 }
298 }
299 geom_mean_of_scale = exp(geom_mean_of_scale / num_of_mi);
300
301 *rdmult = (int)((double)(*rdmult) * geom_mean_of_scale);
302 *rdmult = VPXMAX(*rdmult, 0);
303 set_error_per_bit(x, *rdmult);
304 vpx_clear_system_state();
305 }
306
set_offsets(VP9_COMP * cpi,const TileInfo * const tile,MACROBLOCK * const x,int mi_row,int mi_col,BLOCK_SIZE bsize)307 static void set_offsets(VP9_COMP *cpi, const TileInfo *const tile,
308 MACROBLOCK *const x, int mi_row, int mi_col,
309 BLOCK_SIZE bsize) {
310 VP9_COMMON *const cm = &cpi->common;
311 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
312 MACROBLOCKD *const xd = &x->e_mbd;
313 const int mi_width = num_8x8_blocks_wide_lookup[bsize];
314 const int mi_height = num_8x8_blocks_high_lookup[bsize];
315 MvLimits *const mv_limits = &x->mv_limits;
316
317 set_skip_context(xd, mi_row, mi_col);
318
319 set_mode_info_offsets(cm, x, xd, mi_row, mi_col);
320
321 // Set up destination pointers.
322 vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
323
324 // Set up limit values for MV components.
325 // Mv beyond the range do not produce new/different prediction block.
326 mv_limits->row_min = -(((mi_row + mi_height) * MI_SIZE) + VP9_INTERP_EXTEND);
327 mv_limits->col_min = -(((mi_col + mi_width) * MI_SIZE) + VP9_INTERP_EXTEND);
328 mv_limits->row_max = (cm->mi_rows - mi_row) * MI_SIZE + VP9_INTERP_EXTEND;
329 mv_limits->col_max = (cm->mi_cols - mi_col) * MI_SIZE + VP9_INTERP_EXTEND;
330
331 // Set up distance of MB to edge of frame in 1/8th pel units.
332 assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1)));
333 set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width, cm->mi_rows,
334 cm->mi_cols);
335
336 // Set up source buffers.
337 vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
338
339 // R/D setup.
340 x->rddiv = cpi->rd.RDDIV;
341 x->rdmult = cpi->rd.RDMULT;
342 if (oxcf->tuning == VP8_TUNE_SSIM) {
343 set_ssim_rdmult(cpi, x, bsize, mi_row, mi_col, &x->rdmult);
344 }
345
346 // required by vp9_append_sub8x8_mvs_for_idx() and vp9_find_best_ref_mvs()
347 xd->tile = *tile;
348 }
349
duplicate_mode_info_in_sb(VP9_COMMON * cm,MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE bsize)350 static void duplicate_mode_info_in_sb(VP9_COMMON *cm, MACROBLOCKD *xd,
351 int mi_row, int mi_col,
352 BLOCK_SIZE bsize) {
353 const int block_width =
354 VPXMIN(num_8x8_blocks_wide_lookup[bsize], cm->mi_cols - mi_col);
355 const int block_height =
356 VPXMIN(num_8x8_blocks_high_lookup[bsize], cm->mi_rows - mi_row);
357 const int mi_stride = xd->mi_stride;
358 MODE_INFO *const src_mi = xd->mi[0];
359 int i, j;
360
361 for (j = 0; j < block_height; ++j)
362 for (i = 0; i < block_width; ++i) xd->mi[j * mi_stride + i] = src_mi;
363 }
364
set_block_size(VP9_COMP * const cpi,MACROBLOCK * const x,MACROBLOCKD * const xd,int mi_row,int mi_col,BLOCK_SIZE bsize)365 static void set_block_size(VP9_COMP *const cpi, MACROBLOCK *const x,
366 MACROBLOCKD *const xd, int mi_row, int mi_col,
367 BLOCK_SIZE bsize) {
368 if (cpi->common.mi_cols > mi_col && cpi->common.mi_rows > mi_row) {
369 set_mode_info_offsets(&cpi->common, x, xd, mi_row, mi_col);
370 xd->mi[0]->sb_type = bsize;
371 }
372 }
373
374 typedef struct {
375 // This struct is used for computing variance in choose_partitioning(), where
376 // the max number of samples within a superblock is 16x16 (with 4x4 avg). Even
377 // in high bitdepth, uint32_t is enough for sum_square_error (2^12 * 2^12 * 16
378 // * 16 = 2^32).
379 uint32_t sum_square_error;
380 int32_t sum_error;
381 int log2_count;
382 int variance;
383 } var;
384
385 typedef struct {
386 var none;
387 var horz[2];
388 var vert[2];
389 } partition_variance;
390
391 typedef struct {
392 partition_variance part_variances;
393 var split[4];
394 } v4x4;
395
396 typedef struct {
397 partition_variance part_variances;
398 v4x4 split[4];
399 } v8x8;
400
401 typedef struct {
402 partition_variance part_variances;
403 v8x8 split[4];
404 } v16x16;
405
406 typedef struct {
407 partition_variance part_variances;
408 v16x16 split[4];
409 } v32x32;
410
411 typedef struct {
412 partition_variance part_variances;
413 v32x32 split[4];
414 } v64x64;
415
416 typedef struct {
417 partition_variance *part_variances;
418 var *split[4];
419 } variance_node;
420
421 typedef enum {
422 V16X16,
423 V32X32,
424 V64X64,
425 } TREE_LEVEL;
426
tree_to_node(void * data,BLOCK_SIZE bsize,variance_node * node)427 static void tree_to_node(void *data, BLOCK_SIZE bsize, variance_node *node) {
428 int i;
429 node->part_variances = NULL;
430 switch (bsize) {
431 case BLOCK_64X64: {
432 v64x64 *vt = (v64x64 *)data;
433 node->part_variances = &vt->part_variances;
434 for (i = 0; i < 4; i++)
435 node->split[i] = &vt->split[i].part_variances.none;
436 break;
437 }
438 case BLOCK_32X32: {
439 v32x32 *vt = (v32x32 *)data;
440 node->part_variances = &vt->part_variances;
441 for (i = 0; i < 4; i++)
442 node->split[i] = &vt->split[i].part_variances.none;
443 break;
444 }
445 case BLOCK_16X16: {
446 v16x16 *vt = (v16x16 *)data;
447 node->part_variances = &vt->part_variances;
448 for (i = 0; i < 4; i++)
449 node->split[i] = &vt->split[i].part_variances.none;
450 break;
451 }
452 case BLOCK_8X8: {
453 v8x8 *vt = (v8x8 *)data;
454 node->part_variances = &vt->part_variances;
455 for (i = 0; i < 4; i++)
456 node->split[i] = &vt->split[i].part_variances.none;
457 break;
458 }
459 default: {
460 v4x4 *vt = (v4x4 *)data;
461 assert(bsize == BLOCK_4X4);
462 node->part_variances = &vt->part_variances;
463 for (i = 0; i < 4; i++) node->split[i] = &vt->split[i];
464 break;
465 }
466 }
467 }
468
469 // Set variance values given sum square error, sum error, count.
fill_variance(uint32_t s2,int32_t s,int c,var * v)470 static void fill_variance(uint32_t s2, int32_t s, int c, var *v) {
471 v->sum_square_error = s2;
472 v->sum_error = s;
473 v->log2_count = c;
474 }
475
get_variance(var * v)476 static void get_variance(var *v) {
477 v->variance =
478 (int)(256 * (v->sum_square_error -
479 (uint32_t)(((int64_t)v->sum_error * v->sum_error) >>
480 v->log2_count)) >>
481 v->log2_count);
482 }
483
sum_2_variances(const var * a,const var * b,var * r)484 static void sum_2_variances(const var *a, const var *b, var *r) {
485 assert(a->log2_count == b->log2_count);
486 fill_variance(a->sum_square_error + b->sum_square_error,
487 a->sum_error + b->sum_error, a->log2_count + 1, r);
488 }
489
fill_variance_tree(void * data,BLOCK_SIZE bsize)490 static void fill_variance_tree(void *data, BLOCK_SIZE bsize) {
491 variance_node node;
492 memset(&node, 0, sizeof(node));
493 tree_to_node(data, bsize, &node);
494 sum_2_variances(node.split[0], node.split[1], &node.part_variances->horz[0]);
495 sum_2_variances(node.split[2], node.split[3], &node.part_variances->horz[1]);
496 sum_2_variances(node.split[0], node.split[2], &node.part_variances->vert[0]);
497 sum_2_variances(node.split[1], node.split[3], &node.part_variances->vert[1]);
498 sum_2_variances(&node.part_variances->vert[0], &node.part_variances->vert[1],
499 &node.part_variances->none);
500 }
501
set_vt_partitioning(VP9_COMP * cpi,MACROBLOCK * const x,MACROBLOCKD * const xd,void * data,BLOCK_SIZE bsize,int mi_row,int mi_col,int64_t threshold,BLOCK_SIZE bsize_min,int force_split)502 static int set_vt_partitioning(VP9_COMP *cpi, MACROBLOCK *const x,
503 MACROBLOCKD *const xd, void *data,
504 BLOCK_SIZE bsize, int mi_row, int mi_col,
505 int64_t threshold, BLOCK_SIZE bsize_min,
506 int force_split) {
507 VP9_COMMON *const cm = &cpi->common;
508 variance_node vt;
509 const int block_width = num_8x8_blocks_wide_lookup[bsize];
510 const int block_height = num_8x8_blocks_high_lookup[bsize];
511
512 assert(block_height == block_width);
513 tree_to_node(data, bsize, &vt);
514
515 if (force_split == 1) return 0;
516
517 // For bsize=bsize_min (16x16/8x8 for 8x8/4x4 downsampling), select if
518 // variance is below threshold, otherwise split will be selected.
519 // No check for vert/horiz split as too few samples for variance.
520 if (bsize == bsize_min) {
521 // Variance already computed to set the force_split.
522 if (frame_is_intra_only(cm)) get_variance(&vt.part_variances->none);
523 if (mi_col + block_width / 2 < cm->mi_cols &&
524 mi_row + block_height / 2 < cm->mi_rows &&
525 vt.part_variances->none.variance < threshold) {
526 set_block_size(cpi, x, xd, mi_row, mi_col, bsize);
527 return 1;
528 }
529 return 0;
530 } else if (bsize > bsize_min) {
531 // Variance already computed to set the force_split.
532 if (frame_is_intra_only(cm)) get_variance(&vt.part_variances->none);
533 // For key frame: take split for bsize above 32X32 or very high variance.
534 if (frame_is_intra_only(cm) &&
535 (bsize > BLOCK_32X32 ||
536 vt.part_variances->none.variance > (threshold << 4))) {
537 return 0;
538 }
539 // If variance is low, take the bsize (no split).
540 if (mi_col + block_width / 2 < cm->mi_cols &&
541 mi_row + block_height / 2 < cm->mi_rows &&
542 vt.part_variances->none.variance < threshold) {
543 set_block_size(cpi, x, xd, mi_row, mi_col, bsize);
544 return 1;
545 }
546
547 // Check vertical split.
548 if (mi_row + block_height / 2 < cm->mi_rows) {
549 BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_VERT);
550 get_variance(&vt.part_variances->vert[0]);
551 get_variance(&vt.part_variances->vert[1]);
552 if (vt.part_variances->vert[0].variance < threshold &&
553 vt.part_variances->vert[1].variance < threshold &&
554 get_plane_block_size(subsize, &xd->plane[1]) < BLOCK_INVALID) {
555 set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
556 set_block_size(cpi, x, xd, mi_row, mi_col + block_width / 2, subsize);
557 return 1;
558 }
559 }
560 // Check horizontal split.
561 if (mi_col + block_width / 2 < cm->mi_cols) {
562 BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_HORZ);
563 get_variance(&vt.part_variances->horz[0]);
564 get_variance(&vt.part_variances->horz[1]);
565 if (vt.part_variances->horz[0].variance < threshold &&
566 vt.part_variances->horz[1].variance < threshold &&
567 get_plane_block_size(subsize, &xd->plane[1]) < BLOCK_INVALID) {
568 set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
569 set_block_size(cpi, x, xd, mi_row + block_height / 2, mi_col, subsize);
570 return 1;
571 }
572 }
573
574 return 0;
575 }
576 return 0;
577 }
578
scale_part_thresh_sumdiff(int64_t threshold_base,int speed,int width,int height,int content_state)579 static int64_t scale_part_thresh_sumdiff(int64_t threshold_base, int speed,
580 int width, int height,
581 int content_state) {
582 if (speed >= 8) {
583 if (width <= 640 && height <= 480)
584 return (5 * threshold_base) >> 2;
585 else if ((content_state == kLowSadLowSumdiff) ||
586 (content_state == kHighSadLowSumdiff) ||
587 (content_state == kLowVarHighSumdiff))
588 return (5 * threshold_base) >> 2;
589 } else if (speed == 7) {
590 if ((content_state == kLowSadLowSumdiff) ||
591 (content_state == kHighSadLowSumdiff) ||
592 (content_state == kLowVarHighSumdiff)) {
593 return (5 * threshold_base) >> 2;
594 }
595 }
596 return threshold_base;
597 }
598
599 // Set the variance split thresholds for following the block sizes:
600 // 0 - threshold_64x64, 1 - threshold_32x32, 2 - threshold_16x16,
601 // 3 - vbp_threshold_8x8. vbp_threshold_8x8 (to split to 4x4 partition) is
602 // currently only used on key frame.
set_vbp_thresholds(VP9_COMP * cpi,int64_t thresholds[],int q,int content_state)603 static void set_vbp_thresholds(VP9_COMP *cpi, int64_t thresholds[], int q,
604 int content_state) {
605 VP9_COMMON *const cm = &cpi->common;
606 const int is_key_frame = frame_is_intra_only(cm);
607 const int threshold_multiplier =
608 is_key_frame ? 20 : cpi->sf.variance_part_thresh_mult;
609 int64_t threshold_base =
610 (int64_t)(threshold_multiplier * cpi->y_dequant[q][1]);
611
612 if (is_key_frame) {
613 thresholds[0] = threshold_base;
614 thresholds[1] = threshold_base >> 2;
615 thresholds[2] = threshold_base >> 2;
616 thresholds[3] = threshold_base << 2;
617 } else {
618 // Increase base variance threshold based on estimated noise level.
619 if (cpi->noise_estimate.enabled && cm->width >= 640 && cm->height >= 480) {
620 NOISE_LEVEL noise_level =
621 vp9_noise_estimate_extract_level(&cpi->noise_estimate);
622 if (noise_level == kHigh)
623 threshold_base = 3 * threshold_base;
624 else if (noise_level == kMedium)
625 threshold_base = threshold_base << 1;
626 else if (noise_level < kLow)
627 threshold_base = (7 * threshold_base) >> 3;
628 }
629 #if CONFIG_VP9_TEMPORAL_DENOISING
630 if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc(cpi) &&
631 cpi->oxcf.speed > 5 && cpi->denoiser.denoising_level >= kDenLow)
632 threshold_base =
633 vp9_scale_part_thresh(threshold_base, cpi->denoiser.denoising_level,
634 content_state, cpi->svc.temporal_layer_id);
635 else
636 threshold_base =
637 scale_part_thresh_sumdiff(threshold_base, cpi->oxcf.speed, cm->width,
638 cm->height, content_state);
639 #else
640 // Increase base variance threshold based on content_state/sum_diff level.
641 threshold_base = scale_part_thresh_sumdiff(
642 threshold_base, cpi->oxcf.speed, cm->width, cm->height, content_state);
643 #endif
644 thresholds[0] = threshold_base;
645 thresholds[2] = threshold_base << cpi->oxcf.speed;
646 if (cm->width >= 1280 && cm->height >= 720 && cpi->oxcf.speed < 7)
647 thresholds[2] = thresholds[2] << 1;
648 if (cm->width <= 352 && cm->height <= 288) {
649 thresholds[0] = threshold_base >> 3;
650 thresholds[1] = threshold_base >> 1;
651 thresholds[2] = threshold_base << 3;
652 } else if (cm->width < 1280 && cm->height < 720) {
653 thresholds[1] = (5 * threshold_base) >> 2;
654 } else if (cm->width < 1920 && cm->height < 1080) {
655 thresholds[1] = threshold_base << 1;
656 } else {
657 thresholds[1] = (5 * threshold_base) >> 1;
658 }
659 if (cpi->sf.disable_16x16part_nonkey) thresholds[2] = INT64_MAX;
660 }
661 }
662
vp9_set_variance_partition_thresholds(VP9_COMP * cpi,int q,int content_state)663 void vp9_set_variance_partition_thresholds(VP9_COMP *cpi, int q,
664 int content_state) {
665 VP9_COMMON *const cm = &cpi->common;
666 SPEED_FEATURES *const sf = &cpi->sf;
667 const int is_key_frame = frame_is_intra_only(cm);
668 if (sf->partition_search_type != VAR_BASED_PARTITION &&
669 sf->partition_search_type != REFERENCE_PARTITION) {
670 return;
671 } else {
672 set_vbp_thresholds(cpi, cpi->vbp_thresholds, q, content_state);
673 // The thresholds below are not changed locally.
674 if (is_key_frame) {
675 cpi->vbp_threshold_sad = 0;
676 cpi->vbp_threshold_copy = 0;
677 cpi->vbp_bsize_min = BLOCK_8X8;
678 } else {
679 if (cm->width <= 352 && cm->height <= 288)
680 cpi->vbp_threshold_sad = 10;
681 else
682 cpi->vbp_threshold_sad = (cpi->y_dequant[q][1] << 1) > 1000
683 ? (cpi->y_dequant[q][1] << 1)
684 : 1000;
685 cpi->vbp_bsize_min = BLOCK_16X16;
686 if (cm->width <= 352 && cm->height <= 288)
687 cpi->vbp_threshold_copy = 4000;
688 else if (cm->width <= 640 && cm->height <= 360)
689 cpi->vbp_threshold_copy = 8000;
690 else
691 cpi->vbp_threshold_copy = (cpi->y_dequant[q][1] << 3) > 8000
692 ? (cpi->y_dequant[q][1] << 3)
693 : 8000;
694 if (cpi->rc.high_source_sad ||
695 (cpi->use_svc && cpi->svc.high_source_sad_superframe)) {
696 cpi->vbp_threshold_sad = 0;
697 cpi->vbp_threshold_copy = 0;
698 }
699 }
700 cpi->vbp_threshold_minmax = 15 + (q >> 3);
701 }
702 }
703
704 // Compute the minmax over the 8x8 subblocks.
compute_minmax_8x8(const uint8_t * s,int sp,const uint8_t * d,int dp,int x16_idx,int y16_idx,int highbd_flag,int pixels_wide,int pixels_high)705 static int compute_minmax_8x8(const uint8_t *s, int sp, const uint8_t *d,
706 int dp, int x16_idx, int y16_idx,
707 #if CONFIG_VP9_HIGHBITDEPTH
708 int highbd_flag,
709 #endif
710 int pixels_wide, int pixels_high) {
711 int k;
712 int minmax_max = 0;
713 int minmax_min = 255;
714 // Loop over the 4 8x8 subblocks.
715 for (k = 0; k < 4; k++) {
716 int x8_idx = x16_idx + ((k & 1) << 3);
717 int y8_idx = y16_idx + ((k >> 1) << 3);
718 int min = 0;
719 int max = 0;
720 if (x8_idx < pixels_wide && y8_idx < pixels_high) {
721 #if CONFIG_VP9_HIGHBITDEPTH
722 if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
723 vpx_highbd_minmax_8x8(s + y8_idx * sp + x8_idx, sp,
724 d + y8_idx * dp + x8_idx, dp, &min, &max);
725 } else {
726 vpx_minmax_8x8(s + y8_idx * sp + x8_idx, sp, d + y8_idx * dp + x8_idx,
727 dp, &min, &max);
728 }
729 #else
730 vpx_minmax_8x8(s + y8_idx * sp + x8_idx, sp, d + y8_idx * dp + x8_idx, dp,
731 &min, &max);
732 #endif
733 if ((max - min) > minmax_max) minmax_max = (max - min);
734 if ((max - min) < minmax_min) minmax_min = (max - min);
735 }
736 }
737 return (minmax_max - minmax_min);
738 }
739
fill_variance_4x4avg(const uint8_t * s,int sp,const uint8_t * d,int dp,int x8_idx,int y8_idx,v8x8 * vst,int highbd_flag,int pixels_wide,int pixels_high,int is_key_frame)740 static void fill_variance_4x4avg(const uint8_t *s, int sp, const uint8_t *d,
741 int dp, int x8_idx, int y8_idx, v8x8 *vst,
742 #if CONFIG_VP9_HIGHBITDEPTH
743 int highbd_flag,
744 #endif
745 int pixels_wide, int pixels_high,
746 int is_key_frame) {
747 int k;
748 for (k = 0; k < 4; k++) {
749 int x4_idx = x8_idx + ((k & 1) << 2);
750 int y4_idx = y8_idx + ((k >> 1) << 2);
751 unsigned int sse = 0;
752 int sum = 0;
753 if (x4_idx < pixels_wide && y4_idx < pixels_high) {
754 int s_avg;
755 int d_avg = 128;
756 #if CONFIG_VP9_HIGHBITDEPTH
757 if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
758 s_avg = vpx_highbd_avg_4x4(s + y4_idx * sp + x4_idx, sp);
759 if (!is_key_frame)
760 d_avg = vpx_highbd_avg_4x4(d + y4_idx * dp + x4_idx, dp);
761 } else {
762 s_avg = vpx_avg_4x4(s + y4_idx * sp + x4_idx, sp);
763 if (!is_key_frame) d_avg = vpx_avg_4x4(d + y4_idx * dp + x4_idx, dp);
764 }
765 #else
766 s_avg = vpx_avg_4x4(s + y4_idx * sp + x4_idx, sp);
767 if (!is_key_frame) d_avg = vpx_avg_4x4(d + y4_idx * dp + x4_idx, dp);
768 #endif
769 sum = s_avg - d_avg;
770 sse = sum * sum;
771 }
772 fill_variance(sse, sum, 0, &vst->split[k].part_variances.none);
773 }
774 }
775
fill_variance_8x8avg(const uint8_t * s,int sp,const uint8_t * d,int dp,int x16_idx,int y16_idx,v16x16 * vst,int highbd_flag,int pixels_wide,int pixels_high,int is_key_frame)776 static void fill_variance_8x8avg(const uint8_t *s, int sp, const uint8_t *d,
777 int dp, int x16_idx, int y16_idx, v16x16 *vst,
778 #if CONFIG_VP9_HIGHBITDEPTH
779 int highbd_flag,
780 #endif
781 int pixels_wide, int pixels_high,
782 int is_key_frame) {
783 int k;
784 for (k = 0; k < 4; k++) {
785 int x8_idx = x16_idx + ((k & 1) << 3);
786 int y8_idx = y16_idx + ((k >> 1) << 3);
787 unsigned int sse = 0;
788 int sum = 0;
789 if (x8_idx < pixels_wide && y8_idx < pixels_high) {
790 int s_avg;
791 int d_avg = 128;
792 #if CONFIG_VP9_HIGHBITDEPTH
793 if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
794 s_avg = vpx_highbd_avg_8x8(s + y8_idx * sp + x8_idx, sp);
795 if (!is_key_frame)
796 d_avg = vpx_highbd_avg_8x8(d + y8_idx * dp + x8_idx, dp);
797 } else {
798 s_avg = vpx_avg_8x8(s + y8_idx * sp + x8_idx, sp);
799 if (!is_key_frame) d_avg = vpx_avg_8x8(d + y8_idx * dp + x8_idx, dp);
800 }
801 #else
802 s_avg = vpx_avg_8x8(s + y8_idx * sp + x8_idx, sp);
803 if (!is_key_frame) d_avg = vpx_avg_8x8(d + y8_idx * dp + x8_idx, dp);
804 #endif
805 sum = s_avg - d_avg;
806 sse = sum * sum;
807 }
808 fill_variance(sse, sum, 0, &vst->split[k].part_variances.none);
809 }
810 }
811
812 // Check if most of the superblock is skin content, and if so, force split to
813 // 32x32, and set x->sb_is_skin for use in mode selection.
skin_sb_split(VP9_COMP * cpi,MACROBLOCK * x,const int low_res,int mi_row,int mi_col,int * force_split)814 static int skin_sb_split(VP9_COMP *cpi, MACROBLOCK *x, const int low_res,
815 int mi_row, int mi_col, int *force_split) {
816 VP9_COMMON *const cm = &cpi->common;
817 #if CONFIG_VP9_HIGHBITDEPTH
818 if (cm->use_highbitdepth) return 0;
819 #endif
820 // Avoid checking superblocks on/near boundary and avoid low resolutions.
821 // Note superblock may still pick 64X64 if y_sad is very small
822 // (i.e., y_sad < cpi->vbp_threshold_sad) below. For now leave this as is.
823 if (!low_res && (mi_col >= 8 && mi_col + 8 < cm->mi_cols && mi_row >= 8 &&
824 mi_row + 8 < cm->mi_rows)) {
825 int num_16x16_skin = 0;
826 int num_16x16_nonskin = 0;
827 uint8_t *ysignal = x->plane[0].src.buf;
828 uint8_t *usignal = x->plane[1].src.buf;
829 uint8_t *vsignal = x->plane[2].src.buf;
830 int sp = x->plane[0].src.stride;
831 int spuv = x->plane[1].src.stride;
832 const int block_index = mi_row * cm->mi_cols + mi_col;
833 const int bw = num_8x8_blocks_wide_lookup[BLOCK_64X64];
834 const int bh = num_8x8_blocks_high_lookup[BLOCK_64X64];
835 const int xmis = VPXMIN(cm->mi_cols - mi_col, bw);
836 const int ymis = VPXMIN(cm->mi_rows - mi_row, bh);
837 // Loop through the 16x16 sub-blocks.
838 int i, j;
839 for (i = 0; i < ymis; i += 2) {
840 for (j = 0; j < xmis; j += 2) {
841 int bl_index = block_index + i * cm->mi_cols + j;
842 int is_skin = cpi->skin_map[bl_index];
843 num_16x16_skin += is_skin;
844 num_16x16_nonskin += (1 - is_skin);
845 if (num_16x16_nonskin > 3) {
846 // Exit loop if at least 4 of the 16x16 blocks are not skin.
847 i = ymis;
848 break;
849 }
850 ysignal += 16;
851 usignal += 8;
852 vsignal += 8;
853 }
854 ysignal += (sp << 4) - 64;
855 usignal += (spuv << 3) - 32;
856 vsignal += (spuv << 3) - 32;
857 }
858 if (num_16x16_skin > 12) {
859 *force_split = 1;
860 return 1;
861 }
862 }
863 return 0;
864 }
865
set_low_temp_var_flag(VP9_COMP * cpi,MACROBLOCK * x,MACROBLOCKD * xd,v64x64 * vt,int64_t thresholds[],MV_REFERENCE_FRAME ref_frame_partition,int mi_col,int mi_row)866 static void set_low_temp_var_flag(VP9_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd,
867 v64x64 *vt, int64_t thresholds[],
868 MV_REFERENCE_FRAME ref_frame_partition,
869 int mi_col, int mi_row) {
870 int i, j;
871 VP9_COMMON *const cm = &cpi->common;
872 const int mv_thr = cm->width > 640 ? 8 : 4;
873 // Check temporal variance for bsize >= 16x16, if LAST_FRAME was selected and
874 // int_pro mv is small. If the temporal variance is small set the flag
875 // variance_low for the block. The variance threshold can be adjusted, the
876 // higher the more aggressive.
877 if (ref_frame_partition == LAST_FRAME &&
878 (cpi->sf.short_circuit_low_temp_var == 1 ||
879 (xd->mi[0]->mv[0].as_mv.col < mv_thr &&
880 xd->mi[0]->mv[0].as_mv.col > -mv_thr &&
881 xd->mi[0]->mv[0].as_mv.row < mv_thr &&
882 xd->mi[0]->mv[0].as_mv.row > -mv_thr))) {
883 if (xd->mi[0]->sb_type == BLOCK_64X64) {
884 if ((vt->part_variances).none.variance < (thresholds[0] >> 1))
885 x->variance_low[0] = 1;
886 } else if (xd->mi[0]->sb_type == BLOCK_64X32) {
887 for (i = 0; i < 2; i++) {
888 if (vt->part_variances.horz[i].variance < (thresholds[0] >> 2))
889 x->variance_low[i + 1] = 1;
890 }
891 } else if (xd->mi[0]->sb_type == BLOCK_32X64) {
892 for (i = 0; i < 2; i++) {
893 if (vt->part_variances.vert[i].variance < (thresholds[0] >> 2))
894 x->variance_low[i + 3] = 1;
895 }
896 } else {
897 for (i = 0; i < 4; i++) {
898 const int idx[4][2] = { { 0, 0 }, { 0, 4 }, { 4, 0 }, { 4, 4 } };
899 const int idx_str =
900 cm->mi_stride * (mi_row + idx[i][0]) + mi_col + idx[i][1];
901 MODE_INFO **this_mi = cm->mi_grid_visible + idx_str;
902
903 if (cm->mi_cols <= mi_col + idx[i][1] ||
904 cm->mi_rows <= mi_row + idx[i][0])
905 continue;
906
907 if ((*this_mi)->sb_type == BLOCK_32X32) {
908 int64_t threshold_32x32 = (cpi->sf.short_circuit_low_temp_var == 1 ||
909 cpi->sf.short_circuit_low_temp_var == 3)
910 ? ((5 * thresholds[1]) >> 3)
911 : (thresholds[1] >> 1);
912 if (vt->split[i].part_variances.none.variance < threshold_32x32)
913 x->variance_low[i + 5] = 1;
914 } else if (cpi->sf.short_circuit_low_temp_var >= 2) {
915 // For 32x16 and 16x32 blocks, the flag is set on each 16x16 block
916 // inside.
917 if ((*this_mi)->sb_type == BLOCK_16X16 ||
918 (*this_mi)->sb_type == BLOCK_32X16 ||
919 (*this_mi)->sb_type == BLOCK_16X32) {
920 for (j = 0; j < 4; j++) {
921 if (vt->split[i].split[j].part_variances.none.variance <
922 (thresholds[2] >> 8))
923 x->variance_low[(i << 2) + j + 9] = 1;
924 }
925 }
926 }
927 }
928 }
929 }
930 }
931
copy_partitioning_helper(VP9_COMP * cpi,MACROBLOCK * x,MACROBLOCKD * xd,BLOCK_SIZE bsize,int mi_row,int mi_col)932 static void copy_partitioning_helper(VP9_COMP *cpi, MACROBLOCK *x,
933 MACROBLOCKD *xd, BLOCK_SIZE bsize,
934 int mi_row, int mi_col) {
935 VP9_COMMON *const cm = &cpi->common;
936 BLOCK_SIZE *prev_part = cpi->prev_partition;
937 int start_pos = mi_row * cm->mi_stride + mi_col;
938
939 const int bsl = b_width_log2_lookup[bsize];
940 const int bs = (1 << bsl) >> 2;
941 BLOCK_SIZE subsize;
942 PARTITION_TYPE partition;
943
944 if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
945
946 partition = partition_lookup[bsl][prev_part[start_pos]];
947 subsize = get_subsize(bsize, partition);
948
949 if (subsize < BLOCK_8X8) {
950 set_block_size(cpi, x, xd, mi_row, mi_col, bsize);
951 } else {
952 switch (partition) {
953 case PARTITION_NONE:
954 set_block_size(cpi, x, xd, mi_row, mi_col, bsize);
955 break;
956 case PARTITION_HORZ:
957 set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
958 set_block_size(cpi, x, xd, mi_row + bs, mi_col, subsize);
959 break;
960 case PARTITION_VERT:
961 set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
962 set_block_size(cpi, x, xd, mi_row, mi_col + bs, subsize);
963 break;
964 default:
965 assert(partition == PARTITION_SPLIT);
966 copy_partitioning_helper(cpi, x, xd, subsize, mi_row, mi_col);
967 copy_partitioning_helper(cpi, x, xd, subsize, mi_row + bs, mi_col);
968 copy_partitioning_helper(cpi, x, xd, subsize, mi_row, mi_col + bs);
969 copy_partitioning_helper(cpi, x, xd, subsize, mi_row + bs, mi_col + bs);
970 break;
971 }
972 }
973 }
974
copy_partitioning(VP9_COMP * cpi,MACROBLOCK * x,MACROBLOCKD * xd,int mi_row,int mi_col,int segment_id,int sb_offset)975 static int copy_partitioning(VP9_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd,
976 int mi_row, int mi_col, int segment_id,
977 int sb_offset) {
978 int svc_copy_allowed = 1;
979 int frames_since_key_thresh = 1;
980 if (cpi->use_svc) {
981 // For SVC, don't allow copy if base spatial layer is key frame, or if
982 // frame is not a temporal enhancement layer frame.
983 int layer = LAYER_IDS_TO_IDX(0, cpi->svc.temporal_layer_id,
984 cpi->svc.number_temporal_layers);
985 const LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer];
986 if (lc->is_key_frame || !cpi->svc.non_reference_frame) svc_copy_allowed = 0;
987 frames_since_key_thresh = cpi->svc.number_spatial_layers << 1;
988 }
989 if (cpi->rc.frames_since_key > frames_since_key_thresh && svc_copy_allowed &&
990 !cpi->resize_pending && segment_id == CR_SEGMENT_ID_BASE &&
991 cpi->prev_segment_id[sb_offset] == CR_SEGMENT_ID_BASE &&
992 cpi->copied_frame_cnt[sb_offset] < cpi->max_copied_frame) {
993 if (cpi->prev_partition != NULL) {
994 copy_partitioning_helper(cpi, x, xd, BLOCK_64X64, mi_row, mi_col);
995 cpi->copied_frame_cnt[sb_offset] += 1;
996 memcpy(x->variance_low, &(cpi->prev_variance_low[sb_offset * 25]),
997 sizeof(x->variance_low));
998 return 1;
999 }
1000 }
1001
1002 return 0;
1003 }
1004
scale_partitioning_svc(VP9_COMP * cpi,MACROBLOCK * x,MACROBLOCKD * xd,BLOCK_SIZE bsize,int mi_row,int mi_col,int mi_row_high,int mi_col_high)1005 static int scale_partitioning_svc(VP9_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd,
1006 BLOCK_SIZE bsize, int mi_row, int mi_col,
1007 int mi_row_high, int mi_col_high) {
1008 VP9_COMMON *const cm = &cpi->common;
1009 SVC *const svc = &cpi->svc;
1010 BLOCK_SIZE *prev_part = svc->prev_partition_svc;
1011 // Variables with _high are for higher resolution.
1012 int bsize_high = 0;
1013 int subsize_high = 0;
1014 const int bsl_high = b_width_log2_lookup[bsize];
1015 const int bs_high = (1 << bsl_high) >> 2;
1016 const int has_rows = (mi_row_high + bs_high) < cm->mi_rows;
1017 const int has_cols = (mi_col_high + bs_high) < cm->mi_cols;
1018
1019 const int row_boundary_block_scale_factor[BLOCK_SIZES] = { 13, 13, 13, 1, 0,
1020 1, 1, 0, 1, 1,
1021 0, 1, 0 };
1022 const int col_boundary_block_scale_factor[BLOCK_SIZES] = { 13, 13, 13, 2, 2,
1023 0, 2, 2, 0, 2,
1024 2, 0, 0 };
1025 int start_pos;
1026 BLOCK_SIZE bsize_low;
1027 PARTITION_TYPE partition_high;
1028
1029 if (mi_row_high >= cm->mi_rows || mi_col_high >= cm->mi_cols) return 0;
1030 if (mi_row >= svc->mi_rows[svc->spatial_layer_id - 1] ||
1031 mi_col >= svc->mi_cols[svc->spatial_layer_id - 1])
1032 return 0;
1033
1034 // Find corresponding (mi_col/mi_row) block down-scaled by 2x2.
1035 start_pos = mi_row * (svc->mi_stride[svc->spatial_layer_id - 1]) + mi_col;
1036 bsize_low = prev_part[start_pos];
1037 // The block size is too big for boundaries. Do variance based partitioning.
1038 if ((!has_rows || !has_cols) && bsize_low > BLOCK_16X16) return 1;
1039
1040 // For reference frames: return 1 (do variance-based partitioning) if the
1041 // superblock is not low source sad and lower-resoln bsize is below 32x32.
1042 if (!cpi->svc.non_reference_frame && !x->skip_low_source_sad &&
1043 bsize_low < BLOCK_32X32)
1044 return 1;
1045
1046 // Scale up block size by 2x2. Force 64x64 for size larger than 32x32.
1047 if (bsize_low < BLOCK_32X32) {
1048 bsize_high = bsize_low + 3;
1049 } else if (bsize_low >= BLOCK_32X32) {
1050 bsize_high = BLOCK_64X64;
1051 }
1052 // Scale up blocks on boundary.
1053 if (!has_cols && has_rows) {
1054 bsize_high = bsize_low + row_boundary_block_scale_factor[bsize_low];
1055 } else if (has_cols && !has_rows) {
1056 bsize_high = bsize_low + col_boundary_block_scale_factor[bsize_low];
1057 } else if (!has_cols && !has_rows) {
1058 bsize_high = bsize_low;
1059 }
1060
1061 partition_high = partition_lookup[bsl_high][bsize_high];
1062 subsize_high = get_subsize(bsize, partition_high);
1063
1064 if (subsize_high < BLOCK_8X8) {
1065 set_block_size(cpi, x, xd, mi_row_high, mi_col_high, bsize_high);
1066 } else {
1067 const int bsl = b_width_log2_lookup[bsize];
1068 const int bs = (1 << bsl) >> 2;
1069 switch (partition_high) {
1070 case PARTITION_NONE:
1071 set_block_size(cpi, x, xd, mi_row_high, mi_col_high, bsize_high);
1072 break;
1073 case PARTITION_HORZ:
1074 set_block_size(cpi, x, xd, mi_row_high, mi_col_high, subsize_high);
1075 if (subsize_high < BLOCK_64X64)
1076 set_block_size(cpi, x, xd, mi_row_high + bs_high, mi_col_high,
1077 subsize_high);
1078 break;
1079 case PARTITION_VERT:
1080 set_block_size(cpi, x, xd, mi_row_high, mi_col_high, subsize_high);
1081 if (subsize_high < BLOCK_64X64)
1082 set_block_size(cpi, x, xd, mi_row_high, mi_col_high + bs_high,
1083 subsize_high);
1084 break;
1085 default:
1086 assert(partition_high == PARTITION_SPLIT);
1087 if (scale_partitioning_svc(cpi, x, xd, subsize_high, mi_row, mi_col,
1088 mi_row_high, mi_col_high))
1089 return 1;
1090 if (scale_partitioning_svc(cpi, x, xd, subsize_high, mi_row + (bs >> 1),
1091 mi_col, mi_row_high + bs_high, mi_col_high))
1092 return 1;
1093 if (scale_partitioning_svc(cpi, x, xd, subsize_high, mi_row,
1094 mi_col + (bs >> 1), mi_row_high,
1095 mi_col_high + bs_high))
1096 return 1;
1097 if (scale_partitioning_svc(cpi, x, xd, subsize_high, mi_row + (bs >> 1),
1098 mi_col + (bs >> 1), mi_row_high + bs_high,
1099 mi_col_high + bs_high))
1100 return 1;
1101 break;
1102 }
1103 }
1104
1105 return 0;
1106 }
1107
update_partition_svc(VP9_COMP * cpi,BLOCK_SIZE bsize,int mi_row,int mi_col)1108 static void update_partition_svc(VP9_COMP *cpi, BLOCK_SIZE bsize, int mi_row,
1109 int mi_col) {
1110 VP9_COMMON *const cm = &cpi->common;
1111 BLOCK_SIZE *prev_part = cpi->svc.prev_partition_svc;
1112 int start_pos = mi_row * cm->mi_stride + mi_col;
1113 const int bsl = b_width_log2_lookup[bsize];
1114 const int bs = (1 << bsl) >> 2;
1115 BLOCK_SIZE subsize;
1116 PARTITION_TYPE partition;
1117 const MODE_INFO *mi = NULL;
1118 int xx, yy;
1119
1120 if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
1121
1122 mi = cm->mi_grid_visible[start_pos];
1123 partition = partition_lookup[bsl][mi->sb_type];
1124 subsize = get_subsize(bsize, partition);
1125 if (subsize < BLOCK_8X8) {
1126 prev_part[start_pos] = bsize;
1127 } else {
1128 switch (partition) {
1129 case PARTITION_NONE:
1130 prev_part[start_pos] = bsize;
1131 if (bsize == BLOCK_64X64) {
1132 for (xx = 0; xx < 8; xx += 4)
1133 for (yy = 0; yy < 8; yy += 4) {
1134 if ((mi_row + xx < cm->mi_rows) && (mi_col + yy < cm->mi_cols))
1135 prev_part[start_pos + xx * cm->mi_stride + yy] = bsize;
1136 }
1137 }
1138 break;
1139 case PARTITION_HORZ:
1140 prev_part[start_pos] = subsize;
1141 if (mi_row + bs < cm->mi_rows)
1142 prev_part[start_pos + bs * cm->mi_stride] = subsize;
1143 break;
1144 case PARTITION_VERT:
1145 prev_part[start_pos] = subsize;
1146 if (mi_col + bs < cm->mi_cols) prev_part[start_pos + bs] = subsize;
1147 break;
1148 default:
1149 assert(partition == PARTITION_SPLIT);
1150 update_partition_svc(cpi, subsize, mi_row, mi_col);
1151 update_partition_svc(cpi, subsize, mi_row + bs, mi_col);
1152 update_partition_svc(cpi, subsize, mi_row, mi_col + bs);
1153 update_partition_svc(cpi, subsize, mi_row + bs, mi_col + bs);
1154 break;
1155 }
1156 }
1157 }
1158
update_prev_partition_helper(VP9_COMP * cpi,BLOCK_SIZE bsize,int mi_row,int mi_col)1159 static void update_prev_partition_helper(VP9_COMP *cpi, BLOCK_SIZE bsize,
1160 int mi_row, int mi_col) {
1161 VP9_COMMON *const cm = &cpi->common;
1162 BLOCK_SIZE *prev_part = cpi->prev_partition;
1163 int start_pos = mi_row * cm->mi_stride + mi_col;
1164 const int bsl = b_width_log2_lookup[bsize];
1165 const int bs = (1 << bsl) >> 2;
1166 BLOCK_SIZE subsize;
1167 PARTITION_TYPE partition;
1168 const MODE_INFO *mi = NULL;
1169
1170 if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
1171
1172 mi = cm->mi_grid_visible[start_pos];
1173 partition = partition_lookup[bsl][mi->sb_type];
1174 subsize = get_subsize(bsize, partition);
1175 if (subsize < BLOCK_8X8) {
1176 prev_part[start_pos] = bsize;
1177 } else {
1178 switch (partition) {
1179 case PARTITION_NONE: prev_part[start_pos] = bsize; break;
1180 case PARTITION_HORZ:
1181 prev_part[start_pos] = subsize;
1182 if (mi_row + bs < cm->mi_rows)
1183 prev_part[start_pos + bs * cm->mi_stride] = subsize;
1184 break;
1185 case PARTITION_VERT:
1186 prev_part[start_pos] = subsize;
1187 if (mi_col + bs < cm->mi_cols) prev_part[start_pos + bs] = subsize;
1188 break;
1189 default:
1190 assert(partition == PARTITION_SPLIT);
1191 update_prev_partition_helper(cpi, subsize, mi_row, mi_col);
1192 update_prev_partition_helper(cpi, subsize, mi_row + bs, mi_col);
1193 update_prev_partition_helper(cpi, subsize, mi_row, mi_col + bs);
1194 update_prev_partition_helper(cpi, subsize, mi_row + bs, mi_col + bs);
1195 break;
1196 }
1197 }
1198 }
1199
update_prev_partition(VP9_COMP * cpi,MACROBLOCK * x,int segment_id,int mi_row,int mi_col,int sb_offset)1200 static void update_prev_partition(VP9_COMP *cpi, MACROBLOCK *x, int segment_id,
1201 int mi_row, int mi_col, int sb_offset) {
1202 update_prev_partition_helper(cpi, BLOCK_64X64, mi_row, mi_col);
1203 cpi->prev_segment_id[sb_offset] = segment_id;
1204 memcpy(&(cpi->prev_variance_low[sb_offset * 25]), x->variance_low,
1205 sizeof(x->variance_low));
1206 // Reset the counter for copy partitioning
1207 cpi->copied_frame_cnt[sb_offset] = 0;
1208 }
1209
chroma_check(VP9_COMP * cpi,MACROBLOCK * x,int bsize,unsigned int y_sad,int is_key_frame)1210 static void chroma_check(VP9_COMP *cpi, MACROBLOCK *x, int bsize,
1211 unsigned int y_sad, int is_key_frame) {
1212 int i;
1213 MACROBLOCKD *xd = &x->e_mbd;
1214
1215 if (is_key_frame) return;
1216
1217 // For speed > 8, avoid the chroma check if y_sad is above threshold.
1218 if (cpi->oxcf.speed > 8) {
1219 if (y_sad > cpi->vbp_thresholds[1] &&
1220 (!cpi->noise_estimate.enabled ||
1221 vp9_noise_estimate_extract_level(&cpi->noise_estimate) < kMedium))
1222 return;
1223 }
1224
1225 for (i = 1; i <= 2; ++i) {
1226 unsigned int uv_sad = UINT_MAX;
1227 struct macroblock_plane *p = &x->plane[i];
1228 struct macroblockd_plane *pd = &xd->plane[i];
1229 const BLOCK_SIZE bs = get_plane_block_size(bsize, pd);
1230
1231 if (bs != BLOCK_INVALID)
1232 uv_sad = cpi->fn_ptr[bs].sdf(p->src.buf, p->src.stride, pd->dst.buf,
1233 pd->dst.stride);
1234
1235 // TODO(marpan): Investigate if we should lower this threshold if
1236 // superblock is detected as skin.
1237 x->color_sensitivity[i - 1] = uv_sad > (y_sad >> 2);
1238 }
1239 }
1240
avg_source_sad(VP9_COMP * cpi,MACROBLOCK * x,int shift,int sb_offset)1241 static uint64_t avg_source_sad(VP9_COMP *cpi, MACROBLOCK *x, int shift,
1242 int sb_offset) {
1243 unsigned int tmp_sse;
1244 uint64_t tmp_sad;
1245 unsigned int tmp_variance;
1246 const BLOCK_SIZE bsize = BLOCK_64X64;
1247 uint8_t *src_y = cpi->Source->y_buffer;
1248 int src_ystride = cpi->Source->y_stride;
1249 uint8_t *last_src_y = cpi->Last_Source->y_buffer;
1250 int last_src_ystride = cpi->Last_Source->y_stride;
1251 uint64_t avg_source_sad_threshold = 10000;
1252 uint64_t avg_source_sad_threshold2 = 12000;
1253 #if CONFIG_VP9_HIGHBITDEPTH
1254 if (cpi->common.use_highbitdepth) return 0;
1255 #endif
1256 src_y += shift;
1257 last_src_y += shift;
1258 tmp_sad =
1259 cpi->fn_ptr[bsize].sdf(src_y, src_ystride, last_src_y, last_src_ystride);
1260 tmp_variance = vpx_variance64x64(src_y, src_ystride, last_src_y,
1261 last_src_ystride, &tmp_sse);
1262 // Note: tmp_sse - tmp_variance = ((sum * sum) >> 12)
1263 if (tmp_sad < avg_source_sad_threshold)
1264 x->content_state_sb = ((tmp_sse - tmp_variance) < 25) ? kLowSadLowSumdiff
1265 : kLowSadHighSumdiff;
1266 else
1267 x->content_state_sb = ((tmp_sse - tmp_variance) < 25) ? kHighSadLowSumdiff
1268 : kHighSadHighSumdiff;
1269
1270 // Detect large lighting change.
1271 if (cpi->oxcf.content != VP9E_CONTENT_SCREEN &&
1272 cpi->oxcf.rc_mode == VPX_CBR && tmp_variance < (tmp_sse >> 3) &&
1273 (tmp_sse - tmp_variance) > 10000)
1274 x->content_state_sb = kLowVarHighSumdiff;
1275 else if (tmp_sad > (avg_source_sad_threshold << 1))
1276 x->content_state_sb = kVeryHighSad;
1277
1278 if (cpi->content_state_sb_fd != NULL) {
1279 if (tmp_sad < avg_source_sad_threshold2) {
1280 // Cap the increment to 255.
1281 if (cpi->content_state_sb_fd[sb_offset] < 255)
1282 cpi->content_state_sb_fd[sb_offset]++;
1283 } else {
1284 cpi->content_state_sb_fd[sb_offset] = 0;
1285 }
1286 }
1287 if (tmp_sad == 0) x->zero_temp_sad_source = 1;
1288 return tmp_sad;
1289 }
1290
1291 // This function chooses partitioning based on the variance between source and
1292 // reconstructed last, where variance is computed for down-sampled inputs.
choose_partitioning(VP9_COMP * cpi,const TileInfo * const tile,MACROBLOCK * x,int mi_row,int mi_col)1293 static int choose_partitioning(VP9_COMP *cpi, const TileInfo *const tile,
1294 MACROBLOCK *x, int mi_row, int mi_col) {
1295 VP9_COMMON *const cm = &cpi->common;
1296 MACROBLOCKD *xd = &x->e_mbd;
1297 int i, j, k, m;
1298 v64x64 vt;
1299 v16x16 *vt2 = NULL;
1300 int force_split[21];
1301 int avg_32x32;
1302 int max_var_32x32 = 0;
1303 int min_var_32x32 = INT_MAX;
1304 int var_32x32;
1305 int avg_16x16[4];
1306 int maxvar_16x16[4];
1307 int minvar_16x16[4];
1308 int64_t threshold_4x4avg;
1309 NOISE_LEVEL noise_level = kLow;
1310 int content_state = 0;
1311 uint8_t *s;
1312 const uint8_t *d;
1313 int sp;
1314 int dp;
1315 int compute_minmax_variance = 1;
1316 unsigned int y_sad = UINT_MAX;
1317 BLOCK_SIZE bsize = BLOCK_64X64;
1318 // Ref frame used in partitioning.
1319 MV_REFERENCE_FRAME ref_frame_partition = LAST_FRAME;
1320 int pixels_wide = 64, pixels_high = 64;
1321 int64_t thresholds[4] = { cpi->vbp_thresholds[0], cpi->vbp_thresholds[1],
1322 cpi->vbp_thresholds[2], cpi->vbp_thresholds[3] };
1323 int force_64_split = cpi->rc.high_source_sad ||
1324 (cpi->use_svc && cpi->svc.high_source_sad_superframe) ||
1325 (cpi->oxcf.content == VP9E_CONTENT_SCREEN &&
1326 cpi->compute_source_sad_onepass &&
1327 cpi->sf.use_source_sad && !x->zero_temp_sad_source);
1328
1329 // For the variance computation under SVC mode, we treat the frame as key if
1330 // the reference (base layer frame) is key frame (i.e., is_key_frame == 1).
1331 int is_key_frame =
1332 (frame_is_intra_only(cm) ||
1333 (is_one_pass_cbr_svc(cpi) &&
1334 cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame));
1335 // Always use 4x4 partition for key frame.
1336 const int use_4x4_partition = frame_is_intra_only(cm);
1337 const int low_res = (cm->width <= 352 && cm->height <= 288);
1338 int variance4x4downsample[16];
1339 int segment_id;
1340 int sb_offset = (cm->mi_stride >> 3) * (mi_row >> 3) + (mi_col >> 3);
1341
1342 // For SVC: check if LAST frame is NULL or if the resolution of LAST is
1343 // different than the current frame resolution, and if so, treat this frame
1344 // as a key frame, for the purpose of the superblock partitioning.
1345 // LAST == NULL can happen in some cases where enhancement spatial layers are
1346 // enabled dyanmically in the stream and the only reference is the spatial
1347 // reference (GOLDEN).
1348 if (cpi->use_svc) {
1349 const YV12_BUFFER_CONFIG *const ref = get_ref_frame_buffer(cpi, LAST_FRAME);
1350 if (ref == NULL || ref->y_crop_height != cm->height ||
1351 ref->y_crop_width != cm->width)
1352 is_key_frame = 1;
1353 }
1354
1355 set_offsets(cpi, tile, x, mi_row, mi_col, BLOCK_64X64);
1356 set_segment_index(cpi, x, mi_row, mi_col, BLOCK_64X64, 0);
1357 segment_id = xd->mi[0]->segment_id;
1358
1359 if (cpi->oxcf.speed >= 8 || (cpi->use_svc && cpi->svc.non_reference_frame))
1360 compute_minmax_variance = 0;
1361
1362 memset(x->variance_low, 0, sizeof(x->variance_low));
1363
1364 if (cpi->sf.use_source_sad && !is_key_frame) {
1365 int sb_offset2 = ((cm->mi_cols + 7) >> 3) * (mi_row >> 3) + (mi_col >> 3);
1366 content_state = x->content_state_sb;
1367 x->skip_low_source_sad = (content_state == kLowSadLowSumdiff ||
1368 content_state == kLowSadHighSumdiff)
1369 ? 1
1370 : 0;
1371 x->lowvar_highsumdiff = (content_state == kLowVarHighSumdiff) ? 1 : 0;
1372 if (cpi->content_state_sb_fd != NULL)
1373 x->last_sb_high_content = cpi->content_state_sb_fd[sb_offset2];
1374
1375 // For SVC on top spatial layer: use/scale the partition from
1376 // the lower spatial resolution if svc_use_lowres_part is enabled.
1377 if (cpi->sf.svc_use_lowres_part &&
1378 cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1 &&
1379 cpi->svc.prev_partition_svc != NULL && content_state != kVeryHighSad) {
1380 if (!scale_partitioning_svc(cpi, x, xd, BLOCK_64X64, mi_row >> 1,
1381 mi_col >> 1, mi_row, mi_col)) {
1382 if (cpi->sf.copy_partition_flag) {
1383 update_prev_partition(cpi, x, segment_id, mi_row, mi_col, sb_offset);
1384 }
1385 return 0;
1386 }
1387 }
1388 // If source_sad is low copy the partition without computing the y_sad.
1389 if (x->skip_low_source_sad && cpi->sf.copy_partition_flag &&
1390 !force_64_split &&
1391 copy_partitioning(cpi, x, xd, mi_row, mi_col, segment_id, sb_offset)) {
1392 x->sb_use_mv_part = 1;
1393 if (cpi->sf.svc_use_lowres_part &&
1394 cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 2)
1395 update_partition_svc(cpi, BLOCK_64X64, mi_row, mi_col);
1396 return 0;
1397 }
1398 }
1399
1400 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled &&
1401 cyclic_refresh_segment_id_boosted(segment_id)) {
1402 int q = vp9_get_qindex(&cm->seg, segment_id, cm->base_qindex);
1403 set_vbp_thresholds(cpi, thresholds, q, content_state);
1404 } else {
1405 set_vbp_thresholds(cpi, thresholds, cm->base_qindex, content_state);
1406 }
1407 // Decrease 32x32 split threshold for screen on base layer, for scene
1408 // change/high motion frames.
1409 if (cpi->oxcf.content == VP9E_CONTENT_SCREEN &&
1410 cpi->svc.spatial_layer_id == 0 && force_64_split)
1411 thresholds[1] = 3 * thresholds[1] >> 2;
1412
1413 // For non keyframes, disable 4x4 average for low resolution when speed = 8
1414 threshold_4x4avg = (cpi->oxcf.speed < 8) ? thresholds[1] << 1 : INT64_MAX;
1415
1416 if (xd->mb_to_right_edge < 0) pixels_wide += (xd->mb_to_right_edge >> 3);
1417 if (xd->mb_to_bottom_edge < 0) pixels_high += (xd->mb_to_bottom_edge >> 3);
1418
1419 s = x->plane[0].src.buf;
1420 sp = x->plane[0].src.stride;
1421
1422 // Index for force_split: 0 for 64x64, 1-4 for 32x32 blocks,
1423 // 5-20 for the 16x16 blocks.
1424 force_split[0] = force_64_split;
1425
1426 if (!is_key_frame) {
1427 // In the case of spatial/temporal scalable coding, the assumption here is
1428 // that the temporal reference frame will always be of type LAST_FRAME.
1429 // TODO(marpan): If that assumption is broken, we need to revisit this code.
1430 MODE_INFO *mi = xd->mi[0];
1431 YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
1432
1433 const YV12_BUFFER_CONFIG *yv12_g = NULL;
1434 unsigned int y_sad_g, y_sad_thr, y_sad_last;
1435 bsize = BLOCK_32X32 + (mi_col + 4 < cm->mi_cols) * 2 +
1436 (mi_row + 4 < cm->mi_rows);
1437
1438 assert(yv12 != NULL);
1439
1440 if (!(is_one_pass_cbr_svc(cpi) && cpi->svc.spatial_layer_id) ||
1441 cpi->svc.use_gf_temporal_ref_current_layer) {
1442 // For now, GOLDEN will not be used for non-zero spatial layers, since
1443 // it may not be a temporal reference.
1444 yv12_g = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
1445 }
1446
1447 // Only compute y_sad_g (sad for golden reference) for speed < 8.
1448 if (cpi->oxcf.speed < 8 && yv12_g && yv12_g != yv12 &&
1449 (cpi->ref_frame_flags & VP9_GOLD_FLAG)) {
1450 vp9_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
1451 &cm->frame_refs[GOLDEN_FRAME - 1].sf);
1452 y_sad_g = cpi->fn_ptr[bsize].sdf(
1453 x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf,
1454 xd->plane[0].pre[0].stride);
1455 } else {
1456 y_sad_g = UINT_MAX;
1457 }
1458
1459 if (cpi->oxcf.lag_in_frames > 0 && cpi->oxcf.rc_mode == VPX_VBR &&
1460 cpi->rc.is_src_frame_alt_ref) {
1461 yv12 = get_ref_frame_buffer(cpi, ALTREF_FRAME);
1462 vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col,
1463 &cm->frame_refs[ALTREF_FRAME - 1].sf);
1464 mi->ref_frame[0] = ALTREF_FRAME;
1465 y_sad_g = UINT_MAX;
1466 } else {
1467 vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col,
1468 &cm->frame_refs[LAST_FRAME - 1].sf);
1469 mi->ref_frame[0] = LAST_FRAME;
1470 }
1471 mi->ref_frame[1] = NONE;
1472 mi->sb_type = BLOCK_64X64;
1473 mi->mv[0].as_int = 0;
1474 mi->interp_filter = BILINEAR;
1475
1476 if (cpi->oxcf.speed >= 8 && !low_res &&
1477 x->content_state_sb != kVeryHighSad) {
1478 y_sad = cpi->fn_ptr[bsize].sdf(
1479 x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf,
1480 xd->plane[0].pre[0].stride);
1481 } else {
1482 const MV dummy_mv = { 0, 0 };
1483 y_sad = vp9_int_pro_motion_estimation(cpi, x, bsize, mi_row, mi_col,
1484 &dummy_mv);
1485 x->sb_use_mv_part = 1;
1486 x->sb_mvcol_part = mi->mv[0].as_mv.col;
1487 x->sb_mvrow_part = mi->mv[0].as_mv.row;
1488 if (cpi->oxcf.content == VP9E_CONTENT_SCREEN &&
1489 cpi->svc.spatial_layer_id == cpi->svc.first_spatial_layer_to_encode &&
1490 cpi->svc.high_num_blocks_with_motion && !x->zero_temp_sad_source &&
1491 cm->width > 640 && cm->height > 480) {
1492 // Disable split below 16x16 block size when scroll motion (horz or
1493 // vert) is detected.
1494 // TODO(marpan/jianj): Improve this condition: issue is that search
1495 // range is hard-coded/limited in vp9_int_pro_motion_estimation() so
1496 // scroll motion may not be detected here.
1497 if (((abs(x->sb_mvrow_part) >= 48 && abs(x->sb_mvcol_part) <= 8) ||
1498 (abs(x->sb_mvcol_part) >= 48 && abs(x->sb_mvrow_part) <= 8)) &&
1499 y_sad < 100000) {
1500 compute_minmax_variance = 0;
1501 thresholds[2] = INT64_MAX;
1502 }
1503 }
1504 }
1505
1506 y_sad_last = y_sad;
1507 // Pick ref frame for partitioning, bias last frame when y_sad_g and y_sad
1508 // are close if short_circuit_low_temp_var is on.
1509 y_sad_thr = cpi->sf.short_circuit_low_temp_var ? (y_sad * 7) >> 3 : y_sad;
1510 if (y_sad_g < y_sad_thr) {
1511 vp9_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
1512 &cm->frame_refs[GOLDEN_FRAME - 1].sf);
1513 mi->ref_frame[0] = GOLDEN_FRAME;
1514 mi->mv[0].as_int = 0;
1515 y_sad = y_sad_g;
1516 ref_frame_partition = GOLDEN_FRAME;
1517 } else {
1518 x->pred_mv[LAST_FRAME] = mi->mv[0].as_mv;
1519 ref_frame_partition = LAST_FRAME;
1520 }
1521
1522 set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]);
1523 vp9_build_inter_predictors_sb(xd, mi_row, mi_col, BLOCK_64X64);
1524
1525 if (cpi->use_skin_detection)
1526 x->sb_is_skin =
1527 skin_sb_split(cpi, x, low_res, mi_row, mi_col, force_split);
1528
1529 d = xd->plane[0].dst.buf;
1530 dp = xd->plane[0].dst.stride;
1531
1532 // If the y_sad is very small, take 64x64 as partition and exit.
1533 // Don't check on boosted segment for now, as 64x64 is suppressed there.
1534 if (segment_id == CR_SEGMENT_ID_BASE && y_sad < cpi->vbp_threshold_sad) {
1535 const int block_width = num_8x8_blocks_wide_lookup[BLOCK_64X64];
1536 const int block_height = num_8x8_blocks_high_lookup[BLOCK_64X64];
1537 if (mi_col + block_width / 2 < cm->mi_cols &&
1538 mi_row + block_height / 2 < cm->mi_rows) {
1539 set_block_size(cpi, x, xd, mi_row, mi_col, BLOCK_64X64);
1540 x->variance_low[0] = 1;
1541 chroma_check(cpi, x, bsize, y_sad, is_key_frame);
1542 if (cpi->sf.svc_use_lowres_part &&
1543 cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 2)
1544 update_partition_svc(cpi, BLOCK_64X64, mi_row, mi_col);
1545 if (cpi->sf.copy_partition_flag) {
1546 update_prev_partition(cpi, x, segment_id, mi_row, mi_col, sb_offset);
1547 }
1548 return 0;
1549 }
1550 }
1551
1552 // If the y_sad is small enough, copy the partition of the superblock in the
1553 // last frame to current frame only if the last frame is not a keyframe.
1554 // Stop the copy every cpi->max_copied_frame to refresh the partition.
1555 // TODO(jianj) : tune the threshold.
1556 if (cpi->sf.copy_partition_flag && y_sad_last < cpi->vbp_threshold_copy &&
1557 copy_partitioning(cpi, x, xd, mi_row, mi_col, segment_id, sb_offset)) {
1558 chroma_check(cpi, x, bsize, y_sad, is_key_frame);
1559 if (cpi->sf.svc_use_lowres_part &&
1560 cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 2)
1561 update_partition_svc(cpi, BLOCK_64X64, mi_row, mi_col);
1562 return 0;
1563 }
1564 } else {
1565 d = VP9_VAR_OFFS;
1566 dp = 0;
1567 #if CONFIG_VP9_HIGHBITDEPTH
1568 if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
1569 switch (xd->bd) {
1570 case 10: d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_10); break;
1571 case 12: d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_12); break;
1572 case 8:
1573 default: d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_8); break;
1574 }
1575 }
1576 #endif // CONFIG_VP9_HIGHBITDEPTH
1577 }
1578
1579 if (low_res && threshold_4x4avg < INT64_MAX)
1580 CHECK_MEM_ERROR(cm, vt2, vpx_calloc(16, sizeof(*vt2)));
1581 // Fill in the entire tree of 8x8 (or 4x4 under some conditions) variances
1582 // for splits.
1583 for (i = 0; i < 4; i++) {
1584 const int x32_idx = ((i & 1) << 5);
1585 const int y32_idx = ((i >> 1) << 5);
1586 const int i2 = i << 2;
1587 force_split[i + 1] = 0;
1588 avg_16x16[i] = 0;
1589 maxvar_16x16[i] = 0;
1590 minvar_16x16[i] = INT_MAX;
1591 for (j = 0; j < 4; j++) {
1592 const int x16_idx = x32_idx + ((j & 1) << 4);
1593 const int y16_idx = y32_idx + ((j >> 1) << 4);
1594 const int split_index = 5 + i2 + j;
1595 v16x16 *vst = &vt.split[i].split[j];
1596 force_split[split_index] = 0;
1597 variance4x4downsample[i2 + j] = 0;
1598 if (!is_key_frame) {
1599 fill_variance_8x8avg(s, sp, d, dp, x16_idx, y16_idx, vst,
1600 #if CONFIG_VP9_HIGHBITDEPTH
1601 xd->cur_buf->flags,
1602 #endif
1603 pixels_wide, pixels_high, is_key_frame);
1604 fill_variance_tree(&vt.split[i].split[j], BLOCK_16X16);
1605 get_variance(&vt.split[i].split[j].part_variances.none);
1606 avg_16x16[i] += vt.split[i].split[j].part_variances.none.variance;
1607 if (vt.split[i].split[j].part_variances.none.variance < minvar_16x16[i])
1608 minvar_16x16[i] = vt.split[i].split[j].part_variances.none.variance;
1609 if (vt.split[i].split[j].part_variances.none.variance > maxvar_16x16[i])
1610 maxvar_16x16[i] = vt.split[i].split[j].part_variances.none.variance;
1611 if (vt.split[i].split[j].part_variances.none.variance > thresholds[2]) {
1612 // 16X16 variance is above threshold for split, so force split to 8x8
1613 // for this 16x16 block (this also forces splits for upper levels).
1614 force_split[split_index] = 1;
1615 force_split[i + 1] = 1;
1616 force_split[0] = 1;
1617 } else if (compute_minmax_variance &&
1618 vt.split[i].split[j].part_variances.none.variance >
1619 thresholds[1] &&
1620 !cyclic_refresh_segment_id_boosted(segment_id)) {
1621 // We have some nominal amount of 16x16 variance (based on average),
1622 // compute the minmax over the 8x8 sub-blocks, and if above threshold,
1623 // force split to 8x8 block for this 16x16 block.
1624 int minmax = compute_minmax_8x8(s, sp, d, dp, x16_idx, y16_idx,
1625 #if CONFIG_VP9_HIGHBITDEPTH
1626 xd->cur_buf->flags,
1627 #endif
1628 pixels_wide, pixels_high);
1629 int thresh_minmax = (int)cpi->vbp_threshold_minmax;
1630 if (x->content_state_sb == kVeryHighSad)
1631 thresh_minmax = thresh_minmax << 1;
1632 if (minmax > thresh_minmax) {
1633 force_split[split_index] = 1;
1634 force_split[i + 1] = 1;
1635 force_split[0] = 1;
1636 }
1637 }
1638 }
1639 if (is_key_frame ||
1640 (low_res && vt.split[i].split[j].part_variances.none.variance >
1641 threshold_4x4avg)) {
1642 force_split[split_index] = 0;
1643 // Go down to 4x4 down-sampling for variance.
1644 variance4x4downsample[i2 + j] = 1;
1645 for (k = 0; k < 4; k++) {
1646 int x8_idx = x16_idx + ((k & 1) << 3);
1647 int y8_idx = y16_idx + ((k >> 1) << 3);
1648 v8x8 *vst2 = is_key_frame ? &vst->split[k] : &vt2[i2 + j].split[k];
1649 fill_variance_4x4avg(s, sp, d, dp, x8_idx, y8_idx, vst2,
1650 #if CONFIG_VP9_HIGHBITDEPTH
1651 xd->cur_buf->flags,
1652 #endif
1653 pixels_wide, pixels_high, is_key_frame);
1654 }
1655 }
1656 }
1657 }
1658 if (cpi->noise_estimate.enabled)
1659 noise_level = vp9_noise_estimate_extract_level(&cpi->noise_estimate);
1660 // Fill the rest of the variance tree by summing split partition values.
1661 avg_32x32 = 0;
1662 for (i = 0; i < 4; i++) {
1663 const int i2 = i << 2;
1664 for (j = 0; j < 4; j++) {
1665 if (variance4x4downsample[i2 + j] == 1) {
1666 v16x16 *vtemp = (!is_key_frame) ? &vt2[i2 + j] : &vt.split[i].split[j];
1667 for (m = 0; m < 4; m++) fill_variance_tree(&vtemp->split[m], BLOCK_8X8);
1668 fill_variance_tree(vtemp, BLOCK_16X16);
1669 // If variance of this 16x16 block is above the threshold, force block
1670 // to split. This also forces a split on the upper levels.
1671 get_variance(&vtemp->part_variances.none);
1672 if (vtemp->part_variances.none.variance > thresholds[2]) {
1673 force_split[5 + i2 + j] = 1;
1674 force_split[i + 1] = 1;
1675 force_split[0] = 1;
1676 }
1677 }
1678 }
1679 fill_variance_tree(&vt.split[i], BLOCK_32X32);
1680 // If variance of this 32x32 block is above the threshold, or if its above
1681 // (some threshold of) the average variance over the sub-16x16 blocks, then
1682 // force this block to split. This also forces a split on the upper
1683 // (64x64) level.
1684 if (!force_split[i + 1]) {
1685 get_variance(&vt.split[i].part_variances.none);
1686 var_32x32 = vt.split[i].part_variances.none.variance;
1687 max_var_32x32 = VPXMAX(var_32x32, max_var_32x32);
1688 min_var_32x32 = VPXMIN(var_32x32, min_var_32x32);
1689 if (vt.split[i].part_variances.none.variance > thresholds[1] ||
1690 (!is_key_frame &&
1691 vt.split[i].part_variances.none.variance > (thresholds[1] >> 1) &&
1692 vt.split[i].part_variances.none.variance > (avg_16x16[i] >> 1))) {
1693 force_split[i + 1] = 1;
1694 force_split[0] = 1;
1695 } else if (!is_key_frame && noise_level < kLow && cm->height <= 360 &&
1696 (maxvar_16x16[i] - minvar_16x16[i]) > (thresholds[1] >> 1) &&
1697 maxvar_16x16[i] > thresholds[1]) {
1698 force_split[i + 1] = 1;
1699 force_split[0] = 1;
1700 }
1701 avg_32x32 += var_32x32;
1702 }
1703 }
1704 if (!force_split[0]) {
1705 fill_variance_tree(&vt, BLOCK_64X64);
1706 get_variance(&vt.part_variances.none);
1707 // If variance of this 64x64 block is above (some threshold of) the average
1708 // variance over the sub-32x32 blocks, then force this block to split.
1709 // Only checking this for noise level >= medium for now.
1710 if (!is_key_frame && noise_level >= kMedium &&
1711 vt.part_variances.none.variance > (9 * avg_32x32) >> 5)
1712 force_split[0] = 1;
1713 // Else if the maximum 32x32 variance minus the miniumum 32x32 variance in
1714 // a 64x64 block is greater than threshold and the maximum 32x32 variance is
1715 // above a miniumum threshold, then force the split of a 64x64 block
1716 // Only check this for low noise.
1717 else if (!is_key_frame && noise_level < kMedium &&
1718 (max_var_32x32 - min_var_32x32) > 3 * (thresholds[0] >> 3) &&
1719 max_var_32x32 > thresholds[0] >> 1)
1720 force_split[0] = 1;
1721 }
1722
1723 // Now go through the entire structure, splitting every block size until
1724 // we get to one that's got a variance lower than our threshold.
1725 if (mi_col + 8 > cm->mi_cols || mi_row + 8 > cm->mi_rows ||
1726 !set_vt_partitioning(cpi, x, xd, &vt, BLOCK_64X64, mi_row, mi_col,
1727 thresholds[0], BLOCK_16X16, force_split[0])) {
1728 for (i = 0; i < 4; ++i) {
1729 const int x32_idx = ((i & 1) << 2);
1730 const int y32_idx = ((i >> 1) << 2);
1731 const int i2 = i << 2;
1732 if (!set_vt_partitioning(cpi, x, xd, &vt.split[i], BLOCK_32X32,
1733 (mi_row + y32_idx), (mi_col + x32_idx),
1734 thresholds[1], BLOCK_16X16,
1735 force_split[i + 1])) {
1736 for (j = 0; j < 4; ++j) {
1737 const int x16_idx = ((j & 1) << 1);
1738 const int y16_idx = ((j >> 1) << 1);
1739 // For inter frames: if variance4x4downsample[] == 1 for this 16x16
1740 // block, then the variance is based on 4x4 down-sampling, so use vt2
1741 // in set_vt_partioning(), otherwise use vt.
1742 v16x16 *vtemp = (!is_key_frame && variance4x4downsample[i2 + j] == 1)
1743 ? &vt2[i2 + j]
1744 : &vt.split[i].split[j];
1745 if (!set_vt_partitioning(
1746 cpi, x, xd, vtemp, BLOCK_16X16, mi_row + y32_idx + y16_idx,
1747 mi_col + x32_idx + x16_idx, thresholds[2], cpi->vbp_bsize_min,
1748 force_split[5 + i2 + j])) {
1749 for (k = 0; k < 4; ++k) {
1750 const int x8_idx = (k & 1);
1751 const int y8_idx = (k >> 1);
1752 if (use_4x4_partition) {
1753 if (!set_vt_partitioning(cpi, x, xd, &vtemp->split[k],
1754 BLOCK_8X8,
1755 mi_row + y32_idx + y16_idx + y8_idx,
1756 mi_col + x32_idx + x16_idx + x8_idx,
1757 thresholds[3], BLOCK_8X8, 0)) {
1758 set_block_size(
1759 cpi, x, xd, (mi_row + y32_idx + y16_idx + y8_idx),
1760 (mi_col + x32_idx + x16_idx + x8_idx), BLOCK_4X4);
1761 }
1762 } else {
1763 set_block_size(
1764 cpi, x, xd, (mi_row + y32_idx + y16_idx + y8_idx),
1765 (mi_col + x32_idx + x16_idx + x8_idx), BLOCK_8X8);
1766 }
1767 }
1768 }
1769 }
1770 }
1771 }
1772 }
1773
1774 if (!frame_is_intra_only(cm) && cpi->sf.copy_partition_flag) {
1775 update_prev_partition(cpi, x, segment_id, mi_row, mi_col, sb_offset);
1776 }
1777
1778 if (!frame_is_intra_only(cm) && cpi->sf.svc_use_lowres_part &&
1779 cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 2)
1780 update_partition_svc(cpi, BLOCK_64X64, mi_row, mi_col);
1781
1782 if (cpi->sf.short_circuit_low_temp_var) {
1783 set_low_temp_var_flag(cpi, x, xd, &vt, thresholds, ref_frame_partition,
1784 mi_col, mi_row);
1785 }
1786
1787 chroma_check(cpi, x, bsize, y_sad, is_key_frame);
1788 if (vt2) vpx_free(vt2);
1789 return 0;
1790 }
1791
1792 #if !CONFIG_REALTIME_ONLY
update_state(VP9_COMP * cpi,ThreadData * td,PICK_MODE_CONTEXT * ctx,int mi_row,int mi_col,BLOCK_SIZE bsize,int output_enabled)1793 static void update_state(VP9_COMP *cpi, ThreadData *td, PICK_MODE_CONTEXT *ctx,
1794 int mi_row, int mi_col, BLOCK_SIZE bsize,
1795 int output_enabled) {
1796 int i, x_idx, y;
1797 VP9_COMMON *const cm = &cpi->common;
1798 RD_COUNTS *const rdc = &td->rd_counts;
1799 MACROBLOCK *const x = &td->mb;
1800 MACROBLOCKD *const xd = &x->e_mbd;
1801 struct macroblock_plane *const p = x->plane;
1802 struct macroblockd_plane *const pd = xd->plane;
1803 MODE_INFO *mi = &ctx->mic;
1804 MODE_INFO *const xdmi = xd->mi[0];
1805 MODE_INFO *mi_addr = xd->mi[0];
1806 const struct segmentation *const seg = &cm->seg;
1807 const int bw = num_8x8_blocks_wide_lookup[mi->sb_type];
1808 const int bh = num_8x8_blocks_high_lookup[mi->sb_type];
1809 const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col);
1810 const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row);
1811 MV_REF *const frame_mvs = cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col;
1812 int w, h;
1813
1814 const int mis = cm->mi_stride;
1815 const int mi_width = num_8x8_blocks_wide_lookup[bsize];
1816 const int mi_height = num_8x8_blocks_high_lookup[bsize];
1817 int max_plane;
1818
1819 assert(mi->sb_type == bsize);
1820
1821 *mi_addr = *mi;
1822 *x->mbmi_ext = ctx->mbmi_ext;
1823
1824 // If segmentation in use
1825 if (seg->enabled) {
1826 // For in frame complexity AQ copy the segment id from the segment map.
1827 if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
1828 const uint8_t *const map =
1829 seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
1830 mi_addr->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
1831 }
1832 // Else for cyclic refresh mode update the segment map, set the segment id
1833 // and then update the quantizer.
1834 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
1835 vp9_cyclic_refresh_update_segment(cpi, xd->mi[0], mi_row, mi_col, bsize,
1836 ctx->rate, ctx->dist, x->skip, p);
1837 }
1838 }
1839
1840 max_plane = is_inter_block(xdmi) ? MAX_MB_PLANE : 1;
1841 for (i = 0; i < max_plane; ++i) {
1842 p[i].coeff = ctx->coeff_pbuf[i][1];
1843 p[i].qcoeff = ctx->qcoeff_pbuf[i][1];
1844 pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1];
1845 p[i].eobs = ctx->eobs_pbuf[i][1];
1846 }
1847
1848 for (i = max_plane; i < MAX_MB_PLANE; ++i) {
1849 p[i].coeff = ctx->coeff_pbuf[i][2];
1850 p[i].qcoeff = ctx->qcoeff_pbuf[i][2];
1851 pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][2];
1852 p[i].eobs = ctx->eobs_pbuf[i][2];
1853 }
1854
1855 // Restore the coding context of the MB to that that was in place
1856 // when the mode was picked for it
1857 for (y = 0; y < mi_height; y++)
1858 for (x_idx = 0; x_idx < mi_width; x_idx++)
1859 if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx &&
1860 (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) {
1861 xd->mi[x_idx + y * mis] = mi_addr;
1862 }
1863
1864 if (cpi->oxcf.aq_mode != NO_AQ) vp9_init_plane_quantizers(cpi, x);
1865
1866 if (is_inter_block(xdmi) && xdmi->sb_type < BLOCK_8X8) {
1867 xdmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int;
1868 xdmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int;
1869 }
1870
1871 x->skip = ctx->skip;
1872 memcpy(x->zcoeff_blk[xdmi->tx_size], ctx->zcoeff_blk,
1873 sizeof(ctx->zcoeff_blk[0]) * ctx->num_4x4_blk);
1874
1875 if (!output_enabled) return;
1876
1877 #if CONFIG_INTERNAL_STATS
1878 if (frame_is_intra_only(cm)) {
1879 static const int kf_mode_index[] = {
1880 THR_DC /*DC_PRED*/, THR_V_PRED /*V_PRED*/,
1881 THR_H_PRED /*H_PRED*/, THR_D45_PRED /*D45_PRED*/,
1882 THR_D135_PRED /*D135_PRED*/, THR_D117_PRED /*D117_PRED*/,
1883 THR_D153_PRED /*D153_PRED*/, THR_D207_PRED /*D207_PRED*/,
1884 THR_D63_PRED /*D63_PRED*/, THR_TM /*TM_PRED*/,
1885 };
1886 ++cpi->mode_chosen_counts[kf_mode_index[xdmi->mode]];
1887 } else {
1888 // Note how often each mode chosen as best
1889 ++cpi->mode_chosen_counts[ctx->best_mode_index];
1890 }
1891 #endif
1892 if (!frame_is_intra_only(cm)) {
1893 if (is_inter_block(xdmi)) {
1894 vp9_update_mv_count(td);
1895
1896 if (cm->interp_filter == SWITCHABLE) {
1897 const int ctx = get_pred_context_switchable_interp(xd);
1898 ++td->counts->switchable_interp[ctx][xdmi->interp_filter];
1899 }
1900 }
1901
1902 rdc->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff;
1903 rdc->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff;
1904 rdc->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff;
1905
1906 for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
1907 rdc->filter_diff[i] += ctx->best_filter_diff[i];
1908 }
1909
1910 for (h = 0; h < y_mis; ++h) {
1911 MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols;
1912 for (w = 0; w < x_mis; ++w) {
1913 MV_REF *const mv = frame_mv + w;
1914 mv->ref_frame[0] = mi->ref_frame[0];
1915 mv->ref_frame[1] = mi->ref_frame[1];
1916 mv->mv[0].as_int = mi->mv[0].as_int;
1917 mv->mv[1].as_int = mi->mv[1].as_int;
1918 }
1919 }
1920 }
1921 #endif // !CONFIG_REALTIME_ONLY
1922
vp9_setup_src_planes(MACROBLOCK * x,const YV12_BUFFER_CONFIG * src,int mi_row,int mi_col)1923 void vp9_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src,
1924 int mi_row, int mi_col) {
1925 uint8_t *const buffers[3] = { src->y_buffer, src->u_buffer, src->v_buffer };
1926 const int strides[3] = { src->y_stride, src->uv_stride, src->uv_stride };
1927 int i;
1928
1929 // Set current frame pointer.
1930 x->e_mbd.cur_buf = src;
1931
1932 for (i = 0; i < MAX_MB_PLANE; i++)
1933 setup_pred_plane(&x->plane[i].src, buffers[i], strides[i], mi_row, mi_col,
1934 NULL, x->e_mbd.plane[i].subsampling_x,
1935 x->e_mbd.plane[i].subsampling_y);
1936 }
1937
set_mode_info_seg_skip(MACROBLOCK * x,TX_MODE tx_mode,RD_COST * rd_cost,BLOCK_SIZE bsize)1938 static void set_mode_info_seg_skip(MACROBLOCK *x, TX_MODE tx_mode,
1939 RD_COST *rd_cost, BLOCK_SIZE bsize) {
1940 MACROBLOCKD *const xd = &x->e_mbd;
1941 MODE_INFO *const mi = xd->mi[0];
1942 INTERP_FILTER filter_ref;
1943
1944 filter_ref = get_pred_context_switchable_interp(xd);
1945 if (filter_ref == SWITCHABLE_FILTERS) filter_ref = EIGHTTAP;
1946
1947 mi->sb_type = bsize;
1948 mi->mode = ZEROMV;
1949 mi->tx_size =
1950 VPXMIN(max_txsize_lookup[bsize], tx_mode_to_biggest_tx_size[tx_mode]);
1951 mi->skip = 1;
1952 mi->uv_mode = DC_PRED;
1953 mi->ref_frame[0] = LAST_FRAME;
1954 mi->ref_frame[1] = NONE;
1955 mi->mv[0].as_int = 0;
1956 mi->interp_filter = filter_ref;
1957
1958 xd->mi[0]->bmi[0].as_mv[0].as_int = 0;
1959 x->skip = 1;
1960
1961 vp9_rd_cost_init(rd_cost);
1962 }
1963
1964 #if !CONFIG_REALTIME_ONLY
set_segment_rdmult(VP9_COMP * const cpi,MACROBLOCK * const x,int mi_row,int mi_col,BLOCK_SIZE bsize,AQ_MODE aq_mode)1965 static void set_segment_rdmult(VP9_COMP *const cpi, MACROBLOCK *const x,
1966 int mi_row, int mi_col, BLOCK_SIZE bsize,
1967 AQ_MODE aq_mode) {
1968 VP9_COMMON *const cm = &cpi->common;
1969 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1970 const uint8_t *const map =
1971 cm->seg.update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
1972
1973 vp9_init_plane_quantizers(cpi, x);
1974 vpx_clear_system_state();
1975
1976 if (aq_mode == NO_AQ || aq_mode == PSNR_AQ) {
1977 if (cpi->sf.enable_tpl_model) x->rdmult = x->cb_rdmult;
1978 } else if (aq_mode == PERCEPTUAL_AQ) {
1979 x->rdmult = x->cb_rdmult;
1980 } else if (aq_mode == CYCLIC_REFRESH_AQ) {
1981 // If segment is boosted, use rdmult for that segment.
1982 if (cyclic_refresh_segment_id_boosted(
1983 get_segment_id(cm, map, bsize, mi_row, mi_col)))
1984 x->rdmult = vp9_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
1985 } else {
1986 x->rdmult = vp9_compute_rd_mult(cpi, cm->base_qindex + cm->y_dc_delta_q);
1987 }
1988
1989 if (oxcf->tuning == VP8_TUNE_SSIM) {
1990 set_ssim_rdmult(cpi, x, bsize, mi_row, mi_col, &x->rdmult);
1991 }
1992 }
1993
rd_pick_sb_modes(VP9_COMP * cpi,TileDataEnc * tile_data,MACROBLOCK * const x,int mi_row,int mi_col,RD_COST * rd_cost,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx,int rate_in_best_rd,int64_t dist_in_best_rd)1994 static void rd_pick_sb_modes(VP9_COMP *cpi, TileDataEnc *tile_data,
1995 MACROBLOCK *const x, int mi_row, int mi_col,
1996 RD_COST *rd_cost, BLOCK_SIZE bsize,
1997 PICK_MODE_CONTEXT *ctx, int rate_in_best_rd,
1998 int64_t dist_in_best_rd) {
1999 VP9_COMMON *const cm = &cpi->common;
2000 TileInfo *const tile_info = &tile_data->tile_info;
2001 MACROBLOCKD *const xd = &x->e_mbd;
2002 MODE_INFO *mi;
2003 struct macroblock_plane *const p = x->plane;
2004 struct macroblockd_plane *const pd = xd->plane;
2005 const AQ_MODE aq_mode = cpi->oxcf.aq_mode;
2006 int i, orig_rdmult;
2007 int64_t best_rd = INT64_MAX;
2008
2009 vpx_clear_system_state();
2010
2011 // Use the lower precision, but faster, 32x32 fdct for mode selection.
2012 x->use_lp32x32fdct = 1;
2013
2014 set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
2015 mi = xd->mi[0];
2016 mi->sb_type = bsize;
2017
2018 for (i = 0; i < MAX_MB_PLANE; ++i) {
2019 p[i].coeff = ctx->coeff_pbuf[i][0];
2020 p[i].qcoeff = ctx->qcoeff_pbuf[i][0];
2021 pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0];
2022 p[i].eobs = ctx->eobs_pbuf[i][0];
2023 }
2024 ctx->is_coded = 0;
2025 ctx->skippable = 0;
2026 ctx->pred_pixel_ready = 0;
2027 x->skip_recode = 0;
2028
2029 // Set to zero to make sure we do not use the previous encoded frame stats
2030 mi->skip = 0;
2031
2032 #if CONFIG_VP9_HIGHBITDEPTH
2033 if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
2034 x->source_variance = vp9_high_get_sby_perpixel_variance(
2035 cpi, &x->plane[0].src, bsize, xd->bd);
2036 } else {
2037 x->source_variance =
2038 vp9_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
2039 }
2040 #else
2041 x->source_variance =
2042 vp9_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
2043 #endif // CONFIG_VP9_HIGHBITDEPTH
2044
2045 // Save rdmult before it might be changed, so it can be restored later.
2046 orig_rdmult = x->rdmult;
2047
2048 if ((cpi->sf.tx_domain_thresh > 0.0) || (cpi->sf.quant_opt_thresh > 0.0)) {
2049 double logvar = vp9_log_block_var(cpi, x, bsize);
2050 // Check block complexity as part of descision on using pixel or transform
2051 // domain distortion in rd tests.
2052 x->block_tx_domain = cpi->sf.allow_txfm_domain_distortion &&
2053 (logvar >= cpi->sf.tx_domain_thresh);
2054
2055 // Check block complexity as part of descision on using quantized
2056 // coefficient optimisation inside the rd loop.
2057 x->block_qcoeff_opt =
2058 cpi->sf.allow_quant_coeff_opt && (logvar <= cpi->sf.quant_opt_thresh);
2059 } else {
2060 x->block_tx_domain = cpi->sf.allow_txfm_domain_distortion;
2061 x->block_qcoeff_opt = cpi->sf.allow_quant_coeff_opt;
2062 }
2063
2064 set_segment_index(cpi, x, mi_row, mi_col, bsize, 0);
2065 set_segment_rdmult(cpi, x, mi_row, mi_col, bsize, aq_mode);
2066 if (rate_in_best_rd < INT_MAX && dist_in_best_rd < INT64_MAX) {
2067 best_rd = vp9_calculate_rd_cost(x->rdmult, x->rddiv, rate_in_best_rd,
2068 dist_in_best_rd);
2069 }
2070
2071 // Find best coding mode & reconstruct the MB so it is available
2072 // as a predictor for MBs that follow in the SB
2073 if (frame_is_intra_only(cm)) {
2074 vp9_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, best_rd);
2075 } else {
2076 if (bsize >= BLOCK_8X8) {
2077 if (segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP))
2078 vp9_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, rd_cost, bsize,
2079 ctx, best_rd);
2080 else
2081 vp9_rd_pick_inter_mode_sb(cpi, tile_data, x, mi_row, mi_col, rd_cost,
2082 bsize, ctx, best_rd);
2083 } else {
2084 vp9_rd_pick_inter_mode_sub8x8(cpi, tile_data, x, mi_row, mi_col, rd_cost,
2085 bsize, ctx, best_rd);
2086 }
2087 }
2088
2089 // Examine the resulting rate and for AQ mode 2 make a segment choice.
2090 if ((rd_cost->rate != INT_MAX) && (aq_mode == COMPLEXITY_AQ) &&
2091 (bsize >= BLOCK_16X16) &&
2092 (cm->frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame ||
2093 (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref))) {
2094 vp9_caq_select_segment(cpi, x, bsize, mi_row, mi_col, rd_cost->rate);
2095 }
2096
2097 // TODO(jingning) The rate-distortion optimization flow needs to be
2098 // refactored to provide proper exit/return handle.
2099 if (rd_cost->rate == INT_MAX || rd_cost->dist == INT64_MAX)
2100 rd_cost->rdcost = INT64_MAX;
2101 else
2102 rd_cost->rdcost = RDCOST(x->rdmult, x->rddiv, rd_cost->rate, rd_cost->dist);
2103
2104 x->rdmult = orig_rdmult;
2105
2106 ctx->rate = rd_cost->rate;
2107 ctx->dist = rd_cost->dist;
2108 }
2109 #endif // !CONFIG_REALTIME_ONLY
2110
update_stats(VP9_COMMON * cm,ThreadData * td)2111 static void update_stats(VP9_COMMON *cm, ThreadData *td) {
2112 const MACROBLOCK *x = &td->mb;
2113 const MACROBLOCKD *const xd = &x->e_mbd;
2114 const MODE_INFO *const mi = xd->mi[0];
2115 const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
2116 const BLOCK_SIZE bsize = mi->sb_type;
2117
2118 if (!frame_is_intra_only(cm)) {
2119 FRAME_COUNTS *const counts = td->counts;
2120 const int inter_block = is_inter_block(mi);
2121 const int seg_ref_active =
2122 segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_REF_FRAME);
2123 if (!seg_ref_active) {
2124 counts->intra_inter[get_intra_inter_context(xd)][inter_block]++;
2125 // If the segment reference feature is enabled we have only a single
2126 // reference frame allowed for the segment so exclude it from
2127 // the reference frame counts used to work out probabilities.
2128 if (inter_block) {
2129 const MV_REFERENCE_FRAME ref0 = mi->ref_frame[0];
2130 if (cm->reference_mode == REFERENCE_MODE_SELECT)
2131 counts->comp_inter[vp9_get_reference_mode_context(cm, xd)]
2132 [has_second_ref(mi)]++;
2133
2134 if (has_second_ref(mi)) {
2135 const int idx = cm->ref_frame_sign_bias[cm->comp_fixed_ref];
2136 const int ctx = vp9_get_pred_context_comp_ref_p(cm, xd);
2137 const int bit = mi->ref_frame[!idx] == cm->comp_var_ref[1];
2138 counts->comp_ref[ctx][bit]++;
2139 } else {
2140 counts->single_ref[vp9_get_pred_context_single_ref_p1(xd)][0]
2141 [ref0 != LAST_FRAME]++;
2142 if (ref0 != LAST_FRAME)
2143 counts->single_ref[vp9_get_pred_context_single_ref_p2(xd)][1]
2144 [ref0 != GOLDEN_FRAME]++;
2145 }
2146 }
2147 }
2148 if (inter_block &&
2149 !segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP)) {
2150 const int mode_ctx = mbmi_ext->mode_context[mi->ref_frame[0]];
2151 if (bsize >= BLOCK_8X8) {
2152 const PREDICTION_MODE mode = mi->mode;
2153 ++counts->inter_mode[mode_ctx][INTER_OFFSET(mode)];
2154 } else {
2155 const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
2156 const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
2157 int idx, idy;
2158 for (idy = 0; idy < 2; idy += num_4x4_h) {
2159 for (idx = 0; idx < 2; idx += num_4x4_w) {
2160 const int j = idy * 2 + idx;
2161 const PREDICTION_MODE b_mode = mi->bmi[j].as_mode;
2162 ++counts->inter_mode[mode_ctx][INTER_OFFSET(b_mode)];
2163 }
2164 }
2165 }
2166 }
2167 }
2168 }
2169
2170 #if !CONFIG_REALTIME_ONLY
restore_context(MACROBLOCK * const x,int mi_row,int mi_col,ENTROPY_CONTEXT a[16* MAX_MB_PLANE],ENTROPY_CONTEXT l[16* MAX_MB_PLANE],PARTITION_CONTEXT sa[8],PARTITION_CONTEXT sl[8],BLOCK_SIZE bsize)2171 static void restore_context(MACROBLOCK *const x, int mi_row, int mi_col,
2172 ENTROPY_CONTEXT a[16 * MAX_MB_PLANE],
2173 ENTROPY_CONTEXT l[16 * MAX_MB_PLANE],
2174 PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8],
2175 BLOCK_SIZE bsize) {
2176 MACROBLOCKD *const xd = &x->e_mbd;
2177 int p;
2178 const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
2179 const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
2180 int mi_width = num_8x8_blocks_wide_lookup[bsize];
2181 int mi_height = num_8x8_blocks_high_lookup[bsize];
2182 for (p = 0; p < MAX_MB_PLANE; p++) {
2183 memcpy(xd->above_context[p] + ((mi_col * 2) >> xd->plane[p].subsampling_x),
2184 a + num_4x4_blocks_wide * p,
2185 (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
2186 xd->plane[p].subsampling_x);
2187 memcpy(xd->left_context[p] +
2188 ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y),
2189 l + num_4x4_blocks_high * p,
2190 (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
2191 xd->plane[p].subsampling_y);
2192 }
2193 memcpy(xd->above_seg_context + mi_col, sa,
2194 sizeof(*xd->above_seg_context) * mi_width);
2195 memcpy(xd->left_seg_context + (mi_row & MI_MASK), sl,
2196 sizeof(xd->left_seg_context[0]) * mi_height);
2197 }
2198
save_context(MACROBLOCK * const x,int mi_row,int mi_col,ENTROPY_CONTEXT a[16* MAX_MB_PLANE],ENTROPY_CONTEXT l[16* MAX_MB_PLANE],PARTITION_CONTEXT sa[8],PARTITION_CONTEXT sl[8],BLOCK_SIZE bsize)2199 static void save_context(MACROBLOCK *const x, int mi_row, int mi_col,
2200 ENTROPY_CONTEXT a[16 * MAX_MB_PLANE],
2201 ENTROPY_CONTEXT l[16 * MAX_MB_PLANE],
2202 PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8],
2203 BLOCK_SIZE bsize) {
2204 const MACROBLOCKD *const xd = &x->e_mbd;
2205 int p;
2206 const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
2207 const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
2208 int mi_width = num_8x8_blocks_wide_lookup[bsize];
2209 int mi_height = num_8x8_blocks_high_lookup[bsize];
2210
2211 // buffer the above/left context information of the block in search.
2212 for (p = 0; p < MAX_MB_PLANE; ++p) {
2213 memcpy(a + num_4x4_blocks_wide * p,
2214 xd->above_context[p] + (mi_col * 2 >> xd->plane[p].subsampling_x),
2215 (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
2216 xd->plane[p].subsampling_x);
2217 memcpy(l + num_4x4_blocks_high * p,
2218 xd->left_context[p] +
2219 ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y),
2220 (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
2221 xd->plane[p].subsampling_y);
2222 }
2223 memcpy(sa, xd->above_seg_context + mi_col,
2224 sizeof(*xd->above_seg_context) * mi_width);
2225 memcpy(sl, xd->left_seg_context + (mi_row & MI_MASK),
2226 sizeof(xd->left_seg_context[0]) * mi_height);
2227 }
2228
encode_b(VP9_COMP * cpi,const TileInfo * const tile,ThreadData * td,TOKENEXTRA ** tp,int mi_row,int mi_col,int output_enabled,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx)2229 static void encode_b(VP9_COMP *cpi, const TileInfo *const tile, ThreadData *td,
2230 TOKENEXTRA **tp, int mi_row, int mi_col,
2231 int output_enabled, BLOCK_SIZE bsize,
2232 PICK_MODE_CONTEXT *ctx) {
2233 MACROBLOCK *const x = &td->mb;
2234 set_offsets(cpi, tile, x, mi_row, mi_col, bsize);
2235
2236 if (cpi->sf.enable_tpl_model &&
2237 (cpi->oxcf.aq_mode == NO_AQ || cpi->oxcf.aq_mode == PERCEPTUAL_AQ)) {
2238 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
2239 x->rdmult = x->cb_rdmult;
2240 if (oxcf->tuning == VP8_TUNE_SSIM) {
2241 set_ssim_rdmult(cpi, x, bsize, mi_row, mi_col, &x->rdmult);
2242 }
2243 }
2244
2245 update_state(cpi, td, ctx, mi_row, mi_col, bsize, output_enabled);
2246 encode_superblock(cpi, td, tp, output_enabled, mi_row, mi_col, bsize, ctx);
2247
2248 if (output_enabled) {
2249 update_stats(&cpi->common, td);
2250
2251 (*tp)->token = EOSB_TOKEN;
2252 (*tp)++;
2253 }
2254 }
2255
encode_sb(VP9_COMP * cpi,ThreadData * td,const TileInfo * const tile,TOKENEXTRA ** tp,int mi_row,int mi_col,int output_enabled,BLOCK_SIZE bsize,PC_TREE * pc_tree)2256 static void encode_sb(VP9_COMP *cpi, ThreadData *td, const TileInfo *const tile,
2257 TOKENEXTRA **tp, int mi_row, int mi_col,
2258 int output_enabled, BLOCK_SIZE bsize, PC_TREE *pc_tree) {
2259 VP9_COMMON *const cm = &cpi->common;
2260 MACROBLOCK *const x = &td->mb;
2261 MACROBLOCKD *const xd = &x->e_mbd;
2262
2263 const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
2264 int ctx;
2265 PARTITION_TYPE partition;
2266 BLOCK_SIZE subsize = bsize;
2267
2268 if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
2269
2270 if (bsize >= BLOCK_8X8) {
2271 ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
2272 subsize = get_subsize(bsize, pc_tree->partitioning);
2273 } else {
2274 ctx = 0;
2275 subsize = BLOCK_4X4;
2276 }
2277
2278 partition = partition_lookup[bsl][subsize];
2279 if (output_enabled && bsize != BLOCK_4X4)
2280 td->counts->partition[ctx][partition]++;
2281
2282 switch (partition) {
2283 case PARTITION_NONE:
2284 encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
2285 &pc_tree->none);
2286 break;
2287 case PARTITION_VERT:
2288 encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
2289 &pc_tree->vertical[0]);
2290 if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
2291 encode_b(cpi, tile, td, tp, mi_row, mi_col + hbs, output_enabled,
2292 subsize, &pc_tree->vertical[1]);
2293 }
2294 break;
2295 case PARTITION_HORZ:
2296 encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
2297 &pc_tree->horizontal[0]);
2298 if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
2299 encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col, output_enabled,
2300 subsize, &pc_tree->horizontal[1]);
2301 }
2302 break;
2303 default:
2304 assert(partition == PARTITION_SPLIT);
2305 if (bsize == BLOCK_8X8) {
2306 encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
2307 pc_tree->leaf_split[0]);
2308 } else {
2309 encode_sb(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
2310 pc_tree->split[0]);
2311 encode_sb(cpi, td, tile, tp, mi_row, mi_col + hbs, output_enabled,
2312 subsize, pc_tree->split[1]);
2313 encode_sb(cpi, td, tile, tp, mi_row + hbs, mi_col, output_enabled,
2314 subsize, pc_tree->split[2]);
2315 encode_sb(cpi, td, tile, tp, mi_row + hbs, mi_col + hbs, output_enabled,
2316 subsize, pc_tree->split[3]);
2317 }
2318 break;
2319 }
2320
2321 if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
2322 update_partition_context(xd, mi_row, mi_col, subsize, bsize);
2323 }
2324 #endif // !CONFIG_REALTIME_ONLY
2325
2326 // Check to see if the given partition size is allowed for a specified number
2327 // of 8x8 block rows and columns remaining in the image.
2328 // If not then return the largest allowed partition size
find_partition_size(BLOCK_SIZE bsize,int rows_left,int cols_left,int * bh,int * bw)2329 static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize, int rows_left,
2330 int cols_left, int *bh, int *bw) {
2331 if (rows_left <= 0 || cols_left <= 0) {
2332 return VPXMIN(bsize, BLOCK_8X8);
2333 } else {
2334 for (; bsize > 0; bsize -= 3) {
2335 *bh = num_8x8_blocks_high_lookup[bsize];
2336 *bw = num_8x8_blocks_wide_lookup[bsize];
2337 if ((*bh <= rows_left) && (*bw <= cols_left)) {
2338 break;
2339 }
2340 }
2341 }
2342 return bsize;
2343 }
2344
set_partial_b64x64_partition(MODE_INFO * mi,int mis,int bh_in,int bw_in,int row8x8_remaining,int col8x8_remaining,BLOCK_SIZE bsize,MODE_INFO ** mi_8x8)2345 static void set_partial_b64x64_partition(MODE_INFO *mi, int mis, int bh_in,
2346 int bw_in, int row8x8_remaining,
2347 int col8x8_remaining, BLOCK_SIZE bsize,
2348 MODE_INFO **mi_8x8) {
2349 int bh = bh_in;
2350 int r, c;
2351 for (r = 0; r < MI_BLOCK_SIZE; r += bh) {
2352 int bw = bw_in;
2353 for (c = 0; c < MI_BLOCK_SIZE; c += bw) {
2354 const int index = r * mis + c;
2355 mi_8x8[index] = mi + index;
2356 mi_8x8[index]->sb_type = find_partition_size(
2357 bsize, row8x8_remaining - r, col8x8_remaining - c, &bh, &bw);
2358 }
2359 }
2360 }
2361
2362 // This function attempts to set all mode info entries in a given SB64
2363 // to the same block partition size.
2364 // However, at the bottom and right borders of the image the requested size
2365 // may not be allowed in which case this code attempts to choose the largest
2366 // allowable partition.
set_fixed_partitioning(VP9_COMP * cpi,const TileInfo * const tile,MODE_INFO ** mi_8x8,int mi_row,int mi_col,BLOCK_SIZE bsize)2367 static void set_fixed_partitioning(VP9_COMP *cpi, const TileInfo *const tile,
2368 MODE_INFO **mi_8x8, int mi_row, int mi_col,
2369 BLOCK_SIZE bsize) {
2370 VP9_COMMON *const cm = &cpi->common;
2371 const int mis = cm->mi_stride;
2372 const int row8x8_remaining = tile->mi_row_end - mi_row;
2373 const int col8x8_remaining = tile->mi_col_end - mi_col;
2374 int block_row, block_col;
2375 MODE_INFO *mi_upper_left = cm->mi + mi_row * mis + mi_col;
2376 int bh = num_8x8_blocks_high_lookup[bsize];
2377 int bw = num_8x8_blocks_wide_lookup[bsize];
2378
2379 assert((row8x8_remaining > 0) && (col8x8_remaining > 0));
2380
2381 // Apply the requested partition size to the SB64 if it is all "in image"
2382 if ((col8x8_remaining >= MI_BLOCK_SIZE) &&
2383 (row8x8_remaining >= MI_BLOCK_SIZE)) {
2384 for (block_row = 0; block_row < MI_BLOCK_SIZE; block_row += bh) {
2385 for (block_col = 0; block_col < MI_BLOCK_SIZE; block_col += bw) {
2386 int index = block_row * mis + block_col;
2387 mi_8x8[index] = mi_upper_left + index;
2388 mi_8x8[index]->sb_type = bsize;
2389 }
2390 }
2391 } else {
2392 // Else this is a partial SB64.
2393 set_partial_b64x64_partition(mi_upper_left, mis, bh, bw, row8x8_remaining,
2394 col8x8_remaining, bsize, mi_8x8);
2395 }
2396 }
2397
2398 static const struct {
2399 int row;
2400 int col;
2401 } coord_lookup[16] = {
2402 // 32x32 index = 0
2403 { 0, 0 },
2404 { 0, 2 },
2405 { 2, 0 },
2406 { 2, 2 },
2407 // 32x32 index = 1
2408 { 0, 4 },
2409 { 0, 6 },
2410 { 2, 4 },
2411 { 2, 6 },
2412 // 32x32 index = 2
2413 { 4, 0 },
2414 { 4, 2 },
2415 { 6, 0 },
2416 { 6, 2 },
2417 // 32x32 index = 3
2418 { 4, 4 },
2419 { 4, 6 },
2420 { 6, 4 },
2421 { 6, 6 },
2422 };
2423
set_source_var_based_partition(VP9_COMP * cpi,const TileInfo * const tile,MACROBLOCK * const x,MODE_INFO ** mi_8x8,int mi_row,int mi_col)2424 static void set_source_var_based_partition(VP9_COMP *cpi,
2425 const TileInfo *const tile,
2426 MACROBLOCK *const x,
2427 MODE_INFO **mi_8x8, int mi_row,
2428 int mi_col) {
2429 VP9_COMMON *const cm = &cpi->common;
2430 const int mis = cm->mi_stride;
2431 const int row8x8_remaining = tile->mi_row_end - mi_row;
2432 const int col8x8_remaining = tile->mi_col_end - mi_col;
2433 MODE_INFO *mi_upper_left = cm->mi + mi_row * mis + mi_col;
2434
2435 vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
2436
2437 assert((row8x8_remaining > 0) && (col8x8_remaining > 0));
2438
2439 // In-image SB64
2440 if ((col8x8_remaining >= MI_BLOCK_SIZE) &&
2441 (row8x8_remaining >= MI_BLOCK_SIZE)) {
2442 int i, j;
2443 int index;
2444 diff d32[4];
2445 const int offset = (mi_row >> 1) * cm->mb_cols + (mi_col >> 1);
2446 int is_larger_better = 0;
2447 int use32x32 = 0;
2448 unsigned int thr = cpi->source_var_thresh;
2449
2450 memset(d32, 0, 4 * sizeof(diff));
2451
2452 for (i = 0; i < 4; i++) {
2453 diff *d16[4];
2454
2455 for (j = 0; j < 4; j++) {
2456 int b_mi_row = coord_lookup[i * 4 + j].row;
2457 int b_mi_col = coord_lookup[i * 4 + j].col;
2458 int boffset = b_mi_row / 2 * cm->mb_cols + b_mi_col / 2;
2459
2460 d16[j] = cpi->source_diff_var + offset + boffset;
2461
2462 index = b_mi_row * mis + b_mi_col;
2463 mi_8x8[index] = mi_upper_left + index;
2464 mi_8x8[index]->sb_type = BLOCK_16X16;
2465
2466 // TODO(yunqingwang): If d16[j].var is very large, use 8x8 partition
2467 // size to further improve quality.
2468 }
2469
2470 is_larger_better = (d16[0]->var < thr) && (d16[1]->var < thr) &&
2471 (d16[2]->var < thr) && (d16[3]->var < thr);
2472
2473 // Use 32x32 partition
2474 if (is_larger_better) {
2475 use32x32 += 1;
2476
2477 for (j = 0; j < 4; j++) {
2478 d32[i].sse += d16[j]->sse;
2479 d32[i].sum += d16[j]->sum;
2480 }
2481
2482 d32[i].var =
2483 (unsigned int)(d32[i].sse -
2484 (unsigned int)(((int64_t)d32[i].sum * d32[i].sum) >>
2485 10));
2486
2487 index = coord_lookup[i * 4].row * mis + coord_lookup[i * 4].col;
2488 mi_8x8[index] = mi_upper_left + index;
2489 mi_8x8[index]->sb_type = BLOCK_32X32;
2490 }
2491 }
2492
2493 if (use32x32 == 4) {
2494 thr <<= 1;
2495 is_larger_better = (d32[0].var < thr) && (d32[1].var < thr) &&
2496 (d32[2].var < thr) && (d32[3].var < thr);
2497
2498 // Use 64x64 partition
2499 if (is_larger_better) {
2500 mi_8x8[0] = mi_upper_left;
2501 mi_8x8[0]->sb_type = BLOCK_64X64;
2502 }
2503 }
2504 } else { // partial in-image SB64
2505 int bh = num_8x8_blocks_high_lookup[BLOCK_16X16];
2506 int bw = num_8x8_blocks_wide_lookup[BLOCK_16X16];
2507 set_partial_b64x64_partition(mi_upper_left, mis, bh, bw, row8x8_remaining,
2508 col8x8_remaining, BLOCK_16X16, mi_8x8);
2509 }
2510 }
2511
update_state_rt(VP9_COMP * cpi,ThreadData * td,PICK_MODE_CONTEXT * ctx,int mi_row,int mi_col,int bsize)2512 static void update_state_rt(VP9_COMP *cpi, ThreadData *td,
2513 PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col,
2514 int bsize) {
2515 VP9_COMMON *const cm = &cpi->common;
2516 MACROBLOCK *const x = &td->mb;
2517 MACROBLOCKD *const xd = &x->e_mbd;
2518 MODE_INFO *const mi = xd->mi[0];
2519 struct macroblock_plane *const p = x->plane;
2520 const struct segmentation *const seg = &cm->seg;
2521 const int bw = num_8x8_blocks_wide_lookup[mi->sb_type];
2522 const int bh = num_8x8_blocks_high_lookup[mi->sb_type];
2523 const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col);
2524 const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row);
2525
2526 *(xd->mi[0]) = ctx->mic;
2527 *(x->mbmi_ext) = ctx->mbmi_ext;
2528
2529 if (seg->enabled && (cpi->oxcf.aq_mode != NO_AQ || cpi->roi.enabled)) {
2530 // Setting segmentation map for cyclic_refresh.
2531 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
2532 vp9_cyclic_refresh_update_segment(cpi, mi, mi_row, mi_col, bsize,
2533 ctx->rate, ctx->dist, x->skip, p);
2534 } else {
2535 const uint8_t *const map =
2536 seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
2537 mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
2538 }
2539 vp9_init_plane_quantizers(cpi, x);
2540 }
2541
2542 if (is_inter_block(mi)) {
2543 vp9_update_mv_count(td);
2544 if (cm->interp_filter == SWITCHABLE) {
2545 const int pred_ctx = get_pred_context_switchable_interp(xd);
2546 ++td->counts->switchable_interp[pred_ctx][mi->interp_filter];
2547 }
2548
2549 if (mi->sb_type < BLOCK_8X8) {
2550 mi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int;
2551 mi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int;
2552 }
2553 }
2554
2555 if (cm->use_prev_frame_mvs || !cm->error_resilient_mode ||
2556 (cpi->svc.use_base_mv && cpi->svc.number_spatial_layers > 1 &&
2557 cpi->svc.spatial_layer_id != cpi->svc.number_spatial_layers - 1)) {
2558 MV_REF *const frame_mvs =
2559 cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col;
2560 int w, h;
2561
2562 for (h = 0; h < y_mis; ++h) {
2563 MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols;
2564 for (w = 0; w < x_mis; ++w) {
2565 MV_REF *const mv = frame_mv + w;
2566 mv->ref_frame[0] = mi->ref_frame[0];
2567 mv->ref_frame[1] = mi->ref_frame[1];
2568 mv->mv[0].as_int = mi->mv[0].as_int;
2569 mv->mv[1].as_int = mi->mv[1].as_int;
2570 }
2571 }
2572 }
2573
2574 x->skip = ctx->skip;
2575 x->skip_txfm[0] = (mi->segment_id || xd->lossless) ? 0 : ctx->skip_txfm[0];
2576 }
2577
encode_b_rt(VP9_COMP * cpi,ThreadData * td,const TileInfo * const tile,TOKENEXTRA ** tp,int mi_row,int mi_col,int output_enabled,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx)2578 static void encode_b_rt(VP9_COMP *cpi, ThreadData *td,
2579 const TileInfo *const tile, TOKENEXTRA **tp, int mi_row,
2580 int mi_col, int output_enabled, BLOCK_SIZE bsize,
2581 PICK_MODE_CONTEXT *ctx) {
2582 MACROBLOCK *const x = &td->mb;
2583 set_offsets(cpi, tile, x, mi_row, mi_col, bsize);
2584 update_state_rt(cpi, td, ctx, mi_row, mi_col, bsize);
2585
2586 encode_superblock(cpi, td, tp, output_enabled, mi_row, mi_col, bsize, ctx);
2587 update_stats(&cpi->common, td);
2588
2589 (*tp)->token = EOSB_TOKEN;
2590 (*tp)++;
2591 }
2592
encode_sb_rt(VP9_COMP * cpi,ThreadData * td,const TileInfo * const tile,TOKENEXTRA ** tp,int mi_row,int mi_col,int output_enabled,BLOCK_SIZE bsize,PC_TREE * pc_tree)2593 static void encode_sb_rt(VP9_COMP *cpi, ThreadData *td,
2594 const TileInfo *const tile, TOKENEXTRA **tp,
2595 int mi_row, int mi_col, int output_enabled,
2596 BLOCK_SIZE bsize, PC_TREE *pc_tree) {
2597 VP9_COMMON *const cm = &cpi->common;
2598 MACROBLOCK *const x = &td->mb;
2599 MACROBLOCKD *const xd = &x->e_mbd;
2600
2601 const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
2602 int ctx;
2603 PARTITION_TYPE partition;
2604 BLOCK_SIZE subsize;
2605
2606 if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
2607
2608 if (bsize >= BLOCK_8X8) {
2609 const int idx_str = xd->mi_stride * mi_row + mi_col;
2610 MODE_INFO **mi_8x8 = cm->mi_grid_visible + idx_str;
2611 ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
2612 subsize = mi_8x8[0]->sb_type;
2613 } else {
2614 ctx = 0;
2615 subsize = BLOCK_4X4;
2616 }
2617
2618 partition = partition_lookup[bsl][subsize];
2619 if (output_enabled && bsize != BLOCK_4X4)
2620 td->counts->partition[ctx][partition]++;
2621
2622 switch (partition) {
2623 case PARTITION_NONE:
2624 encode_b_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
2625 &pc_tree->none);
2626 break;
2627 case PARTITION_VERT:
2628 encode_b_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
2629 &pc_tree->vertical[0]);
2630 if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
2631 encode_b_rt(cpi, td, tile, tp, mi_row, mi_col + hbs, output_enabled,
2632 subsize, &pc_tree->vertical[1]);
2633 }
2634 break;
2635 case PARTITION_HORZ:
2636 encode_b_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
2637 &pc_tree->horizontal[0]);
2638 if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
2639 encode_b_rt(cpi, td, tile, tp, mi_row + hbs, mi_col, output_enabled,
2640 subsize, &pc_tree->horizontal[1]);
2641 }
2642 break;
2643 default:
2644 assert(partition == PARTITION_SPLIT);
2645 subsize = get_subsize(bsize, PARTITION_SPLIT);
2646 encode_sb_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
2647 pc_tree->split[0]);
2648 encode_sb_rt(cpi, td, tile, tp, mi_row, mi_col + hbs, output_enabled,
2649 subsize, pc_tree->split[1]);
2650 encode_sb_rt(cpi, td, tile, tp, mi_row + hbs, mi_col, output_enabled,
2651 subsize, pc_tree->split[2]);
2652 encode_sb_rt(cpi, td, tile, tp, mi_row + hbs, mi_col + hbs,
2653 output_enabled, subsize, pc_tree->split[3]);
2654 break;
2655 }
2656
2657 if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
2658 update_partition_context(xd, mi_row, mi_col, subsize, bsize);
2659 }
2660
2661 #if !CONFIG_REALTIME_ONLY
rd_use_partition(VP9_COMP * cpi,ThreadData * td,TileDataEnc * tile_data,MODE_INFO ** mi_8x8,TOKENEXTRA ** tp,int mi_row,int mi_col,BLOCK_SIZE bsize,int * rate,int64_t * dist,int do_recon,PC_TREE * pc_tree)2662 static void rd_use_partition(VP9_COMP *cpi, ThreadData *td,
2663 TileDataEnc *tile_data, MODE_INFO **mi_8x8,
2664 TOKENEXTRA **tp, int mi_row, int mi_col,
2665 BLOCK_SIZE bsize, int *rate, int64_t *dist,
2666 int do_recon, PC_TREE *pc_tree) {
2667 VP9_COMMON *const cm = &cpi->common;
2668 TileInfo *const tile_info = &tile_data->tile_info;
2669 MACROBLOCK *const x = &td->mb;
2670 MACROBLOCKD *const xd = &x->e_mbd;
2671 const int mis = cm->mi_stride;
2672 const int bsl = b_width_log2_lookup[bsize];
2673 const int mi_step = num_4x4_blocks_wide_lookup[bsize] / 2;
2674 const int bss = (1 << bsl) / 4;
2675 int i, pl;
2676 PARTITION_TYPE partition = PARTITION_NONE;
2677 BLOCK_SIZE subsize;
2678 ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
2679 PARTITION_CONTEXT sl[8], sa[8];
2680 RD_COST last_part_rdc, none_rdc, chosen_rdc;
2681 BLOCK_SIZE sub_subsize = BLOCK_4X4;
2682 int splits_below = 0;
2683 BLOCK_SIZE bs_type = mi_8x8[0]->sb_type;
2684 int do_partition_search = 1;
2685 PICK_MODE_CONTEXT *ctx = &pc_tree->none;
2686
2687 if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
2688
2689 assert(num_4x4_blocks_wide_lookup[bsize] ==
2690 num_4x4_blocks_high_lookup[bsize]);
2691
2692 vp9_rd_cost_reset(&last_part_rdc);
2693 vp9_rd_cost_reset(&none_rdc);
2694 vp9_rd_cost_reset(&chosen_rdc);
2695
2696 partition = partition_lookup[bsl][bs_type];
2697 subsize = get_subsize(bsize, partition);
2698
2699 pc_tree->partitioning = partition;
2700 save_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
2701
2702 if (bsize == BLOCK_16X16 && cpi->oxcf.aq_mode != NO_AQ) {
2703 set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
2704 x->mb_energy = vp9_block_energy(cpi, x, bsize);
2705 }
2706
2707 if (do_partition_search &&
2708 cpi->sf.partition_search_type == SEARCH_PARTITION &&
2709 cpi->sf.adjust_partitioning_from_last_frame) {
2710 // Check if any of the sub blocks are further split.
2711 if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) {
2712 sub_subsize = get_subsize(subsize, PARTITION_SPLIT);
2713 splits_below = 1;
2714 for (i = 0; i < 4; i++) {
2715 int jj = i >> 1, ii = i & 0x01;
2716 MODE_INFO *this_mi = mi_8x8[jj * bss * mis + ii * bss];
2717 if (this_mi && this_mi->sb_type >= sub_subsize) {
2718 splits_below = 0;
2719 }
2720 }
2721 }
2722
2723 // If partition is not none try none unless each of the 4 splits are split
2724 // even further..
2725 if (partition != PARTITION_NONE && !splits_below &&
2726 mi_row + (mi_step >> 1) < cm->mi_rows &&
2727 mi_col + (mi_step >> 1) < cm->mi_cols) {
2728 pc_tree->partitioning = PARTITION_NONE;
2729 rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &none_rdc, bsize, ctx,
2730 INT_MAX, INT64_MAX);
2731
2732 pl = partition_plane_context(xd, mi_row, mi_col, bsize);
2733
2734 if (none_rdc.rate < INT_MAX) {
2735 none_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
2736 none_rdc.rdcost =
2737 RDCOST(x->rdmult, x->rddiv, none_rdc.rate, none_rdc.dist);
2738 }
2739
2740 restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
2741 mi_8x8[0]->sb_type = bs_type;
2742 pc_tree->partitioning = partition;
2743 }
2744 }
2745
2746 switch (partition) {
2747 case PARTITION_NONE:
2748 rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, bsize,
2749 ctx, INT_MAX, INT64_MAX);
2750 break;
2751 case PARTITION_HORZ:
2752 pc_tree->horizontal[0].skip_ref_frame_mask = 0;
2753 rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
2754 subsize, &pc_tree->horizontal[0], INT_MAX, INT64_MAX);
2755 if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 &&
2756 mi_row + (mi_step >> 1) < cm->mi_rows) {
2757 RD_COST tmp_rdc;
2758 PICK_MODE_CONTEXT *ctx = &pc_tree->horizontal[0];
2759 vp9_rd_cost_init(&tmp_rdc);
2760 update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0);
2761 encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx);
2762 pc_tree->horizontal[1].skip_ref_frame_mask = 0;
2763 rd_pick_sb_modes(cpi, tile_data, x, mi_row + (mi_step >> 1), mi_col,
2764 &tmp_rdc, subsize, &pc_tree->horizontal[1], INT_MAX,
2765 INT64_MAX);
2766 if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
2767 vp9_rd_cost_reset(&last_part_rdc);
2768 break;
2769 }
2770 last_part_rdc.rate += tmp_rdc.rate;
2771 last_part_rdc.dist += tmp_rdc.dist;
2772 last_part_rdc.rdcost += tmp_rdc.rdcost;
2773 }
2774 break;
2775 case PARTITION_VERT:
2776 pc_tree->vertical[0].skip_ref_frame_mask = 0;
2777 rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
2778 subsize, &pc_tree->vertical[0], INT_MAX, INT64_MAX);
2779 if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 &&
2780 mi_col + (mi_step >> 1) < cm->mi_cols) {
2781 RD_COST tmp_rdc;
2782 PICK_MODE_CONTEXT *ctx = &pc_tree->vertical[0];
2783 vp9_rd_cost_init(&tmp_rdc);
2784 update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0);
2785 encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx);
2786 pc_tree->vertical[bsize > BLOCK_8X8].skip_ref_frame_mask = 0;
2787 rd_pick_sb_modes(
2788 cpi, tile_data, x, mi_row, mi_col + (mi_step >> 1), &tmp_rdc,
2789 subsize, &pc_tree->vertical[bsize > BLOCK_8X8], INT_MAX, INT64_MAX);
2790 if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
2791 vp9_rd_cost_reset(&last_part_rdc);
2792 break;
2793 }
2794 last_part_rdc.rate += tmp_rdc.rate;
2795 last_part_rdc.dist += tmp_rdc.dist;
2796 last_part_rdc.rdcost += tmp_rdc.rdcost;
2797 }
2798 break;
2799 default:
2800 assert(partition == PARTITION_SPLIT);
2801 if (bsize == BLOCK_8X8) {
2802 rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
2803 subsize, pc_tree->leaf_split[0], INT_MAX, INT64_MAX);
2804 break;
2805 }
2806 last_part_rdc.rate = 0;
2807 last_part_rdc.dist = 0;
2808 last_part_rdc.rdcost = 0;
2809 for (i = 0; i < 4; i++) {
2810 int x_idx = (i & 1) * (mi_step >> 1);
2811 int y_idx = (i >> 1) * (mi_step >> 1);
2812 int jj = i >> 1, ii = i & 0x01;
2813 RD_COST tmp_rdc;
2814 if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
2815 continue;
2816
2817 vp9_rd_cost_init(&tmp_rdc);
2818 rd_use_partition(cpi, td, tile_data, mi_8x8 + jj * bss * mis + ii * bss,
2819 tp, mi_row + y_idx, mi_col + x_idx, subsize,
2820 &tmp_rdc.rate, &tmp_rdc.dist, i != 3,
2821 pc_tree->split[i]);
2822 if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
2823 vp9_rd_cost_reset(&last_part_rdc);
2824 break;
2825 }
2826 last_part_rdc.rate += tmp_rdc.rate;
2827 last_part_rdc.dist += tmp_rdc.dist;
2828 }
2829 break;
2830 }
2831
2832 pl = partition_plane_context(xd, mi_row, mi_col, bsize);
2833 if (last_part_rdc.rate < INT_MAX) {
2834 last_part_rdc.rate += cpi->partition_cost[pl][partition];
2835 last_part_rdc.rdcost =
2836 RDCOST(x->rdmult, x->rddiv, last_part_rdc.rate, last_part_rdc.dist);
2837 }
2838
2839 if (do_partition_search && cpi->sf.adjust_partitioning_from_last_frame &&
2840 cpi->sf.partition_search_type == SEARCH_PARTITION &&
2841 partition != PARTITION_SPLIT && bsize > BLOCK_8X8 &&
2842 (mi_row + mi_step < cm->mi_rows ||
2843 mi_row + (mi_step >> 1) == cm->mi_rows) &&
2844 (mi_col + mi_step < cm->mi_cols ||
2845 mi_col + (mi_step >> 1) == cm->mi_cols)) {
2846 BLOCK_SIZE split_subsize = get_subsize(bsize, PARTITION_SPLIT);
2847 chosen_rdc.rate = 0;
2848 chosen_rdc.dist = 0;
2849 restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
2850 pc_tree->partitioning = PARTITION_SPLIT;
2851
2852 // Split partition.
2853 for (i = 0; i < 4; i++) {
2854 int x_idx = (i & 1) * (mi_step >> 1);
2855 int y_idx = (i >> 1) * (mi_step >> 1);
2856 RD_COST tmp_rdc;
2857 ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
2858 PARTITION_CONTEXT sl[8], sa[8];
2859
2860 if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
2861 continue;
2862
2863 save_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
2864 pc_tree->split[i]->partitioning = PARTITION_NONE;
2865 rd_pick_sb_modes(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx,
2866 &tmp_rdc, split_subsize, &pc_tree->split[i]->none,
2867 INT_MAX, INT64_MAX);
2868
2869 restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
2870
2871 if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
2872 vp9_rd_cost_reset(&chosen_rdc);
2873 break;
2874 }
2875
2876 chosen_rdc.rate += tmp_rdc.rate;
2877 chosen_rdc.dist += tmp_rdc.dist;
2878
2879 if (i != 3)
2880 encode_sb(cpi, td, tile_info, tp, mi_row + y_idx, mi_col + x_idx, 0,
2881 split_subsize, pc_tree->split[i]);
2882
2883 pl = partition_plane_context(xd, mi_row + y_idx, mi_col + x_idx,
2884 split_subsize);
2885 chosen_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
2886 }
2887 pl = partition_plane_context(xd, mi_row, mi_col, bsize);
2888 if (chosen_rdc.rate < INT_MAX) {
2889 chosen_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT];
2890 chosen_rdc.rdcost =
2891 RDCOST(x->rdmult, x->rddiv, chosen_rdc.rate, chosen_rdc.dist);
2892 }
2893 }
2894
2895 // If last_part is better set the partitioning to that.
2896 if (last_part_rdc.rdcost < chosen_rdc.rdcost) {
2897 mi_8x8[0]->sb_type = bsize;
2898 if (bsize >= BLOCK_8X8) pc_tree->partitioning = partition;
2899 chosen_rdc = last_part_rdc;
2900 }
2901 // If none was better set the partitioning to that.
2902 if (none_rdc.rdcost < chosen_rdc.rdcost) {
2903 if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE;
2904 chosen_rdc = none_rdc;
2905 }
2906
2907 restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
2908
2909 // We must have chosen a partitioning and encoding or we'll fail later on.
2910 // No other opportunities for success.
2911 if (bsize == BLOCK_64X64)
2912 assert(chosen_rdc.rate < INT_MAX && chosen_rdc.dist < INT64_MAX);
2913
2914 if (do_recon) {
2915 int output_enabled = (bsize == BLOCK_64X64);
2916 encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, bsize,
2917 pc_tree);
2918 }
2919
2920 *rate = chosen_rdc.rate;
2921 *dist = chosen_rdc.dist;
2922 }
2923
2924 static const BLOCK_SIZE min_partition_size[BLOCK_SIZES] = {
2925 BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_4X4,
2926 BLOCK_4X4, BLOCK_8X8, BLOCK_8X8, BLOCK_8X8, BLOCK_16X16,
2927 BLOCK_16X16, BLOCK_16X16, BLOCK_16X16
2928 };
2929
2930 static const BLOCK_SIZE max_partition_size[BLOCK_SIZES] = {
2931 BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, BLOCK_32X32,
2932 BLOCK_32X32, BLOCK_32X32, BLOCK_64X64, BLOCK_64X64, BLOCK_64X64,
2933 BLOCK_64X64, BLOCK_64X64, BLOCK_64X64
2934 };
2935
2936 // Look at all the mode_info entries for blocks that are part of this
2937 // partition and find the min and max values for sb_type.
2938 // At the moment this is designed to work on a 64x64 SB but could be
2939 // adjusted to use a size parameter.
2940 //
2941 // The min and max are assumed to have been initialized prior to calling this
2942 // function so repeat calls can accumulate a min and max of more than one sb64.
get_sb_partition_size_range(MACROBLOCKD * xd,MODE_INFO ** mi_8x8,BLOCK_SIZE * min_block_size,BLOCK_SIZE * max_block_size,int bs_hist[BLOCK_SIZES])2943 static void get_sb_partition_size_range(MACROBLOCKD *xd, MODE_INFO **mi_8x8,
2944 BLOCK_SIZE *min_block_size,
2945 BLOCK_SIZE *max_block_size,
2946 int bs_hist[BLOCK_SIZES]) {
2947 int sb_width_in_blocks = MI_BLOCK_SIZE;
2948 int sb_height_in_blocks = MI_BLOCK_SIZE;
2949 int i, j;
2950 int index = 0;
2951
2952 // Check the sb_type for each block that belongs to this region.
2953 for (i = 0; i < sb_height_in_blocks; ++i) {
2954 for (j = 0; j < sb_width_in_blocks; ++j) {
2955 MODE_INFO *mi = mi_8x8[index + j];
2956 BLOCK_SIZE sb_type = mi ? mi->sb_type : 0;
2957 bs_hist[sb_type]++;
2958 *min_block_size = VPXMIN(*min_block_size, sb_type);
2959 *max_block_size = VPXMAX(*max_block_size, sb_type);
2960 }
2961 index += xd->mi_stride;
2962 }
2963 }
2964
2965 // Next square block size less or equal than current block size.
2966 static const BLOCK_SIZE next_square_size[BLOCK_SIZES] = {
2967 BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, BLOCK_8X8,
2968 BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, BLOCK_32X32,
2969 BLOCK_32X32, BLOCK_32X32, BLOCK_64X64
2970 };
2971
2972 // Look at neighboring blocks and set a min and max partition size based on
2973 // what they chose.
rd_auto_partition_range(VP9_COMP * cpi,const TileInfo * const tile,MACROBLOCKD * const xd,int mi_row,int mi_col,BLOCK_SIZE * min_block_size,BLOCK_SIZE * max_block_size)2974 static void rd_auto_partition_range(VP9_COMP *cpi, const TileInfo *const tile,
2975 MACROBLOCKD *const xd, int mi_row,
2976 int mi_col, BLOCK_SIZE *min_block_size,
2977 BLOCK_SIZE *max_block_size) {
2978 VP9_COMMON *const cm = &cpi->common;
2979 MODE_INFO **mi = xd->mi;
2980 const int left_in_image = !!xd->left_mi;
2981 const int above_in_image = !!xd->above_mi;
2982 const int row8x8_remaining = tile->mi_row_end - mi_row;
2983 const int col8x8_remaining = tile->mi_col_end - mi_col;
2984 int bh, bw;
2985 BLOCK_SIZE min_size = BLOCK_4X4;
2986 BLOCK_SIZE max_size = BLOCK_64X64;
2987 int bs_hist[BLOCK_SIZES] = { 0 };
2988
2989 // Trap case where we do not have a prediction.
2990 if (left_in_image || above_in_image || cm->frame_type != KEY_FRAME) {
2991 // Default "min to max" and "max to min"
2992 min_size = BLOCK_64X64;
2993 max_size = BLOCK_4X4;
2994
2995 // NOTE: each call to get_sb_partition_size_range() uses the previous
2996 // passed in values for min and max as a starting point.
2997 // Find the min and max partition used in previous frame at this location
2998 if (cm->frame_type != KEY_FRAME) {
2999 MODE_INFO **prev_mi =
3000 &cm->prev_mi_grid_visible[mi_row * xd->mi_stride + mi_col];
3001 get_sb_partition_size_range(xd, prev_mi, &min_size, &max_size, bs_hist);
3002 }
3003 // Find the min and max partition sizes used in the left SB64
3004 if (left_in_image) {
3005 MODE_INFO **left_sb64_mi = &mi[-MI_BLOCK_SIZE];
3006 get_sb_partition_size_range(xd, left_sb64_mi, &min_size, &max_size,
3007 bs_hist);
3008 }
3009 // Find the min and max partition sizes used in the above SB64.
3010 if (above_in_image) {
3011 MODE_INFO **above_sb64_mi = &mi[-xd->mi_stride * MI_BLOCK_SIZE];
3012 get_sb_partition_size_range(xd, above_sb64_mi, &min_size, &max_size,
3013 bs_hist);
3014 }
3015
3016 // Adjust observed min and max for "relaxed" auto partition case.
3017 if (cpi->sf.auto_min_max_partition_size == RELAXED_NEIGHBORING_MIN_MAX) {
3018 min_size = min_partition_size[min_size];
3019 max_size = max_partition_size[max_size];
3020 }
3021 }
3022
3023 // Check border cases where max and min from neighbors may not be legal.
3024 max_size = find_partition_size(max_size, row8x8_remaining, col8x8_remaining,
3025 &bh, &bw);
3026 // Test for blocks at the edge of the active image.
3027 // This may be the actual edge of the image or where there are formatting
3028 // bars.
3029 if (vp9_active_edge_sb(cpi, mi_row, mi_col)) {
3030 min_size = BLOCK_4X4;
3031 } else {
3032 min_size =
3033 VPXMIN(cpi->sf.rd_auto_partition_min_limit, VPXMIN(min_size, max_size));
3034 }
3035
3036 // When use_square_partition_only is true, make sure at least one square
3037 // partition is allowed by selecting the next smaller square size as
3038 // *min_block_size.
3039 if (cpi->sf.use_square_partition_only &&
3040 next_square_size[max_size] < min_size) {
3041 min_size = next_square_size[max_size];
3042 }
3043
3044 *min_block_size = min_size;
3045 *max_block_size = max_size;
3046 }
3047
3048 // TODO(jingning) refactor functions setting partition search range
set_partition_range(VP9_COMMON * cm,MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE bsize,BLOCK_SIZE * min_bs,BLOCK_SIZE * max_bs)3049 static void set_partition_range(VP9_COMMON *cm, MACROBLOCKD *xd, int mi_row,
3050 int mi_col, BLOCK_SIZE bsize,
3051 BLOCK_SIZE *min_bs, BLOCK_SIZE *max_bs) {
3052 int mi_width = num_8x8_blocks_wide_lookup[bsize];
3053 int mi_height = num_8x8_blocks_high_lookup[bsize];
3054 int idx, idy;
3055
3056 MODE_INFO *mi;
3057 const int idx_str = cm->mi_stride * mi_row + mi_col;
3058 MODE_INFO **prev_mi = &cm->prev_mi_grid_visible[idx_str];
3059 BLOCK_SIZE bs, min_size, max_size;
3060
3061 min_size = BLOCK_64X64;
3062 max_size = BLOCK_4X4;
3063
3064 if (prev_mi) {
3065 for (idy = 0; idy < mi_height; ++idy) {
3066 for (idx = 0; idx < mi_width; ++idx) {
3067 mi = prev_mi[idy * cm->mi_stride + idx];
3068 bs = mi ? mi->sb_type : bsize;
3069 min_size = VPXMIN(min_size, bs);
3070 max_size = VPXMAX(max_size, bs);
3071 }
3072 }
3073 }
3074
3075 if (xd->left_mi) {
3076 for (idy = 0; idy < mi_height; ++idy) {
3077 mi = xd->mi[idy * cm->mi_stride - 1];
3078 bs = mi ? mi->sb_type : bsize;
3079 min_size = VPXMIN(min_size, bs);
3080 max_size = VPXMAX(max_size, bs);
3081 }
3082 }
3083
3084 if (xd->above_mi) {
3085 for (idx = 0; idx < mi_width; ++idx) {
3086 mi = xd->mi[idx - cm->mi_stride];
3087 bs = mi ? mi->sb_type : bsize;
3088 min_size = VPXMIN(min_size, bs);
3089 max_size = VPXMAX(max_size, bs);
3090 }
3091 }
3092
3093 if (min_size == max_size) {
3094 min_size = min_partition_size[min_size];
3095 max_size = max_partition_size[max_size];
3096 }
3097
3098 *min_bs = min_size;
3099 *max_bs = max_size;
3100 }
3101 #endif // !CONFIG_REALTIME_ONLY
3102
store_pred_mv(MACROBLOCK * x,PICK_MODE_CONTEXT * ctx)3103 static INLINE void store_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
3104 memcpy(ctx->pred_mv, x->pred_mv, sizeof(x->pred_mv));
3105 }
3106
load_pred_mv(MACROBLOCK * x,PICK_MODE_CONTEXT * ctx)3107 static INLINE void load_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
3108 memcpy(x->pred_mv, ctx->pred_mv, sizeof(x->pred_mv));
3109 }
3110
3111 #if CONFIG_FP_MB_STATS
3112 const int num_16x16_blocks_wide_lookup[BLOCK_SIZES] = { 1, 1, 1, 1, 1, 1, 1,
3113 1, 2, 2, 2, 4, 4 };
3114 const int num_16x16_blocks_high_lookup[BLOCK_SIZES] = { 1, 1, 1, 1, 1, 1, 1,
3115 2, 1, 2, 4, 2, 4 };
3116 const int qindex_skip_threshold_lookup[BLOCK_SIZES] = { 0, 10, 10, 30, 40,
3117 40, 60, 80, 80, 90,
3118 100, 100, 120 };
3119 const int qindex_split_threshold_lookup[BLOCK_SIZES] = { 0, 3, 3, 7, 15,
3120 15, 30, 40, 40, 60,
3121 80, 80, 120 };
3122 const int complexity_16x16_blocks_threshold[BLOCK_SIZES] = { 1, 1, 1, 1, 1,
3123 1, 1, 1, 1, 1,
3124 4, 4, 6 };
3125
3126 typedef enum {
3127 MV_ZERO = 0,
3128 MV_LEFT = 1,
3129 MV_UP = 2,
3130 MV_RIGHT = 3,
3131 MV_DOWN = 4,
3132 MV_INVALID
3133 } MOTION_DIRECTION;
3134
get_motion_direction_fp(uint8_t fp_byte)3135 static INLINE MOTION_DIRECTION get_motion_direction_fp(uint8_t fp_byte) {
3136 if (fp_byte & FPMB_MOTION_ZERO_MASK) {
3137 return MV_ZERO;
3138 } else if (fp_byte & FPMB_MOTION_LEFT_MASK) {
3139 return MV_LEFT;
3140 } else if (fp_byte & FPMB_MOTION_RIGHT_MASK) {
3141 return MV_RIGHT;
3142 } else if (fp_byte & FPMB_MOTION_UP_MASK) {
3143 return MV_UP;
3144 } else {
3145 return MV_DOWN;
3146 }
3147 }
3148
get_motion_inconsistency(MOTION_DIRECTION this_mv,MOTION_DIRECTION that_mv)3149 static INLINE int get_motion_inconsistency(MOTION_DIRECTION this_mv,
3150 MOTION_DIRECTION that_mv) {
3151 if (this_mv == that_mv) {
3152 return 0;
3153 } else {
3154 return abs(this_mv - that_mv) == 2 ? 2 : 1;
3155 }
3156 }
3157 #endif
3158
3159 // Calculate prediction based on the given input features and neural net config.
3160 // Assume there are no more than NN_MAX_NODES_PER_LAYER nodes in each hidden
3161 // layer.
nn_predict(const float * features,const NN_CONFIG * nn_config,float * output)3162 static void nn_predict(const float *features, const NN_CONFIG *nn_config,
3163 float *output) {
3164 int num_input_nodes = nn_config->num_inputs;
3165 int buf_index = 0;
3166 float buf[2][NN_MAX_NODES_PER_LAYER];
3167 const float *input_nodes = features;
3168
3169 // Propagate hidden layers.
3170 const int num_layers = nn_config->num_hidden_layers;
3171 int layer, node, i;
3172 assert(num_layers <= NN_MAX_HIDDEN_LAYERS);
3173 for (layer = 0; layer < num_layers; ++layer) {
3174 const float *weights = nn_config->weights[layer];
3175 const float *bias = nn_config->bias[layer];
3176 float *output_nodes = buf[buf_index];
3177 const int num_output_nodes = nn_config->num_hidden_nodes[layer];
3178 assert(num_output_nodes < NN_MAX_NODES_PER_LAYER);
3179 for (node = 0; node < num_output_nodes; ++node) {
3180 float val = 0.0f;
3181 for (i = 0; i < num_input_nodes; ++i) val += weights[i] * input_nodes[i];
3182 val += bias[node];
3183 // ReLU as activation function.
3184 val = VPXMAX(val, 0.0f);
3185 output_nodes[node] = val;
3186 weights += num_input_nodes;
3187 }
3188 num_input_nodes = num_output_nodes;
3189 input_nodes = output_nodes;
3190 buf_index = 1 - buf_index;
3191 }
3192
3193 // Final output layer.
3194 {
3195 const float *weights = nn_config->weights[num_layers];
3196 for (node = 0; node < nn_config->num_outputs; ++node) {
3197 const float *bias = nn_config->bias[num_layers];
3198 float val = 0.0f;
3199 for (i = 0; i < num_input_nodes; ++i) val += weights[i] * input_nodes[i];
3200 output[node] = val + bias[node];
3201 weights += num_input_nodes;
3202 }
3203 }
3204 }
3205
3206 #if !CONFIG_REALTIME_ONLY
3207 #define FEATURES 7
3208 // Machine-learning based partition search early termination.
3209 // Return 1 to skip split and rect partitions.
ml_pruning_partition(VP9_COMMON * const cm,MACROBLOCKD * const xd,PICK_MODE_CONTEXT * ctx,int mi_row,int mi_col,BLOCK_SIZE bsize)3210 static int ml_pruning_partition(VP9_COMMON *const cm, MACROBLOCKD *const xd,
3211 PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col,
3212 BLOCK_SIZE bsize) {
3213 const int mag_mv =
3214 abs(ctx->mic.mv[0].as_mv.col) + abs(ctx->mic.mv[0].as_mv.row);
3215 const int left_in_image = !!xd->left_mi;
3216 const int above_in_image = !!xd->above_mi;
3217 MODE_INFO **prev_mi =
3218 &cm->prev_mi_grid_visible[mi_col + cm->mi_stride * mi_row];
3219 int above_par = 0; // above_partitioning
3220 int left_par = 0; // left_partitioning
3221 int last_par = 0; // last_partitioning
3222 int offset = 0;
3223 int i;
3224 BLOCK_SIZE context_size;
3225 const NN_CONFIG *nn_config = NULL;
3226 const float *mean, *sd, *linear_weights;
3227 float nn_score, linear_score;
3228 float features[FEATURES];
3229
3230 assert(b_width_log2_lookup[bsize] == b_height_log2_lookup[bsize]);
3231 vpx_clear_system_state();
3232
3233 switch (bsize) {
3234 case BLOCK_64X64:
3235 offset = 0;
3236 nn_config = &vp9_partition_nnconfig_64x64;
3237 break;
3238 case BLOCK_32X32:
3239 offset = 8;
3240 nn_config = &vp9_partition_nnconfig_32x32;
3241 break;
3242 case BLOCK_16X16:
3243 offset = 16;
3244 nn_config = &vp9_partition_nnconfig_16x16;
3245 break;
3246 default: assert(0 && "Unexpected block size."); return 0;
3247 }
3248
3249 if (above_in_image) {
3250 context_size = xd->above_mi->sb_type;
3251 if (context_size < bsize)
3252 above_par = 2;
3253 else if (context_size == bsize)
3254 above_par = 1;
3255 }
3256
3257 if (left_in_image) {
3258 context_size = xd->left_mi->sb_type;
3259 if (context_size < bsize)
3260 left_par = 2;
3261 else if (context_size == bsize)
3262 left_par = 1;
3263 }
3264
3265 if (prev_mi) {
3266 context_size = prev_mi[0]->sb_type;
3267 if (context_size < bsize)
3268 last_par = 2;
3269 else if (context_size == bsize)
3270 last_par = 1;
3271 }
3272
3273 mean = &vp9_partition_feature_mean[offset];
3274 sd = &vp9_partition_feature_std[offset];
3275 features[0] = ((float)ctx->rate - mean[0]) / sd[0];
3276 features[1] = ((float)ctx->dist - mean[1]) / sd[1];
3277 features[2] = ((float)mag_mv / 2 - mean[2]) * sd[2];
3278 features[3] = ((float)(left_par + above_par) / 2 - mean[3]) * sd[3];
3279 features[4] = ((float)ctx->sum_y_eobs - mean[4]) / sd[4];
3280 features[5] = ((float)cm->base_qindex - mean[5]) * sd[5];
3281 features[6] = ((float)last_par - mean[6]) * sd[6];
3282
3283 // Predict using linear model.
3284 linear_weights = &vp9_partition_linear_weights[offset];
3285 linear_score = linear_weights[FEATURES];
3286 for (i = 0; i < FEATURES; ++i)
3287 linear_score += linear_weights[i] * features[i];
3288 if (linear_score > 0.1f) return 0;
3289
3290 // Predict using neural net model.
3291 nn_predict(features, nn_config, &nn_score);
3292
3293 if (linear_score < -0.0f && nn_score < 0.1f) return 1;
3294 if (nn_score < -0.0f && linear_score < 0.1f) return 1;
3295 return 0;
3296 }
3297 #undef FEATURES
3298
3299 #define FEATURES 4
3300 // ML-based partition search breakout.
ml_predict_breakout(VP9_COMP * const cpi,BLOCK_SIZE bsize,const MACROBLOCK * const x,const RD_COST * const rd_cost)3301 static int ml_predict_breakout(VP9_COMP *const cpi, BLOCK_SIZE bsize,
3302 const MACROBLOCK *const x,
3303 const RD_COST *const rd_cost) {
3304 DECLARE_ALIGNED(16, static const uint8_t, vp9_64_zeros[64]) = { 0 };
3305 const VP9_COMMON *const cm = &cpi->common;
3306 float features[FEATURES];
3307 const float *linear_weights = NULL; // Linear model weights.
3308 float linear_score = 0.0f;
3309 const int qindex = cm->base_qindex;
3310 const int q_ctx = qindex >= 200 ? 0 : (qindex >= 150 ? 1 : 2);
3311 const int is_720p_or_larger = VPXMIN(cm->width, cm->height) >= 720;
3312 const int resolution_ctx = is_720p_or_larger ? 1 : 0;
3313
3314 switch (bsize) {
3315 case BLOCK_64X64:
3316 linear_weights = vp9_partition_breakout_weights_64[resolution_ctx][q_ctx];
3317 break;
3318 case BLOCK_32X32:
3319 linear_weights = vp9_partition_breakout_weights_32[resolution_ctx][q_ctx];
3320 break;
3321 case BLOCK_16X16:
3322 linear_weights = vp9_partition_breakout_weights_16[resolution_ctx][q_ctx];
3323 break;
3324 case BLOCK_8X8:
3325 linear_weights = vp9_partition_breakout_weights_8[resolution_ctx][q_ctx];
3326 break;
3327 default: assert(0 && "Unexpected block size."); return 0;
3328 }
3329 if (!linear_weights) return 0;
3330
3331 { // Generate feature values.
3332 #if CONFIG_VP9_HIGHBITDEPTH
3333 const int ac_q =
3334 vp9_ac_quant(cm->base_qindex, 0, cm->bit_depth) >> (x->e_mbd.bd - 8);
3335 #else
3336 const int ac_q = vp9_ac_quant(qindex, 0, cm->bit_depth);
3337 #endif // CONFIG_VP9_HIGHBITDEPTH
3338 const int num_pels_log2 = num_pels_log2_lookup[bsize];
3339 int feature_index = 0;
3340 unsigned int var, sse;
3341 float rate_f, dist_f;
3342
3343 #if CONFIG_VP9_HIGHBITDEPTH
3344 if (x->e_mbd.cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
3345 var =
3346 vp9_high_get_sby_variance(cpi, &x->plane[0].src, bsize, x->e_mbd.bd);
3347 } else {
3348 var = cpi->fn_ptr[bsize].vf(x->plane[0].src.buf, x->plane[0].src.stride,
3349 vp9_64_zeros, 0, &sse);
3350 }
3351 #else
3352 var = cpi->fn_ptr[bsize].vf(x->plane[0].src.buf, x->plane[0].src.stride,
3353 vp9_64_zeros, 0, &sse);
3354 #endif
3355 var = var >> num_pels_log2;
3356
3357 vpx_clear_system_state();
3358
3359 rate_f = (float)VPXMIN(rd_cost->rate, INT_MAX);
3360 dist_f = (float)(VPXMIN(rd_cost->dist, INT_MAX) >> num_pels_log2);
3361 rate_f =
3362 ((float)x->rdmult / 128.0f / 512.0f / (float)(1 << num_pels_log2)) *
3363 rate_f;
3364
3365 features[feature_index++] = rate_f;
3366 features[feature_index++] = dist_f;
3367 features[feature_index++] = (float)var;
3368 features[feature_index++] = (float)ac_q;
3369 assert(feature_index == FEATURES);
3370 }
3371
3372 { // Calculate the output score.
3373 int i;
3374 linear_score = linear_weights[FEATURES];
3375 for (i = 0; i < FEATURES; ++i)
3376 linear_score += linear_weights[i] * features[i];
3377 }
3378
3379 return linear_score >= cpi->sf.rd_ml_partition.search_breakout_thresh[q_ctx];
3380 }
3381 #undef FEATURES
3382
3383 #define FEATURES 8
3384 #define LABELS 4
ml_prune_rect_partition(VP9_COMP * const cpi,MACROBLOCK * const x,BLOCK_SIZE bsize,const PC_TREE * const pc_tree,int * allow_horz,int * allow_vert,int64_t ref_rd)3385 static void ml_prune_rect_partition(VP9_COMP *const cpi, MACROBLOCK *const x,
3386 BLOCK_SIZE bsize,
3387 const PC_TREE *const pc_tree,
3388 int *allow_horz, int *allow_vert,
3389 int64_t ref_rd) {
3390 const NN_CONFIG *nn_config = NULL;
3391 float score[LABELS] = {
3392 0.0f,
3393 };
3394 int thresh = -1;
3395 int i;
3396 (void)x;
3397
3398 if (ref_rd <= 0 || ref_rd > 1000000000) return;
3399
3400 switch (bsize) {
3401 case BLOCK_8X8: break;
3402 case BLOCK_16X16:
3403 nn_config = &vp9_rect_part_nnconfig_16;
3404 thresh = cpi->sf.rd_ml_partition.prune_rect_thresh[1];
3405 break;
3406 case BLOCK_32X32:
3407 nn_config = &vp9_rect_part_nnconfig_32;
3408 thresh = cpi->sf.rd_ml_partition.prune_rect_thresh[2];
3409 break;
3410 case BLOCK_64X64:
3411 nn_config = &vp9_rect_part_nnconfig_64;
3412 thresh = cpi->sf.rd_ml_partition.prune_rect_thresh[3];
3413 break;
3414 default: assert(0 && "Unexpected block size."); return;
3415 }
3416 if (!nn_config || thresh < 0) return;
3417
3418 // Feature extraction and model score calculation.
3419 {
3420 const VP9_COMMON *const cm = &cpi->common;
3421 #if CONFIG_VP9_HIGHBITDEPTH
3422 const int dc_q =
3423 vp9_dc_quant(cm->base_qindex, 0, cm->bit_depth) >> (x->e_mbd.bd - 8);
3424 #else
3425 const int dc_q = vp9_dc_quant(cm->base_qindex, 0, cm->bit_depth);
3426 #endif // CONFIG_VP9_HIGHBITDEPTH
3427 const int bs = 4 * num_4x4_blocks_wide_lookup[bsize];
3428 int feature_index = 0;
3429 float features[FEATURES];
3430
3431 features[feature_index++] = logf((float)dc_q + 1.0f);
3432 features[feature_index++] =
3433 (float)(pc_tree->partitioning == PARTITION_NONE);
3434 features[feature_index++] = logf((float)ref_rd / bs / bs + 1.0f);
3435
3436 {
3437 const float norm_factor = 1.0f / ((float)ref_rd + 1.0f);
3438 const int64_t none_rdcost = pc_tree->none.rdcost;
3439 float rd_ratio = 2.0f;
3440 if (none_rdcost > 0 && none_rdcost < 1000000000)
3441 rd_ratio = (float)none_rdcost * norm_factor;
3442 features[feature_index++] = VPXMIN(rd_ratio, 2.0f);
3443
3444 for (i = 0; i < 4; ++i) {
3445 const int64_t this_rd = pc_tree->split[i]->none.rdcost;
3446 const int rd_valid = this_rd > 0 && this_rd < 1000000000;
3447 // Ratio between sub-block RD and whole block RD.
3448 features[feature_index++] =
3449 rd_valid ? (float)this_rd * norm_factor : 1.0f;
3450 }
3451 }
3452
3453 assert(feature_index == FEATURES);
3454 nn_predict(features, nn_config, score);
3455 }
3456
3457 // Make decisions based on the model score.
3458 {
3459 int max_score = -1000;
3460 int horz = 0, vert = 0;
3461 int int_score[LABELS];
3462 for (i = 0; i < LABELS; ++i) {
3463 int_score[i] = (int)(100 * score[i]);
3464 max_score = VPXMAX(int_score[i], max_score);
3465 }
3466 thresh = max_score - thresh;
3467 for (i = 0; i < LABELS; ++i) {
3468 if (int_score[i] >= thresh) {
3469 if ((i >> 0) & 1) horz = 1;
3470 if ((i >> 1) & 1) vert = 1;
3471 }
3472 }
3473 *allow_horz = *allow_horz && horz;
3474 *allow_vert = *allow_vert && vert;
3475 }
3476 }
3477 #undef FEATURES
3478 #undef LABELS
3479
3480 // Perform fast and coarse motion search for the given block. This is a
3481 // pre-processing step for the ML based partition search speedup.
simple_motion_search(const VP9_COMP * const cpi,MACROBLOCK * const x,BLOCK_SIZE bsize,int mi_row,int mi_col,MV ref_mv,MV_REFERENCE_FRAME ref,uint8_t * const pred_buf)3482 static void simple_motion_search(const VP9_COMP *const cpi, MACROBLOCK *const x,
3483 BLOCK_SIZE bsize, int mi_row, int mi_col,
3484 MV ref_mv, MV_REFERENCE_FRAME ref,
3485 uint8_t *const pred_buf) {
3486 const VP9_COMMON *const cm = &cpi->common;
3487 MACROBLOCKD *const xd = &x->e_mbd;
3488 MODE_INFO *const mi = xd->mi[0];
3489 const YV12_BUFFER_CONFIG *const yv12 = get_ref_frame_buffer(cpi, ref);
3490 const int step_param = 1;
3491 const MvLimits tmp_mv_limits = x->mv_limits;
3492 const SEARCH_METHODS search_method = NSTEP;
3493 const int sadpb = x->sadperbit16;
3494 MV ref_mv_full = { ref_mv.row >> 3, ref_mv.col >> 3 };
3495 MV best_mv = { 0, 0 };
3496 int cost_list[5];
3497
3498 assert(yv12 != NULL);
3499 if (!yv12) return;
3500 vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col,
3501 &cm->frame_refs[ref - 1].sf);
3502 mi->ref_frame[0] = ref;
3503 mi->ref_frame[1] = NONE;
3504 mi->sb_type = bsize;
3505 vp9_set_mv_search_range(&x->mv_limits, &ref_mv);
3506 vp9_full_pixel_search(cpi, x, bsize, &ref_mv_full, step_param, search_method,
3507 sadpb, cond_cost_list(cpi, cost_list), &ref_mv,
3508 &best_mv, 0, 0);
3509 best_mv.row *= 8;
3510 best_mv.col *= 8;
3511 x->mv_limits = tmp_mv_limits;
3512 mi->mv[0].as_mv = best_mv;
3513
3514 set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]);
3515 xd->plane[0].dst.buf = pred_buf;
3516 xd->plane[0].dst.stride = 64;
3517 vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
3518 }
3519
3520 // Use a neural net model to prune partition-none and partition-split search.
3521 // Features used: QP; spatial block size contexts; variance of prediction
3522 // residue after simple_motion_search.
3523 #define FEATURES 12
ml_predict_var_rd_paritioning(const VP9_COMP * const cpi,MACROBLOCK * const x,PC_TREE * const pc_tree,BLOCK_SIZE bsize,int mi_row,int mi_col,int * none,int * split)3524 static void ml_predict_var_rd_paritioning(const VP9_COMP *const cpi,
3525 MACROBLOCK *const x,
3526 PC_TREE *const pc_tree,
3527 BLOCK_SIZE bsize, int mi_row,
3528 int mi_col, int *none, int *split) {
3529 const VP9_COMMON *const cm = &cpi->common;
3530 const NN_CONFIG *nn_config = NULL;
3531 #if CONFIG_VP9_HIGHBITDEPTH
3532 MACROBLOCKD *xd = &x->e_mbd;
3533 DECLARE_ALIGNED(16, uint8_t, pred_buffer[64 * 64 * 2]);
3534 uint8_t *const pred_buf = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
3535 ? (CONVERT_TO_BYTEPTR(pred_buffer))
3536 : pred_buffer;
3537 #else
3538 DECLARE_ALIGNED(16, uint8_t, pred_buffer[64 * 64]);
3539 uint8_t *const pred_buf = pred_buffer;
3540 #endif // CONFIG_VP9_HIGHBITDEPTH
3541 const int speed = cpi->oxcf.speed;
3542 float thresh = 0.0f;
3543
3544 switch (bsize) {
3545 case BLOCK_64X64:
3546 nn_config = &vp9_part_split_nnconfig_64;
3547 thresh = speed > 0 ? 2.8f : 3.0f;
3548 break;
3549 case BLOCK_32X32:
3550 nn_config = &vp9_part_split_nnconfig_32;
3551 thresh = speed > 0 ? 3.5f : 3.0f;
3552 break;
3553 case BLOCK_16X16:
3554 nn_config = &vp9_part_split_nnconfig_16;
3555 thresh = speed > 0 ? 3.8f : 4.0f;
3556 break;
3557 case BLOCK_8X8:
3558 nn_config = &vp9_part_split_nnconfig_8;
3559 if (cm->width >= 720 && cm->height >= 720)
3560 thresh = speed > 0 ? 2.5f : 2.0f;
3561 else
3562 thresh = speed > 0 ? 3.8f : 2.0f;
3563 break;
3564 default: assert(0 && "Unexpected block size."); return;
3565 }
3566
3567 if (!nn_config) return;
3568
3569 // Do a simple single motion search to find a prediction for current block.
3570 // The variance of the residue will be used as input features.
3571 {
3572 MV ref_mv;
3573 const MV_REFERENCE_FRAME ref =
3574 cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME : LAST_FRAME;
3575 // If bsize is 64x64, use zero MV as reference; otherwise, use MV result
3576 // of previous(larger) block as reference.
3577 if (bsize == BLOCK_64X64)
3578 ref_mv.row = ref_mv.col = 0;
3579 else
3580 ref_mv = pc_tree->mv;
3581 vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
3582 simple_motion_search(cpi, x, bsize, mi_row, mi_col, ref_mv, ref, pred_buf);
3583 pc_tree->mv = x->e_mbd.mi[0]->mv[0].as_mv;
3584 }
3585
3586 vpx_clear_system_state();
3587
3588 {
3589 float features[FEATURES] = { 0.0f };
3590 #if CONFIG_VP9_HIGHBITDEPTH
3591 const int dc_q =
3592 vp9_dc_quant(cm->base_qindex, 0, cm->bit_depth) >> (xd->bd - 8);
3593 #else
3594 const int dc_q = vp9_dc_quant(cm->base_qindex, 0, cm->bit_depth);
3595 #endif // CONFIG_VP9_HIGHBITDEPTH
3596 int feature_idx = 0;
3597 float score;
3598
3599 // Generate model input features.
3600 features[feature_idx++] = logf((float)dc_q + 1.0f);
3601
3602 // Get the variance of the residue as input features.
3603 {
3604 const int bs = 4 * num_4x4_blocks_wide_lookup[bsize];
3605 const BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_SPLIT);
3606 const uint8_t *pred = pred_buf;
3607 const uint8_t *src = x->plane[0].src.buf;
3608 const int src_stride = x->plane[0].src.stride;
3609 const int pred_stride = 64;
3610 unsigned int sse;
3611 // Variance of whole block.
3612 const unsigned int var =
3613 cpi->fn_ptr[bsize].vf(src, src_stride, pred, pred_stride, &sse);
3614 const float factor = (var == 0) ? 1.0f : (1.0f / (float)var);
3615 const MACROBLOCKD *const xd = &x->e_mbd;
3616 const int has_above = !!xd->above_mi;
3617 const int has_left = !!xd->left_mi;
3618 const BLOCK_SIZE above_bsize = has_above ? xd->above_mi->sb_type : bsize;
3619 const BLOCK_SIZE left_bsize = has_left ? xd->left_mi->sb_type : bsize;
3620 int i;
3621
3622 features[feature_idx++] = (float)has_above;
3623 features[feature_idx++] = (float)b_width_log2_lookup[above_bsize];
3624 features[feature_idx++] = (float)b_height_log2_lookup[above_bsize];
3625 features[feature_idx++] = (float)has_left;
3626 features[feature_idx++] = (float)b_width_log2_lookup[left_bsize];
3627 features[feature_idx++] = (float)b_height_log2_lookup[left_bsize];
3628 features[feature_idx++] = logf((float)var + 1.0f);
3629 for (i = 0; i < 4; ++i) {
3630 const int x_idx = (i & 1) * bs / 2;
3631 const int y_idx = (i >> 1) * bs / 2;
3632 const int src_offset = y_idx * src_stride + x_idx;
3633 const int pred_offset = y_idx * pred_stride + x_idx;
3634 // Variance of quarter block.
3635 const unsigned int sub_var =
3636 cpi->fn_ptr[subsize].vf(src + src_offset, src_stride,
3637 pred + pred_offset, pred_stride, &sse);
3638 const float var_ratio = (var == 0) ? 1.0f : factor * (float)sub_var;
3639 features[feature_idx++] = var_ratio;
3640 }
3641 }
3642 assert(feature_idx == FEATURES);
3643
3644 // Feed the features into the model to get the confidence score.
3645 nn_predict(features, nn_config, &score);
3646
3647 // Higher score means that the model has higher confidence that the split
3648 // partition is better than the non-split partition. So if the score is
3649 // high enough, we skip the none-split partition search; if the score is
3650 // low enough, we skip the split partition search.
3651 if (score > thresh) *none = 0;
3652 if (score < -thresh) *split = 0;
3653 }
3654 }
3655 #undef FEATURES
3656 #endif // !CONFIG_REALTIME_ONLY
3657
log_wiener_var(int64_t wiener_variance)3658 static double log_wiener_var(int64_t wiener_variance) {
3659 return log(1.0 + wiener_variance) / log(2.0);
3660 }
3661
build_kmeans_segmentation(VP9_COMP * cpi)3662 static void build_kmeans_segmentation(VP9_COMP *cpi) {
3663 VP9_COMMON *cm = &cpi->common;
3664 BLOCK_SIZE bsize = BLOCK_64X64;
3665 KMEANS_DATA *kmeans_data;
3666
3667 vp9_disable_segmentation(&cm->seg);
3668 if (cm->show_frame) {
3669 int mi_row, mi_col;
3670 cpi->kmeans_data_size = 0;
3671 cpi->kmeans_ctr_num = 8;
3672
3673 for (mi_row = 0; mi_row < cm->mi_rows; mi_row += MI_BLOCK_SIZE) {
3674 for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE) {
3675 int mb_row_start = mi_row >> 1;
3676 int mb_col_start = mi_col >> 1;
3677 int mb_row_end = VPXMIN(
3678 (mi_row + num_8x8_blocks_high_lookup[bsize]) >> 1, cm->mb_rows);
3679 int mb_col_end = VPXMIN(
3680 (mi_col + num_8x8_blocks_wide_lookup[bsize]) >> 1, cm->mb_cols);
3681 int row, col;
3682 int64_t wiener_variance = 0;
3683
3684 for (row = mb_row_start; row < mb_row_end; ++row)
3685 for (col = mb_col_start; col < mb_col_end; ++col)
3686 wiener_variance += cpi->mb_wiener_variance[row * cm->mb_cols + col];
3687
3688 wiener_variance /=
3689 (mb_row_end - mb_row_start) * (mb_col_end - mb_col_start);
3690
3691 #if CONFIG_MULTITHREAD
3692 pthread_mutex_lock(&cpi->kmeans_mutex);
3693 #endif // CONFIG_MULTITHREAD
3694
3695 kmeans_data = &cpi->kmeans_data_arr[cpi->kmeans_data_size++];
3696 kmeans_data->value = log_wiener_var(wiener_variance);
3697 kmeans_data->pos = mi_row * cpi->kmeans_data_stride + mi_col;
3698 #if CONFIG_MULTITHREAD
3699 pthread_mutex_unlock(&cpi->kmeans_mutex);
3700 #endif // CONFIG_MULTITHREAD
3701 }
3702 }
3703
3704 vp9_kmeans(cpi->kmeans_ctr_ls, cpi->kmeans_boundary_ls,
3705 cpi->kmeans_count_ls, cpi->kmeans_ctr_num, cpi->kmeans_data_arr,
3706 cpi->kmeans_data_size);
3707
3708 vp9_perceptual_aq_mode_setup(cpi, &cm->seg);
3709 }
3710 }
3711
3712 #if !CONFIG_REALTIME_ONLY
wiener_var_segment(VP9_COMP * cpi,BLOCK_SIZE bsize,int mi_row,int mi_col)3713 static int wiener_var_segment(VP9_COMP *cpi, BLOCK_SIZE bsize, int mi_row,
3714 int mi_col) {
3715 VP9_COMMON *cm = &cpi->common;
3716 int mb_row_start = mi_row >> 1;
3717 int mb_col_start = mi_col >> 1;
3718 int mb_row_end =
3719 VPXMIN((mi_row + num_8x8_blocks_high_lookup[bsize]) >> 1, cm->mb_rows);
3720 int mb_col_end =
3721 VPXMIN((mi_col + num_8x8_blocks_wide_lookup[bsize]) >> 1, cm->mb_cols);
3722 int row, col, idx;
3723 int64_t wiener_variance = 0;
3724 int segment_id;
3725 int8_t seg_hist[MAX_SEGMENTS] = { 0 };
3726 int8_t max_count = 0, max_index = -1;
3727
3728 vpx_clear_system_state();
3729
3730 assert(cpi->norm_wiener_variance > 0);
3731
3732 for (row = mb_row_start; row < mb_row_end; ++row) {
3733 for (col = mb_col_start; col < mb_col_end; ++col) {
3734 wiener_variance = cpi->mb_wiener_variance[row * cm->mb_cols + col];
3735 segment_id =
3736 vp9_get_group_idx(log_wiener_var(wiener_variance),
3737 cpi->kmeans_boundary_ls, cpi->kmeans_ctr_num);
3738 ++seg_hist[segment_id];
3739 }
3740 }
3741
3742 for (idx = 0; idx < cpi->kmeans_ctr_num; ++idx) {
3743 if (seg_hist[idx] > max_count) {
3744 max_count = seg_hist[idx];
3745 max_index = idx;
3746 }
3747 }
3748
3749 assert(max_index >= 0);
3750 segment_id = max_index;
3751
3752 return segment_id;
3753 }
3754
get_rdmult_delta(VP9_COMP * cpi,BLOCK_SIZE bsize,int mi_row,int mi_col,int orig_rdmult)3755 static int get_rdmult_delta(VP9_COMP *cpi, BLOCK_SIZE bsize, int mi_row,
3756 int mi_col, int orig_rdmult) {
3757 const int gf_group_index = cpi->twopass.gf_group.index;
3758 TplDepFrame *tpl_frame = &cpi->tpl_stats[gf_group_index];
3759 TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
3760 int tpl_stride = tpl_frame->stride;
3761 int64_t intra_cost = 0;
3762 int64_t mc_dep_cost = 0;
3763 int mi_wide = num_8x8_blocks_wide_lookup[bsize];
3764 int mi_high = num_8x8_blocks_high_lookup[bsize];
3765 int row, col;
3766
3767 int dr = 0;
3768 int count = 0;
3769 double r0, rk, beta;
3770
3771 if (tpl_frame->is_valid == 0) return orig_rdmult;
3772
3773 if (cpi->twopass.gf_group.layer_depth[gf_group_index] > 1) return orig_rdmult;
3774
3775 if (gf_group_index >= MAX_ARF_GOP_SIZE) return orig_rdmult;
3776
3777 for (row = mi_row; row < mi_row + mi_high; ++row) {
3778 for (col = mi_col; col < mi_col + mi_wide; ++col) {
3779 TplDepStats *this_stats = &tpl_stats[row * tpl_stride + col];
3780
3781 if (row >= cpi->common.mi_rows || col >= cpi->common.mi_cols) continue;
3782
3783 intra_cost += this_stats->intra_cost;
3784 mc_dep_cost += this_stats->mc_dep_cost;
3785
3786 ++count;
3787 }
3788 }
3789
3790 vpx_clear_system_state();
3791
3792 r0 = cpi->rd.r0;
3793 rk = (double)intra_cost / mc_dep_cost;
3794 beta = r0 / rk;
3795 dr = vp9_get_adaptive_rdmult(cpi, beta);
3796
3797 dr = VPXMIN(dr, orig_rdmult * 3 / 2);
3798 dr = VPXMAX(dr, orig_rdmult * 1 / 2);
3799
3800 dr = VPXMAX(1, dr);
3801
3802 return dr;
3803 }
3804 #endif // !CONFIG_REALTIME_ONLY
3805
3806 #if !CONFIG_REALTIME_ONLY
3807 // TODO(jingning,jimbankoski,rbultje): properly skip partition types that are
3808 // unlikely to be selected depending on previous rate-distortion optimization
3809 // results, for encoding speed-up.
rd_pick_partition(VP9_COMP * cpi,ThreadData * td,TileDataEnc * tile_data,TOKENEXTRA ** tp,int mi_row,int mi_col,BLOCK_SIZE bsize,RD_COST * rd_cost,RD_COST best_rdc,PC_TREE * pc_tree)3810 static int rd_pick_partition(VP9_COMP *cpi, ThreadData *td,
3811 TileDataEnc *tile_data, TOKENEXTRA **tp,
3812 int mi_row, int mi_col, BLOCK_SIZE bsize,
3813 RD_COST *rd_cost, RD_COST best_rdc,
3814 PC_TREE *pc_tree) {
3815 VP9_COMMON *const cm = &cpi->common;
3816 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
3817 TileInfo *const tile_info = &tile_data->tile_info;
3818 MACROBLOCK *const x = &td->mb;
3819 MACROBLOCKD *const xd = &x->e_mbd;
3820 const int mi_step = num_8x8_blocks_wide_lookup[bsize] / 2;
3821 ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
3822 PARTITION_CONTEXT sl[8], sa[8];
3823 TOKENEXTRA *tp_orig = *tp;
3824 PICK_MODE_CONTEXT *const ctx = &pc_tree->none;
3825 int i;
3826 const int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
3827 BLOCK_SIZE subsize;
3828 RD_COST this_rdc, sum_rdc;
3829 int do_split = bsize >= BLOCK_8X8;
3830 int do_rect = 1;
3831 INTERP_FILTER pred_interp_filter;
3832
3833 // Override skipping rectangular partition operations for edge blocks
3834 const int force_horz_split = (mi_row + mi_step >= cm->mi_rows);
3835 const int force_vert_split = (mi_col + mi_step >= cm->mi_cols);
3836 const int xss = x->e_mbd.plane[1].subsampling_x;
3837 const int yss = x->e_mbd.plane[1].subsampling_y;
3838
3839 BLOCK_SIZE min_size = x->min_partition_size;
3840 BLOCK_SIZE max_size = x->max_partition_size;
3841
3842 #if CONFIG_FP_MB_STATS
3843 unsigned int src_diff_var = UINT_MAX;
3844 int none_complexity = 0;
3845 #endif
3846
3847 int partition_none_allowed = !force_horz_split && !force_vert_split;
3848 int partition_horz_allowed =
3849 !force_vert_split && yss <= xss && bsize >= BLOCK_8X8;
3850 int partition_vert_allowed =
3851 !force_horz_split && xss <= yss && bsize >= BLOCK_8X8;
3852
3853 int64_t dist_breakout_thr = cpi->sf.partition_search_breakout_thr.dist;
3854 int rate_breakout_thr = cpi->sf.partition_search_breakout_thr.rate;
3855 int must_split = 0;
3856 int should_encode_sb = 0;
3857
3858 // Ref frames picked in the [i_th] quarter subblock during square partition
3859 // RD search. It may be used to prune ref frame selection of rect partitions.
3860 uint8_t ref_frames_used[4] = { 0, 0, 0, 0 };
3861
3862 int partition_mul = x->cb_rdmult;
3863
3864 (void)*tp_orig;
3865
3866 assert(num_8x8_blocks_wide_lookup[bsize] ==
3867 num_8x8_blocks_high_lookup[bsize]);
3868
3869 dist_breakout_thr >>=
3870 8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]);
3871
3872 rate_breakout_thr *= num_pels_log2_lookup[bsize];
3873
3874 vp9_rd_cost_init(&this_rdc);
3875 vp9_rd_cost_init(&sum_rdc);
3876
3877 set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
3878
3879 if (oxcf->tuning == VP8_TUNE_SSIM) {
3880 set_ssim_rdmult(cpi, x, bsize, mi_row, mi_col, &partition_mul);
3881 }
3882 vp9_rd_cost_update(partition_mul, x->rddiv, &best_rdc);
3883
3884 if (bsize == BLOCK_16X16 && cpi->oxcf.aq_mode != NO_AQ &&
3885 cpi->oxcf.aq_mode != LOOKAHEAD_AQ)
3886 x->mb_energy = vp9_block_energy(cpi, x, bsize);
3887
3888 if (cpi->sf.cb_partition_search && bsize == BLOCK_16X16) {
3889 int cb_partition_search_ctrl =
3890 ((pc_tree->index == 0 || pc_tree->index == 3) +
3891 get_chessboard_index(cm->current_video_frame)) &
3892 0x1;
3893
3894 if (cb_partition_search_ctrl && bsize > min_size && bsize < max_size)
3895 set_partition_range(cm, xd, mi_row, mi_col, bsize, &min_size, &max_size);
3896 }
3897
3898 // Get sub block energy range
3899 if (bsize >= BLOCK_16X16) {
3900 int min_energy, max_energy;
3901 vp9_get_sub_block_energy(cpi, x, mi_row, mi_col, bsize, &min_energy,
3902 &max_energy);
3903 must_split = (min_energy < -3) && (max_energy - min_energy > 2);
3904 }
3905
3906 // Determine partition types in search according to the speed features.
3907 // The threshold set here has to be of square block size.
3908 if (cpi->sf.auto_min_max_partition_size) {
3909 partition_none_allowed &= (bsize <= max_size);
3910 partition_horz_allowed &=
3911 ((bsize <= max_size && bsize > min_size) || force_horz_split);
3912 partition_vert_allowed &=
3913 ((bsize <= max_size && bsize > min_size) || force_vert_split);
3914 do_split &= bsize > min_size;
3915 }
3916
3917 if (cpi->sf.use_square_partition_only &&
3918 (bsize > cpi->sf.use_square_only_thresh_high ||
3919 bsize < cpi->sf.use_square_only_thresh_low)) {
3920 if (cpi->use_svc) {
3921 if (!vp9_active_h_edge(cpi, mi_row, mi_step) || x->e_mbd.lossless)
3922 partition_horz_allowed &= force_horz_split;
3923 if (!vp9_active_v_edge(cpi, mi_row, mi_step) || x->e_mbd.lossless)
3924 partition_vert_allowed &= force_vert_split;
3925 } else {
3926 partition_horz_allowed &= force_horz_split;
3927 partition_vert_allowed &= force_vert_split;
3928 }
3929 }
3930
3931 save_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
3932
3933 #if CONFIG_FP_MB_STATS
3934 if (cpi->use_fp_mb_stats) {
3935 set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
3936 src_diff_var = get_sby_perpixel_diff_variance(cpi, &x->plane[0].src, mi_row,
3937 mi_col, bsize);
3938 }
3939 #endif
3940
3941 #if CONFIG_FP_MB_STATS
3942 // Decide whether we shall split directly and skip searching NONE by using
3943 // the first pass block statistics
3944 if (cpi->use_fp_mb_stats && bsize >= BLOCK_32X32 && do_split &&
3945 partition_none_allowed && src_diff_var > 4 &&
3946 cm->base_qindex < qindex_split_threshold_lookup[bsize]) {
3947 int mb_row = mi_row >> 1;
3948 int mb_col = mi_col >> 1;
3949 int mb_row_end =
3950 VPXMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
3951 int mb_col_end =
3952 VPXMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
3953 int r, c;
3954
3955 // compute a complexity measure, basically measure inconsistency of motion
3956 // vectors obtained from the first pass in the current block
3957 for (r = mb_row; r < mb_row_end; r++) {
3958 for (c = mb_col; c < mb_col_end; c++) {
3959 const int mb_index = r * cm->mb_cols + c;
3960
3961 MOTION_DIRECTION this_mv;
3962 MOTION_DIRECTION right_mv;
3963 MOTION_DIRECTION bottom_mv;
3964
3965 this_mv =
3966 get_motion_direction_fp(cpi->twopass.this_frame_mb_stats[mb_index]);
3967
3968 // to its right
3969 if (c != mb_col_end - 1) {
3970 right_mv = get_motion_direction_fp(
3971 cpi->twopass.this_frame_mb_stats[mb_index + 1]);
3972 none_complexity += get_motion_inconsistency(this_mv, right_mv);
3973 }
3974
3975 // to its bottom
3976 if (r != mb_row_end - 1) {
3977 bottom_mv = get_motion_direction_fp(
3978 cpi->twopass.this_frame_mb_stats[mb_index + cm->mb_cols]);
3979 none_complexity += get_motion_inconsistency(this_mv, bottom_mv);
3980 }
3981
3982 // do not count its left and top neighbors to avoid double counting
3983 }
3984 }
3985
3986 if (none_complexity > complexity_16x16_blocks_threshold[bsize]) {
3987 partition_none_allowed = 0;
3988 }
3989 }
3990 #endif
3991
3992 pc_tree->partitioning = PARTITION_NONE;
3993
3994 if (cpi->sf.rd_ml_partition.var_pruning && !frame_is_intra_only(cm)) {
3995 const int do_rd_ml_partition_var_pruning =
3996 partition_none_allowed && do_split &&
3997 mi_row + num_8x8_blocks_high_lookup[bsize] <= cm->mi_rows &&
3998 mi_col + num_8x8_blocks_wide_lookup[bsize] <= cm->mi_cols;
3999 if (do_rd_ml_partition_var_pruning) {
4000 ml_predict_var_rd_paritioning(cpi, x, pc_tree, bsize, mi_row, mi_col,
4001 &partition_none_allowed, &do_split);
4002 } else {
4003 vp9_zero(pc_tree->mv);
4004 }
4005 if (bsize > BLOCK_8X8) { // Store MV result as reference for subblocks.
4006 for (i = 0; i < 4; ++i) pc_tree->split[i]->mv = pc_tree->mv;
4007 }
4008 }
4009
4010 // PARTITION_NONE
4011 if (partition_none_allowed) {
4012 rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, bsize, ctx,
4013 best_rdc.rate, best_rdc.dist);
4014 ctx->rdcost = this_rdc.rdcost;
4015 if (this_rdc.rate != INT_MAX) {
4016 if (cpi->sf.prune_ref_frame_for_rect_partitions) {
4017 const int ref1 = ctx->mic.ref_frame[0];
4018 const int ref2 = ctx->mic.ref_frame[1];
4019 for (i = 0; i < 4; ++i) {
4020 ref_frames_used[i] |= (1 << ref1);
4021 if (ref2 > 0) ref_frames_used[i] |= (1 << ref2);
4022 }
4023 }
4024 if (bsize >= BLOCK_8X8) {
4025 this_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
4026 vp9_rd_cost_update(partition_mul, x->rddiv, &this_rdc);
4027 }
4028
4029 if (this_rdc.rdcost < best_rdc.rdcost) {
4030 MODE_INFO *mi = xd->mi[0];
4031
4032 best_rdc = this_rdc;
4033 should_encode_sb = 1;
4034 if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE;
4035
4036 if (cpi->sf.rd_ml_partition.search_early_termination) {
4037 // Currently, the machine-learning based partition search early
4038 // termination is only used while bsize is 16x16, 32x32 or 64x64,
4039 // VPXMIN(cm->width, cm->height) >= 480, and speed = 0.
4040 if (!x->e_mbd.lossless &&
4041 !segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP) &&
4042 ctx->mic.mode >= INTRA_MODES && bsize >= BLOCK_16X16) {
4043 if (ml_pruning_partition(cm, xd, ctx, mi_row, mi_col, bsize)) {
4044 do_split = 0;
4045 do_rect = 0;
4046 }
4047 }
4048 }
4049
4050 if ((do_split || do_rect) && !x->e_mbd.lossless && ctx->skippable) {
4051 const int use_ml_based_breakout =
4052 cpi->sf.rd_ml_partition.search_breakout && cm->base_qindex >= 100;
4053 if (use_ml_based_breakout) {
4054 if (ml_predict_breakout(cpi, bsize, x, &this_rdc)) {
4055 do_split = 0;
4056 do_rect = 0;
4057 }
4058 } else {
4059 if (!cpi->sf.rd_ml_partition.search_early_termination) {
4060 if ((best_rdc.dist < (dist_breakout_thr >> 2)) ||
4061 (best_rdc.dist < dist_breakout_thr &&
4062 best_rdc.rate < rate_breakout_thr)) {
4063 do_split = 0;
4064 do_rect = 0;
4065 }
4066 }
4067 }
4068 }
4069
4070 #if CONFIG_FP_MB_STATS
4071 // Check if every 16x16 first pass block statistics has zero
4072 // motion and the corresponding first pass residue is small enough.
4073 // If that is the case, check the difference variance between the
4074 // current frame and the last frame. If the variance is small enough,
4075 // stop further splitting in RD optimization
4076 if (cpi->use_fp_mb_stats && do_split != 0 &&
4077 cm->base_qindex > qindex_skip_threshold_lookup[bsize]) {
4078 int mb_row = mi_row >> 1;
4079 int mb_col = mi_col >> 1;
4080 int mb_row_end =
4081 VPXMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
4082 int mb_col_end =
4083 VPXMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
4084 int r, c;
4085
4086 int skip = 1;
4087 for (r = mb_row; r < mb_row_end; r++) {
4088 for (c = mb_col; c < mb_col_end; c++) {
4089 const int mb_index = r * cm->mb_cols + c;
4090 if (!(cpi->twopass.this_frame_mb_stats[mb_index] &
4091 FPMB_MOTION_ZERO_MASK) ||
4092 !(cpi->twopass.this_frame_mb_stats[mb_index] &
4093 FPMB_ERROR_SMALL_MASK)) {
4094 skip = 0;
4095 break;
4096 }
4097 }
4098 if (skip == 0) {
4099 break;
4100 }
4101 }
4102
4103 if (skip) {
4104 if (src_diff_var == UINT_MAX) {
4105 set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
4106 src_diff_var = get_sby_perpixel_diff_variance(
4107 cpi, &x->plane[0].src, mi_row, mi_col, bsize);
4108 }
4109 if (src_diff_var < 8) {
4110 do_split = 0;
4111 do_rect = 0;
4112 }
4113 }
4114 }
4115 #endif
4116 }
4117 }
4118 restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
4119 } else {
4120 vp9_zero(ctx->pred_mv);
4121 ctx->mic.interp_filter = EIGHTTAP;
4122 }
4123
4124 // store estimated motion vector
4125 store_pred_mv(x, ctx);
4126
4127 // If the interp_filter is marked as SWITCHABLE_FILTERS, it was for an
4128 // intra block and used for context purposes.
4129 if (ctx->mic.interp_filter == SWITCHABLE_FILTERS) {
4130 pred_interp_filter = EIGHTTAP;
4131 } else {
4132 pred_interp_filter = ctx->mic.interp_filter;
4133 }
4134
4135 // PARTITION_SPLIT
4136 // TODO(jingning): use the motion vectors given by the above search as
4137 // the starting point of motion search in the following partition type check.
4138 pc_tree->split[0]->none.rdcost = 0;
4139 pc_tree->split[1]->none.rdcost = 0;
4140 pc_tree->split[2]->none.rdcost = 0;
4141 pc_tree->split[3]->none.rdcost = 0;
4142 if (do_split || must_split) {
4143 subsize = get_subsize(bsize, PARTITION_SPLIT);
4144 load_pred_mv(x, ctx);
4145 if (bsize == BLOCK_8X8) {
4146 i = 4;
4147 if (cpi->sf.adaptive_pred_interp_filter && partition_none_allowed)
4148 pc_tree->leaf_split[0]->pred_interp_filter = pred_interp_filter;
4149 rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
4150 pc_tree->leaf_split[0], best_rdc.rate, best_rdc.dist);
4151 if (sum_rdc.rate == INT_MAX) {
4152 sum_rdc.rdcost = INT64_MAX;
4153 } else {
4154 if (cpi->sf.prune_ref_frame_for_rect_partitions) {
4155 const int ref1 = pc_tree->leaf_split[0]->mic.ref_frame[0];
4156 const int ref2 = pc_tree->leaf_split[0]->mic.ref_frame[1];
4157 for (i = 0; i < 4; ++i) {
4158 ref_frames_used[i] |= (1 << ref1);
4159 if (ref2 > 0) ref_frames_used[i] |= (1 << ref2);
4160 }
4161 }
4162 }
4163 } else {
4164 for (i = 0; (i < 4) && ((sum_rdc.rdcost < best_rdc.rdcost) || must_split);
4165 ++i) {
4166 const int x_idx = (i & 1) * mi_step;
4167 const int y_idx = (i >> 1) * mi_step;
4168 int found_best_rd = 0;
4169 RD_COST best_rdc_split;
4170 vp9_rd_cost_reset(&best_rdc_split);
4171
4172 if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX) {
4173 // A must split test here increases the number of sub
4174 // partitions but hurts metrics results quite a bit,
4175 // so this extra test is commented out pending
4176 // further tests on whether it adds much in terms of
4177 // visual quality.
4178 // (must_split) ? best_rdc.rate
4179 // : best_rdc.rate - sum_rdc.rate,
4180 // (must_split) ? best_rdc.dist
4181 // : best_rdc.dist - sum_rdc.dist,
4182 best_rdc_split.rate = best_rdc.rate - sum_rdc.rate;
4183 best_rdc_split.dist = best_rdc.dist - sum_rdc.dist;
4184 }
4185
4186 if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
4187 continue;
4188
4189 pc_tree->split[i]->index = i;
4190 if (cpi->sf.prune_ref_frame_for_rect_partitions)
4191 pc_tree->split[i]->none.rate = INT_MAX;
4192 found_best_rd = rd_pick_partition(
4193 cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx, subsize,
4194 &this_rdc, best_rdc_split, pc_tree->split[i]);
4195
4196 if (found_best_rd == 0) {
4197 sum_rdc.rdcost = INT64_MAX;
4198 break;
4199 } else {
4200 if (cpi->sf.prune_ref_frame_for_rect_partitions &&
4201 pc_tree->split[i]->none.rate != INT_MAX) {
4202 const int ref1 = pc_tree->split[i]->none.mic.ref_frame[0];
4203 const int ref2 = pc_tree->split[i]->none.mic.ref_frame[1];
4204 ref_frames_used[i] |= (1 << ref1);
4205 if (ref2 > 0) ref_frames_used[i] |= (1 << ref2);
4206 }
4207 sum_rdc.rate += this_rdc.rate;
4208 sum_rdc.dist += this_rdc.dist;
4209 vp9_rd_cost_update(partition_mul, x->rddiv, &sum_rdc);
4210 }
4211 }
4212 }
4213
4214 if (((sum_rdc.rdcost < best_rdc.rdcost) || must_split) && i == 4) {
4215 sum_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT];
4216 vp9_rd_cost_update(partition_mul, x->rddiv, &sum_rdc);
4217
4218 if ((sum_rdc.rdcost < best_rdc.rdcost) ||
4219 (must_split && (sum_rdc.dist < best_rdc.dist))) {
4220 best_rdc = sum_rdc;
4221 should_encode_sb = 1;
4222 pc_tree->partitioning = PARTITION_SPLIT;
4223
4224 // Rate and distortion based partition search termination clause.
4225 if (!cpi->sf.rd_ml_partition.search_early_termination &&
4226 !x->e_mbd.lossless &&
4227 ((best_rdc.dist < (dist_breakout_thr >> 2)) ||
4228 (best_rdc.dist < dist_breakout_thr &&
4229 best_rdc.rate < rate_breakout_thr))) {
4230 do_rect = 0;
4231 }
4232 }
4233 } else {
4234 // skip rectangular partition test when larger block size
4235 // gives better rd cost
4236 if (cpi->sf.less_rectangular_check &&
4237 (bsize > cpi->sf.use_square_only_thresh_high ||
4238 best_rdc.dist < dist_breakout_thr))
4239 do_rect &= !partition_none_allowed;
4240 }
4241 restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
4242 }
4243
4244 pc_tree->horizontal[0].skip_ref_frame_mask = 0;
4245 pc_tree->horizontal[1].skip_ref_frame_mask = 0;
4246 pc_tree->vertical[0].skip_ref_frame_mask = 0;
4247 pc_tree->vertical[1].skip_ref_frame_mask = 0;
4248 if (cpi->sf.prune_ref_frame_for_rect_partitions) {
4249 uint8_t used_frames;
4250 used_frames = ref_frames_used[0] | ref_frames_used[1];
4251 if (used_frames) {
4252 pc_tree->horizontal[0].skip_ref_frame_mask = ~used_frames & 0xff;
4253 }
4254 used_frames = ref_frames_used[2] | ref_frames_used[3];
4255 if (used_frames) {
4256 pc_tree->horizontal[1].skip_ref_frame_mask = ~used_frames & 0xff;
4257 }
4258 used_frames = ref_frames_used[0] | ref_frames_used[2];
4259 if (used_frames) {
4260 pc_tree->vertical[0].skip_ref_frame_mask = ~used_frames & 0xff;
4261 }
4262 used_frames = ref_frames_used[1] | ref_frames_used[3];
4263 if (used_frames) {
4264 pc_tree->vertical[1].skip_ref_frame_mask = ~used_frames & 0xff;
4265 }
4266 }
4267
4268 {
4269 const int do_ml_rect_partition_pruning =
4270 !frame_is_intra_only(cm) && !force_horz_split && !force_vert_split &&
4271 (partition_horz_allowed || partition_vert_allowed) && bsize > BLOCK_8X8;
4272 if (do_ml_rect_partition_pruning) {
4273 ml_prune_rect_partition(cpi, x, bsize, pc_tree, &partition_horz_allowed,
4274 &partition_vert_allowed, best_rdc.rdcost);
4275 }
4276 }
4277
4278 // PARTITION_HORZ
4279 if (partition_horz_allowed &&
4280 (do_rect || vp9_active_h_edge(cpi, mi_row, mi_step))) {
4281 const int part_mode_rate = cpi->partition_cost[pl][PARTITION_HORZ];
4282 subsize = get_subsize(bsize, PARTITION_HORZ);
4283 load_pred_mv(x, ctx);
4284 if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
4285 partition_none_allowed)
4286 pc_tree->horizontal[0].pred_interp_filter = pred_interp_filter;
4287 rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
4288 &pc_tree->horizontal[0], best_rdc.rate - part_mode_rate,
4289 best_rdc.dist);
4290 if (sum_rdc.rdcost < INT64_MAX) {
4291 sum_rdc.rate += part_mode_rate;
4292 vp9_rd_cost_update(partition_mul, x->rddiv, &sum_rdc);
4293 }
4294
4295 if (sum_rdc.rdcost < best_rdc.rdcost && mi_row + mi_step < cm->mi_rows &&
4296 bsize > BLOCK_8X8) {
4297 PICK_MODE_CONTEXT *ctx = &pc_tree->horizontal[0];
4298 update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0);
4299 encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx);
4300 if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
4301 partition_none_allowed)
4302 pc_tree->horizontal[1].pred_interp_filter = pred_interp_filter;
4303 rd_pick_sb_modes(cpi, tile_data, x, mi_row + mi_step, mi_col, &this_rdc,
4304 subsize, &pc_tree->horizontal[1],
4305 best_rdc.rate - sum_rdc.rate,
4306 best_rdc.dist - sum_rdc.dist);
4307 if (this_rdc.rate == INT_MAX) {
4308 sum_rdc.rdcost = INT64_MAX;
4309 } else {
4310 sum_rdc.rate += this_rdc.rate;
4311 sum_rdc.dist += this_rdc.dist;
4312 vp9_rd_cost_update(partition_mul, x->rddiv, &sum_rdc);
4313 }
4314 }
4315
4316 if (sum_rdc.rdcost < best_rdc.rdcost) {
4317 best_rdc = sum_rdc;
4318 should_encode_sb = 1;
4319 pc_tree->partitioning = PARTITION_HORZ;
4320
4321 if (cpi->sf.less_rectangular_check &&
4322 bsize > cpi->sf.use_square_only_thresh_high)
4323 do_rect = 0;
4324 }
4325 restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
4326 }
4327
4328 // PARTITION_VERT
4329 if (partition_vert_allowed &&
4330 (do_rect || vp9_active_v_edge(cpi, mi_col, mi_step))) {
4331 const int part_mode_rate = cpi->partition_cost[pl][PARTITION_VERT];
4332 subsize = get_subsize(bsize, PARTITION_VERT);
4333 load_pred_mv(x, ctx);
4334 if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
4335 partition_none_allowed)
4336 pc_tree->vertical[0].pred_interp_filter = pred_interp_filter;
4337 rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
4338 &pc_tree->vertical[0], best_rdc.rate - part_mode_rate,
4339 best_rdc.dist);
4340 if (sum_rdc.rdcost < INT64_MAX) {
4341 sum_rdc.rate += part_mode_rate;
4342 vp9_rd_cost_update(partition_mul, x->rddiv, &sum_rdc);
4343 }
4344
4345 if (sum_rdc.rdcost < best_rdc.rdcost && mi_col + mi_step < cm->mi_cols &&
4346 bsize > BLOCK_8X8) {
4347 update_state(cpi, td, &pc_tree->vertical[0], mi_row, mi_col, subsize, 0);
4348 encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize,
4349 &pc_tree->vertical[0]);
4350 if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
4351 partition_none_allowed)
4352 pc_tree->vertical[1].pred_interp_filter = pred_interp_filter;
4353 rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + mi_step, &this_rdc,
4354 subsize, &pc_tree->vertical[1],
4355 best_rdc.rate - sum_rdc.rate,
4356 best_rdc.dist - sum_rdc.dist);
4357 if (this_rdc.rate == INT_MAX) {
4358 sum_rdc.rdcost = INT64_MAX;
4359 } else {
4360 sum_rdc.rate += this_rdc.rate;
4361 sum_rdc.dist += this_rdc.dist;
4362 vp9_rd_cost_update(partition_mul, x->rddiv, &sum_rdc);
4363 }
4364 }
4365
4366 if (sum_rdc.rdcost < best_rdc.rdcost) {
4367 best_rdc = sum_rdc;
4368 should_encode_sb = 1;
4369 pc_tree->partitioning = PARTITION_VERT;
4370 }
4371 restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
4372 }
4373
4374 *rd_cost = best_rdc;
4375
4376 if (should_encode_sb && pc_tree->index != 3) {
4377 int output_enabled = (bsize == BLOCK_64X64);
4378 encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, bsize,
4379 pc_tree);
4380 }
4381
4382 if (bsize == BLOCK_64X64) {
4383 assert(tp_orig < *tp);
4384 assert(best_rdc.rate < INT_MAX);
4385 assert(best_rdc.dist < INT64_MAX);
4386 } else {
4387 assert(tp_orig == *tp);
4388 }
4389
4390 return should_encode_sb;
4391 }
4392
encode_rd_sb_row(VP9_COMP * cpi,ThreadData * td,TileDataEnc * tile_data,int mi_row,TOKENEXTRA ** tp)4393 static void encode_rd_sb_row(VP9_COMP *cpi, ThreadData *td,
4394 TileDataEnc *tile_data, int mi_row,
4395 TOKENEXTRA **tp) {
4396 VP9_COMMON *const cm = &cpi->common;
4397 TileInfo *const tile_info = &tile_data->tile_info;
4398 MACROBLOCK *const x = &td->mb;
4399 MACROBLOCKD *const xd = &x->e_mbd;
4400 SPEED_FEATURES *const sf = &cpi->sf;
4401 const int mi_col_start = tile_info->mi_col_start;
4402 const int mi_col_end = tile_info->mi_col_end;
4403 int mi_col;
4404 const int sb_row = mi_row >> MI_BLOCK_SIZE_LOG2;
4405 const int num_sb_cols =
4406 get_num_cols(tile_data->tile_info, MI_BLOCK_SIZE_LOG2);
4407 int sb_col_in_tile;
4408
4409 // Initialize the left context for the new SB row
4410 memset(&xd->left_context, 0, sizeof(xd->left_context));
4411 memset(xd->left_seg_context, 0, sizeof(xd->left_seg_context));
4412
4413 // Code each SB in the row
4414 for (mi_col = mi_col_start, sb_col_in_tile = 0; mi_col < mi_col_end;
4415 mi_col += MI_BLOCK_SIZE, sb_col_in_tile++) {
4416 const struct segmentation *const seg = &cm->seg;
4417 int dummy_rate;
4418 int64_t dummy_dist;
4419 RD_COST dummy_rdc;
4420 int i;
4421 int seg_skip = 0;
4422 int orig_rdmult = cpi->rd.RDMULT;
4423
4424 const int idx_str = cm->mi_stride * mi_row + mi_col;
4425 MODE_INFO **mi = cm->mi_grid_visible + idx_str;
4426
4427 vp9_rd_cost_reset(&dummy_rdc);
4428 (*(cpi->row_mt_sync_read_ptr))(&tile_data->row_mt_sync, sb_row,
4429 sb_col_in_tile);
4430
4431 if (sf->adaptive_pred_interp_filter) {
4432 for (i = 0; i < 64; ++i) td->leaf_tree[i].pred_interp_filter = SWITCHABLE;
4433
4434 for (i = 0; i < 64; ++i) {
4435 td->pc_tree[i].vertical[0].pred_interp_filter = SWITCHABLE;
4436 td->pc_tree[i].vertical[1].pred_interp_filter = SWITCHABLE;
4437 td->pc_tree[i].horizontal[0].pred_interp_filter = SWITCHABLE;
4438 td->pc_tree[i].horizontal[1].pred_interp_filter = SWITCHABLE;
4439 }
4440 }
4441
4442 for (i = 0; i < MAX_REF_FRAMES; ++i) {
4443 x->pred_mv[i].row = INT16_MAX;
4444 x->pred_mv[i].col = INT16_MAX;
4445 }
4446 td->pc_root->index = 0;
4447
4448 if (seg->enabled) {
4449 const uint8_t *const map =
4450 seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
4451 int segment_id = get_segment_id(cm, map, BLOCK_64X64, mi_row, mi_col);
4452 seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP);
4453 }
4454
4455 x->source_variance = UINT_MAX;
4456
4457 x->cb_rdmult = orig_rdmult;
4458
4459 if (sf->partition_search_type == FIXED_PARTITION || seg_skip) {
4460 const BLOCK_SIZE bsize =
4461 seg_skip ? BLOCK_64X64 : sf->always_this_block_size;
4462 set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64);
4463 set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
4464 rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, BLOCK_64X64,
4465 &dummy_rate, &dummy_dist, 1, td->pc_root);
4466 } else if (cpi->partition_search_skippable_frame) {
4467 BLOCK_SIZE bsize;
4468 set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64);
4469 bsize = get_rd_var_based_fixed_partition(cpi, x, mi_row, mi_col);
4470 set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
4471 rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, BLOCK_64X64,
4472 &dummy_rate, &dummy_dist, 1, td->pc_root);
4473 } else if (sf->partition_search_type == VAR_BASED_PARTITION &&
4474 cm->frame_type != KEY_FRAME) {
4475 choose_partitioning(cpi, tile_info, x, mi_row, mi_col);
4476 rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, BLOCK_64X64,
4477 &dummy_rate, &dummy_dist, 1, td->pc_root);
4478 } else {
4479 if (cpi->twopass.gf_group.index > 0 && cpi->sf.enable_tpl_model) {
4480 int dr =
4481 get_rdmult_delta(cpi, BLOCK_64X64, mi_row, mi_col, orig_rdmult);
4482 x->cb_rdmult = dr;
4483 }
4484
4485 if (cpi->oxcf.aq_mode == PERCEPTUAL_AQ && cm->show_frame) {
4486 x->segment_id = wiener_var_segment(cpi, BLOCK_64X64, mi_row, mi_col);
4487 x->cb_rdmult = vp9_compute_rd_mult(
4488 cpi, vp9_get_qindex(&cm->seg, x->segment_id, cm->base_qindex));
4489 }
4490
4491 // If required set upper and lower partition size limits
4492 if (sf->auto_min_max_partition_size) {
4493 set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64);
4494 rd_auto_partition_range(cpi, tile_info, xd, mi_row, mi_col,
4495 &x->min_partition_size, &x->max_partition_size);
4496 }
4497 td->pc_root->none.rdcost = 0;
4498 rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, BLOCK_64X64,
4499 &dummy_rdc, dummy_rdc, td->pc_root);
4500 }
4501 (*(cpi->row_mt_sync_write_ptr))(&tile_data->row_mt_sync, sb_row,
4502 sb_col_in_tile, num_sb_cols);
4503 }
4504 }
4505 #endif // !CONFIG_REALTIME_ONLY
4506
init_encode_frame_mb_context(VP9_COMP * cpi)4507 static void init_encode_frame_mb_context(VP9_COMP *cpi) {
4508 MACROBLOCK *const x = &cpi->td.mb;
4509 VP9_COMMON *const cm = &cpi->common;
4510 MACROBLOCKD *const xd = &x->e_mbd;
4511 const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols);
4512
4513 // Copy data over into macro block data structures.
4514 vp9_setup_src_planes(x, cpi->Source, 0, 0);
4515
4516 vp9_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
4517
4518 // Note: this memset assumes above_context[0], [1] and [2]
4519 // are allocated as part of the same buffer.
4520 memset(xd->above_context[0], 0,
4521 sizeof(*xd->above_context[0]) * 2 * aligned_mi_cols * MAX_MB_PLANE);
4522 memset(xd->above_seg_context, 0,
4523 sizeof(*xd->above_seg_context) * aligned_mi_cols);
4524 }
4525
check_dual_ref_flags(VP9_COMP * cpi)4526 static int check_dual_ref_flags(VP9_COMP *cpi) {
4527 const int ref_flags = cpi->ref_frame_flags;
4528
4529 if (segfeature_active(&cpi->common.seg, 1, SEG_LVL_REF_FRAME)) {
4530 return 0;
4531 } else {
4532 return (!!(ref_flags & VP9_GOLD_FLAG) + !!(ref_flags & VP9_LAST_FLAG) +
4533 !!(ref_flags & VP9_ALT_FLAG)) >= 2;
4534 }
4535 }
4536
reset_skip_tx_size(VP9_COMMON * cm,TX_SIZE max_tx_size)4537 static void reset_skip_tx_size(VP9_COMMON *cm, TX_SIZE max_tx_size) {
4538 int mi_row, mi_col;
4539 const int mis = cm->mi_stride;
4540 MODE_INFO **mi_ptr = cm->mi_grid_visible;
4541
4542 for (mi_row = 0; mi_row < cm->mi_rows; ++mi_row, mi_ptr += mis) {
4543 for (mi_col = 0; mi_col < cm->mi_cols; ++mi_col) {
4544 if (mi_ptr[mi_col]->tx_size > max_tx_size)
4545 mi_ptr[mi_col]->tx_size = max_tx_size;
4546 }
4547 }
4548 }
4549
get_frame_type(const VP9_COMP * cpi)4550 static MV_REFERENCE_FRAME get_frame_type(const VP9_COMP *cpi) {
4551 if (frame_is_intra_only(&cpi->common))
4552 return INTRA_FRAME;
4553 else if (cpi->rc.is_src_frame_alt_ref && cpi->refresh_golden_frame)
4554 return ALTREF_FRAME;
4555 else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)
4556 return GOLDEN_FRAME;
4557 else
4558 return LAST_FRAME;
4559 }
4560
select_tx_mode(const VP9_COMP * cpi,MACROBLOCKD * const xd)4561 static TX_MODE select_tx_mode(const VP9_COMP *cpi, MACROBLOCKD *const xd) {
4562 if (xd->lossless) return ONLY_4X4;
4563 if (cpi->common.frame_type == KEY_FRAME && cpi->sf.use_nonrd_pick_mode)
4564 return ALLOW_16X16;
4565 if (cpi->sf.tx_size_search_method == USE_LARGESTALL)
4566 return ALLOW_32X32;
4567 else if (cpi->sf.tx_size_search_method == USE_FULL_RD ||
4568 cpi->sf.tx_size_search_method == USE_TX_8X8)
4569 return TX_MODE_SELECT;
4570 else
4571 return cpi->common.tx_mode;
4572 }
4573
hybrid_intra_mode_search(VP9_COMP * cpi,MACROBLOCK * const x,RD_COST * rd_cost,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx)4574 static void hybrid_intra_mode_search(VP9_COMP *cpi, MACROBLOCK *const x,
4575 RD_COST *rd_cost, BLOCK_SIZE bsize,
4576 PICK_MODE_CONTEXT *ctx) {
4577 if (!cpi->sf.nonrd_keyframe && bsize < BLOCK_16X16)
4578 vp9_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, INT64_MAX);
4579 else
4580 vp9_pick_intra_mode(cpi, x, rd_cost, bsize, ctx);
4581 }
4582
hybrid_search_svc_baseiskey(VP9_COMP * cpi,MACROBLOCK * const x,RD_COST * rd_cost,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx,TileDataEnc * tile_data,int mi_row,int mi_col)4583 static void hybrid_search_svc_baseiskey(VP9_COMP *cpi, MACROBLOCK *const x,
4584 RD_COST *rd_cost, BLOCK_SIZE bsize,
4585 PICK_MODE_CONTEXT *ctx,
4586 TileDataEnc *tile_data, int mi_row,
4587 int mi_col) {
4588 if (!cpi->sf.nonrd_keyframe && bsize <= BLOCK_8X8) {
4589 vp9_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, INT64_MAX);
4590 } else {
4591 if (cpi->svc.disable_inter_layer_pred == INTER_LAYER_PRED_OFF)
4592 vp9_pick_intra_mode(cpi, x, rd_cost, bsize, ctx);
4593 else if (bsize >= BLOCK_8X8)
4594 vp9_pick_inter_mode(cpi, x, tile_data, mi_row, mi_col, rd_cost, bsize,
4595 ctx);
4596 else
4597 vp9_pick_inter_mode_sub8x8(cpi, x, mi_row, mi_col, rd_cost, bsize, ctx);
4598 }
4599 }
4600
hybrid_search_scene_change(VP9_COMP * cpi,MACROBLOCK * const x,RD_COST * rd_cost,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx,TileDataEnc * tile_data,int mi_row,int mi_col)4601 static void hybrid_search_scene_change(VP9_COMP *cpi, MACROBLOCK *const x,
4602 RD_COST *rd_cost, BLOCK_SIZE bsize,
4603 PICK_MODE_CONTEXT *ctx,
4604 TileDataEnc *tile_data, int mi_row,
4605 int mi_col) {
4606 if (!cpi->sf.nonrd_keyframe && bsize <= BLOCK_8X8) {
4607 vp9_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, INT64_MAX);
4608 } else {
4609 vp9_pick_inter_mode(cpi, x, tile_data, mi_row, mi_col, rd_cost, bsize, ctx);
4610 }
4611 }
4612
nonrd_pick_sb_modes(VP9_COMP * cpi,TileDataEnc * tile_data,MACROBLOCK * const x,int mi_row,int mi_col,RD_COST * rd_cost,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx)4613 static void nonrd_pick_sb_modes(VP9_COMP *cpi, TileDataEnc *tile_data,
4614 MACROBLOCK *const x, int mi_row, int mi_col,
4615 RD_COST *rd_cost, BLOCK_SIZE bsize,
4616 PICK_MODE_CONTEXT *ctx) {
4617 VP9_COMMON *const cm = &cpi->common;
4618 TileInfo *const tile_info = &tile_data->tile_info;
4619 MACROBLOCKD *const xd = &x->e_mbd;
4620 MODE_INFO *mi;
4621 ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
4622 BLOCK_SIZE bs = VPXMAX(bsize, BLOCK_8X8); // processing unit block size
4623 const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bs];
4624 const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bs];
4625 int plane;
4626
4627 set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
4628
4629 set_segment_index(cpi, x, mi_row, mi_col, bsize, 0);
4630
4631 mi = xd->mi[0];
4632 mi->sb_type = bsize;
4633
4634 for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
4635 struct macroblockd_plane *pd = &xd->plane[plane];
4636 memcpy(a + num_4x4_blocks_wide * plane, pd->above_context,
4637 (sizeof(a[0]) * num_4x4_blocks_wide) >> pd->subsampling_x);
4638 memcpy(l + num_4x4_blocks_high * plane, pd->left_context,
4639 (sizeof(l[0]) * num_4x4_blocks_high) >> pd->subsampling_y);
4640 }
4641
4642 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled)
4643 if (cyclic_refresh_segment_id_boosted(mi->segment_id))
4644 x->rdmult = vp9_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
4645
4646 if (frame_is_intra_only(cm))
4647 hybrid_intra_mode_search(cpi, x, rd_cost, bsize, ctx);
4648 else if (cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame)
4649 hybrid_search_svc_baseiskey(cpi, x, rd_cost, bsize, ctx, tile_data, mi_row,
4650 mi_col);
4651 else if (segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP))
4652 set_mode_info_seg_skip(x, cm->tx_mode, rd_cost, bsize);
4653 else if (bsize >= BLOCK_8X8) {
4654 if (cpi->rc.hybrid_intra_scene_change)
4655 hybrid_search_scene_change(cpi, x, rd_cost, bsize, ctx, tile_data, mi_row,
4656 mi_col);
4657 else
4658 vp9_pick_inter_mode(cpi, x, tile_data, mi_row, mi_col, rd_cost, bsize,
4659 ctx);
4660 } else {
4661 vp9_pick_inter_mode_sub8x8(cpi, x, mi_row, mi_col, rd_cost, bsize, ctx);
4662 }
4663
4664 duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
4665
4666 for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
4667 struct macroblockd_plane *pd = &xd->plane[plane];
4668 memcpy(pd->above_context, a + num_4x4_blocks_wide * plane,
4669 (sizeof(a[0]) * num_4x4_blocks_wide) >> pd->subsampling_x);
4670 memcpy(pd->left_context, l + num_4x4_blocks_high * plane,
4671 (sizeof(l[0]) * num_4x4_blocks_high) >> pd->subsampling_y);
4672 }
4673
4674 if (rd_cost->rate == INT_MAX) vp9_rd_cost_reset(rd_cost);
4675
4676 ctx->rate = rd_cost->rate;
4677 ctx->dist = rd_cost->dist;
4678 }
4679
fill_mode_info_sb(VP9_COMMON * cm,MACROBLOCK * x,int mi_row,int mi_col,BLOCK_SIZE bsize,PC_TREE * pc_tree)4680 static void fill_mode_info_sb(VP9_COMMON *cm, MACROBLOCK *x, int mi_row,
4681 int mi_col, BLOCK_SIZE bsize, PC_TREE *pc_tree) {
4682 MACROBLOCKD *xd = &x->e_mbd;
4683 int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
4684 PARTITION_TYPE partition = pc_tree->partitioning;
4685 BLOCK_SIZE subsize = get_subsize(bsize, partition);
4686
4687 assert(bsize >= BLOCK_8X8);
4688
4689 if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
4690
4691 switch (partition) {
4692 case PARTITION_NONE:
4693 set_mode_info_offsets(cm, x, xd, mi_row, mi_col);
4694 *(xd->mi[0]) = pc_tree->none.mic;
4695 *(x->mbmi_ext) = pc_tree->none.mbmi_ext;
4696 duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
4697 break;
4698 case PARTITION_VERT:
4699 set_mode_info_offsets(cm, x, xd, mi_row, mi_col);
4700 *(xd->mi[0]) = pc_tree->vertical[0].mic;
4701 *(x->mbmi_ext) = pc_tree->vertical[0].mbmi_ext;
4702 duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, subsize);
4703
4704 if (mi_col + hbs < cm->mi_cols) {
4705 set_mode_info_offsets(cm, x, xd, mi_row, mi_col + hbs);
4706 *(xd->mi[0]) = pc_tree->vertical[1].mic;
4707 *(x->mbmi_ext) = pc_tree->vertical[1].mbmi_ext;
4708 duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col + hbs, subsize);
4709 }
4710 break;
4711 case PARTITION_HORZ:
4712 set_mode_info_offsets(cm, x, xd, mi_row, mi_col);
4713 *(xd->mi[0]) = pc_tree->horizontal[0].mic;
4714 *(x->mbmi_ext) = pc_tree->horizontal[0].mbmi_ext;
4715 duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, subsize);
4716 if (mi_row + hbs < cm->mi_rows) {
4717 set_mode_info_offsets(cm, x, xd, mi_row + hbs, mi_col);
4718 *(xd->mi[0]) = pc_tree->horizontal[1].mic;
4719 *(x->mbmi_ext) = pc_tree->horizontal[1].mbmi_ext;
4720 duplicate_mode_info_in_sb(cm, xd, mi_row + hbs, mi_col, subsize);
4721 }
4722 break;
4723 case PARTITION_SPLIT: {
4724 fill_mode_info_sb(cm, x, mi_row, mi_col, subsize, pc_tree->split[0]);
4725 fill_mode_info_sb(cm, x, mi_row, mi_col + hbs, subsize,
4726 pc_tree->split[1]);
4727 fill_mode_info_sb(cm, x, mi_row + hbs, mi_col, subsize,
4728 pc_tree->split[2]);
4729 fill_mode_info_sb(cm, x, mi_row + hbs, mi_col + hbs, subsize,
4730 pc_tree->split[3]);
4731 break;
4732 }
4733 default: break;
4734 }
4735 }
4736
4737 // Reset the prediction pixel ready flag recursively.
pred_pixel_ready_reset(PC_TREE * pc_tree,BLOCK_SIZE bsize)4738 static void pred_pixel_ready_reset(PC_TREE *pc_tree, BLOCK_SIZE bsize) {
4739 pc_tree->none.pred_pixel_ready = 0;
4740 pc_tree->horizontal[0].pred_pixel_ready = 0;
4741 pc_tree->horizontal[1].pred_pixel_ready = 0;
4742 pc_tree->vertical[0].pred_pixel_ready = 0;
4743 pc_tree->vertical[1].pred_pixel_ready = 0;
4744
4745 if (bsize > BLOCK_8X8) {
4746 BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_SPLIT);
4747 int i;
4748 for (i = 0; i < 4; ++i) pred_pixel_ready_reset(pc_tree->split[i], subsize);
4749 }
4750 }
4751
4752 #define FEATURES 6
4753 #define LABELS 2
ml_predict_var_paritioning(VP9_COMP * cpi,MACROBLOCK * x,BLOCK_SIZE bsize,int mi_row,int mi_col)4754 static int ml_predict_var_paritioning(VP9_COMP *cpi, MACROBLOCK *x,
4755 BLOCK_SIZE bsize, int mi_row,
4756 int mi_col) {
4757 VP9_COMMON *const cm = &cpi->common;
4758 const NN_CONFIG *nn_config = NULL;
4759
4760 switch (bsize) {
4761 case BLOCK_64X64: nn_config = &vp9_var_part_nnconfig_64; break;
4762 case BLOCK_32X32: nn_config = &vp9_var_part_nnconfig_32; break;
4763 case BLOCK_16X16: nn_config = &vp9_var_part_nnconfig_16; break;
4764 case BLOCK_8X8: break;
4765 default: assert(0 && "Unexpected block size."); return -1;
4766 }
4767
4768 if (!nn_config) return -1;
4769
4770 vpx_clear_system_state();
4771
4772 {
4773 const float thresh = cpi->oxcf.speed <= 5 ? 1.25f : 0.0f;
4774 float features[FEATURES] = { 0.0f };
4775 const int dc_q = vp9_dc_quant(cm->base_qindex, 0, cm->bit_depth);
4776 int feature_idx = 0;
4777 float score[LABELS];
4778
4779 features[feature_idx++] = logf((float)(dc_q * dc_q) / 256.0f + 1.0f);
4780 vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
4781 {
4782 const int bs = 4 * num_4x4_blocks_wide_lookup[bsize];
4783 const BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_SPLIT);
4784 const int sb_offset_row = 8 * (mi_row & 7);
4785 const int sb_offset_col = 8 * (mi_col & 7);
4786 const uint8_t *pred = x->est_pred + sb_offset_row * 64 + sb_offset_col;
4787 const uint8_t *src = x->plane[0].src.buf;
4788 const int src_stride = x->plane[0].src.stride;
4789 const int pred_stride = 64;
4790 unsigned int sse;
4791 int i;
4792 // Variance of whole block.
4793 const unsigned int var =
4794 cpi->fn_ptr[bsize].vf(src, src_stride, pred, pred_stride, &sse);
4795 const float factor = (var == 0) ? 1.0f : (1.0f / (float)var);
4796
4797 features[feature_idx++] = logf((float)var + 1.0f);
4798 for (i = 0; i < 4; ++i) {
4799 const int x_idx = (i & 1) * bs / 2;
4800 const int y_idx = (i >> 1) * bs / 2;
4801 const int src_offset = y_idx * src_stride + x_idx;
4802 const int pred_offset = y_idx * pred_stride + x_idx;
4803 // Variance of quarter block.
4804 const unsigned int sub_var =
4805 cpi->fn_ptr[subsize].vf(src + src_offset, src_stride,
4806 pred + pred_offset, pred_stride, &sse);
4807 const float var_ratio = (var == 0) ? 1.0f : factor * (float)sub_var;
4808 features[feature_idx++] = var_ratio;
4809 }
4810 }
4811
4812 assert(feature_idx == FEATURES);
4813 nn_predict(features, nn_config, score);
4814 if (score[0] > thresh) return PARTITION_SPLIT;
4815 if (score[0] < -thresh) return PARTITION_NONE;
4816 return -1;
4817 }
4818 }
4819 #undef FEATURES
4820 #undef LABELS
4821
nonrd_pick_partition(VP9_COMP * cpi,ThreadData * td,TileDataEnc * tile_data,TOKENEXTRA ** tp,int mi_row,int mi_col,BLOCK_SIZE bsize,RD_COST * rd_cost,int do_recon,int64_t best_rd,PC_TREE * pc_tree)4822 static void nonrd_pick_partition(VP9_COMP *cpi, ThreadData *td,
4823 TileDataEnc *tile_data, TOKENEXTRA **tp,
4824 int mi_row, int mi_col, BLOCK_SIZE bsize,
4825 RD_COST *rd_cost, int do_recon,
4826 int64_t best_rd, PC_TREE *pc_tree) {
4827 const SPEED_FEATURES *const sf = &cpi->sf;
4828 VP9_COMMON *const cm = &cpi->common;
4829 TileInfo *const tile_info = &tile_data->tile_info;
4830 MACROBLOCK *const x = &td->mb;
4831 MACROBLOCKD *const xd = &x->e_mbd;
4832 const int ms = num_8x8_blocks_wide_lookup[bsize] / 2;
4833 TOKENEXTRA *tp_orig = *tp;
4834 PICK_MODE_CONTEXT *ctx = &pc_tree->none;
4835 int i;
4836 BLOCK_SIZE subsize = bsize;
4837 RD_COST this_rdc, sum_rdc, best_rdc;
4838 int do_split = bsize >= BLOCK_8X8;
4839 int do_rect = 1;
4840 // Override skipping rectangular partition operations for edge blocks
4841 const int force_horz_split = (mi_row + ms >= cm->mi_rows);
4842 const int force_vert_split = (mi_col + ms >= cm->mi_cols);
4843 const int xss = x->e_mbd.plane[1].subsampling_x;
4844 const int yss = x->e_mbd.plane[1].subsampling_y;
4845
4846 int partition_none_allowed = !force_horz_split && !force_vert_split;
4847 int partition_horz_allowed =
4848 !force_vert_split && yss <= xss && bsize >= BLOCK_8X8;
4849 int partition_vert_allowed =
4850 !force_horz_split && xss <= yss && bsize >= BLOCK_8X8;
4851 const int use_ml_based_partitioning =
4852 sf->partition_search_type == ML_BASED_PARTITION;
4853
4854 (void)*tp_orig;
4855
4856 // Avoid checking for rectangular partitions for speed >= 6.
4857 if (cpi->oxcf.speed >= 6) do_rect = 0;
4858
4859 assert(num_8x8_blocks_wide_lookup[bsize] ==
4860 num_8x8_blocks_high_lookup[bsize]);
4861
4862 vp9_rd_cost_init(&sum_rdc);
4863 vp9_rd_cost_reset(&best_rdc);
4864 best_rdc.rdcost = best_rd;
4865
4866 // Determine partition types in search according to the speed features.
4867 // The threshold set here has to be of square block size.
4868 if (sf->auto_min_max_partition_size) {
4869 partition_none_allowed &=
4870 (bsize <= x->max_partition_size && bsize >= x->min_partition_size);
4871 partition_horz_allowed &=
4872 ((bsize <= x->max_partition_size && bsize > x->min_partition_size) ||
4873 force_horz_split);
4874 partition_vert_allowed &=
4875 ((bsize <= x->max_partition_size && bsize > x->min_partition_size) ||
4876 force_vert_split);
4877 do_split &= bsize > x->min_partition_size;
4878 }
4879 if (sf->use_square_partition_only) {
4880 partition_horz_allowed &= force_horz_split;
4881 partition_vert_allowed &= force_vert_split;
4882 }
4883
4884 if (use_ml_based_partitioning) {
4885 if (partition_none_allowed || do_split) do_rect = 0;
4886 if (partition_none_allowed && do_split) {
4887 const int ml_predicted_partition =
4888 ml_predict_var_paritioning(cpi, x, bsize, mi_row, mi_col);
4889 if (ml_predicted_partition == PARTITION_NONE) do_split = 0;
4890 if (ml_predicted_partition == PARTITION_SPLIT) partition_none_allowed = 0;
4891 }
4892 }
4893
4894 if (!partition_none_allowed && !do_split) do_rect = 1;
4895
4896 ctx->pred_pixel_ready =
4897 !(partition_vert_allowed || partition_horz_allowed || do_split);
4898
4899 // PARTITION_NONE
4900 if (partition_none_allowed) {
4901 nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, bsize,
4902 ctx);
4903 ctx->mic = *xd->mi[0];
4904 ctx->mbmi_ext = *x->mbmi_ext;
4905 ctx->skip_txfm[0] = x->skip_txfm[0];
4906 ctx->skip = x->skip;
4907
4908 if (this_rdc.rate != INT_MAX) {
4909 const int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
4910 this_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
4911 this_rdc.rdcost =
4912 RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist);
4913 if (this_rdc.rdcost < best_rdc.rdcost) {
4914 best_rdc = this_rdc;
4915 if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE;
4916
4917 if (!use_ml_based_partitioning) {
4918 int64_t dist_breakout_thr = sf->partition_search_breakout_thr.dist;
4919 int64_t rate_breakout_thr = sf->partition_search_breakout_thr.rate;
4920 dist_breakout_thr >>=
4921 8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]);
4922 rate_breakout_thr *= num_pels_log2_lookup[bsize];
4923 if (!x->e_mbd.lossless && this_rdc.rate < rate_breakout_thr &&
4924 this_rdc.dist < dist_breakout_thr) {
4925 do_split = 0;
4926 do_rect = 0;
4927 }
4928 }
4929 }
4930 }
4931 }
4932
4933 // store estimated motion vector
4934 store_pred_mv(x, ctx);
4935
4936 // PARTITION_SPLIT
4937 if (do_split) {
4938 int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
4939 sum_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT];
4940 sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
4941 subsize = get_subsize(bsize, PARTITION_SPLIT);
4942 for (i = 0; i < 4 && sum_rdc.rdcost < best_rdc.rdcost; ++i) {
4943 const int x_idx = (i & 1) * ms;
4944 const int y_idx = (i >> 1) * ms;
4945
4946 if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
4947 continue;
4948 load_pred_mv(x, ctx);
4949 nonrd_pick_partition(cpi, td, tile_data, tp, mi_row + y_idx,
4950 mi_col + x_idx, subsize, &this_rdc, 0,
4951 best_rdc.rdcost - sum_rdc.rdcost, pc_tree->split[i]);
4952
4953 if (this_rdc.rate == INT_MAX) {
4954 vp9_rd_cost_reset(&sum_rdc);
4955 } else {
4956 sum_rdc.rate += this_rdc.rate;
4957 sum_rdc.dist += this_rdc.dist;
4958 sum_rdc.rdcost += this_rdc.rdcost;
4959 }
4960 }
4961
4962 if (sum_rdc.rdcost < best_rdc.rdcost) {
4963 best_rdc = sum_rdc;
4964 pc_tree->partitioning = PARTITION_SPLIT;
4965 } else {
4966 // skip rectangular partition test when larger block size
4967 // gives better rd cost
4968 if (sf->less_rectangular_check) do_rect &= !partition_none_allowed;
4969 }
4970 }
4971
4972 // PARTITION_HORZ
4973 if (partition_horz_allowed && do_rect) {
4974 subsize = get_subsize(bsize, PARTITION_HORZ);
4975 load_pred_mv(x, ctx);
4976 pc_tree->horizontal[0].pred_pixel_ready = 1;
4977 nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
4978 &pc_tree->horizontal[0]);
4979
4980 pc_tree->horizontal[0].mic = *xd->mi[0];
4981 pc_tree->horizontal[0].mbmi_ext = *x->mbmi_ext;
4982 pc_tree->horizontal[0].skip_txfm[0] = x->skip_txfm[0];
4983 pc_tree->horizontal[0].skip = x->skip;
4984
4985 if (sum_rdc.rdcost < best_rdc.rdcost && mi_row + ms < cm->mi_rows) {
4986 load_pred_mv(x, ctx);
4987 pc_tree->horizontal[1].pred_pixel_ready = 1;
4988 nonrd_pick_sb_modes(cpi, tile_data, x, mi_row + ms, mi_col, &this_rdc,
4989 subsize, &pc_tree->horizontal[1]);
4990
4991 pc_tree->horizontal[1].mic = *xd->mi[0];
4992 pc_tree->horizontal[1].mbmi_ext = *x->mbmi_ext;
4993 pc_tree->horizontal[1].skip_txfm[0] = x->skip_txfm[0];
4994 pc_tree->horizontal[1].skip = x->skip;
4995
4996 if (this_rdc.rate == INT_MAX) {
4997 vp9_rd_cost_reset(&sum_rdc);
4998 } else {
4999 int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
5000 this_rdc.rate += cpi->partition_cost[pl][PARTITION_HORZ];
5001 sum_rdc.rate += this_rdc.rate;
5002 sum_rdc.dist += this_rdc.dist;
5003 sum_rdc.rdcost =
5004 RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
5005 }
5006 }
5007
5008 if (sum_rdc.rdcost < best_rdc.rdcost) {
5009 best_rdc = sum_rdc;
5010 pc_tree->partitioning = PARTITION_HORZ;
5011 } else {
5012 pred_pixel_ready_reset(pc_tree, bsize);
5013 }
5014 }
5015
5016 // PARTITION_VERT
5017 if (partition_vert_allowed && do_rect) {
5018 subsize = get_subsize(bsize, PARTITION_VERT);
5019 load_pred_mv(x, ctx);
5020 pc_tree->vertical[0].pred_pixel_ready = 1;
5021 nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
5022 &pc_tree->vertical[0]);
5023 pc_tree->vertical[0].mic = *xd->mi[0];
5024 pc_tree->vertical[0].mbmi_ext = *x->mbmi_ext;
5025 pc_tree->vertical[0].skip_txfm[0] = x->skip_txfm[0];
5026 pc_tree->vertical[0].skip = x->skip;
5027
5028 if (sum_rdc.rdcost < best_rdc.rdcost && mi_col + ms < cm->mi_cols) {
5029 load_pred_mv(x, ctx);
5030 pc_tree->vertical[1].pred_pixel_ready = 1;
5031 nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + ms, &this_rdc,
5032 subsize, &pc_tree->vertical[1]);
5033 pc_tree->vertical[1].mic = *xd->mi[0];
5034 pc_tree->vertical[1].mbmi_ext = *x->mbmi_ext;
5035 pc_tree->vertical[1].skip_txfm[0] = x->skip_txfm[0];
5036 pc_tree->vertical[1].skip = x->skip;
5037
5038 if (this_rdc.rate == INT_MAX) {
5039 vp9_rd_cost_reset(&sum_rdc);
5040 } else {
5041 int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
5042 sum_rdc.rate += cpi->partition_cost[pl][PARTITION_VERT];
5043 sum_rdc.rate += this_rdc.rate;
5044 sum_rdc.dist += this_rdc.dist;
5045 sum_rdc.rdcost =
5046 RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
5047 }
5048 }
5049
5050 if (sum_rdc.rdcost < best_rdc.rdcost) {
5051 best_rdc = sum_rdc;
5052 pc_tree->partitioning = PARTITION_VERT;
5053 } else {
5054 pred_pixel_ready_reset(pc_tree, bsize);
5055 }
5056 }
5057
5058 *rd_cost = best_rdc;
5059
5060 if (best_rdc.rate == INT_MAX) {
5061 vp9_rd_cost_reset(rd_cost);
5062 return;
5063 }
5064
5065 // update mode info array
5066 fill_mode_info_sb(cm, x, mi_row, mi_col, bsize, pc_tree);
5067
5068 if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX && do_recon) {
5069 int output_enabled = (bsize == BLOCK_64X64);
5070 encode_sb_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, bsize,
5071 pc_tree);
5072 }
5073
5074 if (bsize == BLOCK_64X64 && do_recon) {
5075 assert(tp_orig < *tp);
5076 assert(best_rdc.rate < INT_MAX);
5077 assert(best_rdc.dist < INT64_MAX);
5078 } else {
5079 assert(tp_orig == *tp);
5080 }
5081 }
5082
nonrd_select_partition(VP9_COMP * cpi,ThreadData * td,TileDataEnc * tile_data,MODE_INFO ** mi,TOKENEXTRA ** tp,int mi_row,int mi_col,BLOCK_SIZE bsize,int output_enabled,RD_COST * rd_cost,PC_TREE * pc_tree)5083 static void nonrd_select_partition(VP9_COMP *cpi, ThreadData *td,
5084 TileDataEnc *tile_data, MODE_INFO **mi,
5085 TOKENEXTRA **tp, int mi_row, int mi_col,
5086 BLOCK_SIZE bsize, int output_enabled,
5087 RD_COST *rd_cost, PC_TREE *pc_tree) {
5088 VP9_COMMON *const cm = &cpi->common;
5089 TileInfo *const tile_info = &tile_data->tile_info;
5090 MACROBLOCK *const x = &td->mb;
5091 MACROBLOCKD *const xd = &x->e_mbd;
5092 const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
5093 const int mis = cm->mi_stride;
5094 PARTITION_TYPE partition;
5095 BLOCK_SIZE subsize;
5096 RD_COST this_rdc;
5097 BLOCK_SIZE subsize_ref =
5098 (cpi->sf.adapt_partition_source_sad) ? BLOCK_8X8 : BLOCK_16X16;
5099
5100 vp9_rd_cost_reset(&this_rdc);
5101 if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
5102
5103 subsize = (bsize >= BLOCK_8X8) ? mi[0]->sb_type : BLOCK_4X4;
5104 partition = partition_lookup[bsl][subsize];
5105
5106 if (bsize == BLOCK_32X32 && subsize == BLOCK_32X32) {
5107 x->max_partition_size = BLOCK_32X32;
5108 x->min_partition_size = BLOCK_16X16;
5109 nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, bsize, rd_cost,
5110 0, INT64_MAX, pc_tree);
5111 } else if (bsize == BLOCK_32X32 && partition != PARTITION_NONE &&
5112 subsize >= subsize_ref) {
5113 x->max_partition_size = BLOCK_32X32;
5114 x->min_partition_size = BLOCK_8X8;
5115 nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, bsize, rd_cost,
5116 0, INT64_MAX, pc_tree);
5117 } else if (bsize == BLOCK_16X16 && partition != PARTITION_NONE) {
5118 x->max_partition_size = BLOCK_16X16;
5119 x->min_partition_size = BLOCK_8X8;
5120 nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, bsize, rd_cost,
5121 0, INT64_MAX, pc_tree);
5122 } else {
5123 switch (partition) {
5124 case PARTITION_NONE:
5125 pc_tree->none.pred_pixel_ready = 1;
5126 nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, rd_cost, subsize,
5127 &pc_tree->none);
5128 pc_tree->none.mic = *xd->mi[0];
5129 pc_tree->none.mbmi_ext = *x->mbmi_ext;
5130 pc_tree->none.skip_txfm[0] = x->skip_txfm[0];
5131 pc_tree->none.skip = x->skip;
5132 break;
5133 case PARTITION_VERT:
5134 pc_tree->vertical[0].pred_pixel_ready = 1;
5135 nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, rd_cost, subsize,
5136 &pc_tree->vertical[0]);
5137 pc_tree->vertical[0].mic = *xd->mi[0];
5138 pc_tree->vertical[0].mbmi_ext = *x->mbmi_ext;
5139 pc_tree->vertical[0].skip_txfm[0] = x->skip_txfm[0];
5140 pc_tree->vertical[0].skip = x->skip;
5141 if (mi_col + hbs < cm->mi_cols) {
5142 pc_tree->vertical[1].pred_pixel_ready = 1;
5143 nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs,
5144 &this_rdc, subsize, &pc_tree->vertical[1]);
5145 pc_tree->vertical[1].mic = *xd->mi[0];
5146 pc_tree->vertical[1].mbmi_ext = *x->mbmi_ext;
5147 pc_tree->vertical[1].skip_txfm[0] = x->skip_txfm[0];
5148 pc_tree->vertical[1].skip = x->skip;
5149 if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX &&
5150 rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) {
5151 rd_cost->rate += this_rdc.rate;
5152 rd_cost->dist += this_rdc.dist;
5153 }
5154 }
5155 break;
5156 case PARTITION_HORZ:
5157 pc_tree->horizontal[0].pred_pixel_ready = 1;
5158 nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, rd_cost, subsize,
5159 &pc_tree->horizontal[0]);
5160 pc_tree->horizontal[0].mic = *xd->mi[0];
5161 pc_tree->horizontal[0].mbmi_ext = *x->mbmi_ext;
5162 pc_tree->horizontal[0].skip_txfm[0] = x->skip_txfm[0];
5163 pc_tree->horizontal[0].skip = x->skip;
5164 if (mi_row + hbs < cm->mi_rows) {
5165 pc_tree->horizontal[1].pred_pixel_ready = 1;
5166 nonrd_pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col,
5167 &this_rdc, subsize, &pc_tree->horizontal[1]);
5168 pc_tree->horizontal[1].mic = *xd->mi[0];
5169 pc_tree->horizontal[1].mbmi_ext = *x->mbmi_ext;
5170 pc_tree->horizontal[1].skip_txfm[0] = x->skip_txfm[0];
5171 pc_tree->horizontal[1].skip = x->skip;
5172 if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX &&
5173 rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) {
5174 rd_cost->rate += this_rdc.rate;
5175 rd_cost->dist += this_rdc.dist;
5176 }
5177 }
5178 break;
5179 default:
5180 assert(partition == PARTITION_SPLIT);
5181 subsize = get_subsize(bsize, PARTITION_SPLIT);
5182 nonrd_select_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
5183 subsize, output_enabled, rd_cost,
5184 pc_tree->split[0]);
5185 nonrd_select_partition(cpi, td, tile_data, mi + hbs, tp, mi_row,
5186 mi_col + hbs, subsize, output_enabled, &this_rdc,
5187 pc_tree->split[1]);
5188 if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX &&
5189 rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) {
5190 rd_cost->rate += this_rdc.rate;
5191 rd_cost->dist += this_rdc.dist;
5192 }
5193 nonrd_select_partition(cpi, td, tile_data, mi + hbs * mis, tp,
5194 mi_row + hbs, mi_col, subsize, output_enabled,
5195 &this_rdc, pc_tree->split[2]);
5196 if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX &&
5197 rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) {
5198 rd_cost->rate += this_rdc.rate;
5199 rd_cost->dist += this_rdc.dist;
5200 }
5201 nonrd_select_partition(cpi, td, tile_data, mi + hbs * mis + hbs, tp,
5202 mi_row + hbs, mi_col + hbs, subsize,
5203 output_enabled, &this_rdc, pc_tree->split[3]);
5204 if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX &&
5205 rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) {
5206 rd_cost->rate += this_rdc.rate;
5207 rd_cost->dist += this_rdc.dist;
5208 }
5209 break;
5210 }
5211 }
5212
5213 if (bsize == BLOCK_64X64 && output_enabled)
5214 encode_sb_rt(cpi, td, tile_info, tp, mi_row, mi_col, 1, bsize, pc_tree);
5215 }
5216
nonrd_use_partition(VP9_COMP * cpi,ThreadData * td,TileDataEnc * tile_data,MODE_INFO ** mi,TOKENEXTRA ** tp,int mi_row,int mi_col,BLOCK_SIZE bsize,int output_enabled,RD_COST * dummy_cost,PC_TREE * pc_tree)5217 static void nonrd_use_partition(VP9_COMP *cpi, ThreadData *td,
5218 TileDataEnc *tile_data, MODE_INFO **mi,
5219 TOKENEXTRA **tp, int mi_row, int mi_col,
5220 BLOCK_SIZE bsize, int output_enabled,
5221 RD_COST *dummy_cost, PC_TREE *pc_tree) {
5222 VP9_COMMON *const cm = &cpi->common;
5223 TileInfo *tile_info = &tile_data->tile_info;
5224 MACROBLOCK *const x = &td->mb;
5225 MACROBLOCKD *const xd = &x->e_mbd;
5226 const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
5227 const int mis = cm->mi_stride;
5228 PARTITION_TYPE partition;
5229 BLOCK_SIZE subsize;
5230
5231 if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
5232
5233 subsize = (bsize >= BLOCK_8X8) ? mi[0]->sb_type : BLOCK_4X4;
5234 partition = partition_lookup[bsl][subsize];
5235
5236 if (output_enabled && bsize != BLOCK_4X4) {
5237 int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
5238 td->counts->partition[ctx][partition]++;
5239 }
5240
5241 switch (partition) {
5242 case PARTITION_NONE:
5243 pc_tree->none.pred_pixel_ready = 1;
5244 nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost,
5245 subsize, &pc_tree->none);
5246 pc_tree->none.mic = *xd->mi[0];
5247 pc_tree->none.mbmi_ext = *x->mbmi_ext;
5248 pc_tree->none.skip_txfm[0] = x->skip_txfm[0];
5249 pc_tree->none.skip = x->skip;
5250 encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled,
5251 subsize, &pc_tree->none);
5252 break;
5253 case PARTITION_VERT:
5254 pc_tree->vertical[0].pred_pixel_ready = 1;
5255 nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost,
5256 subsize, &pc_tree->vertical[0]);
5257 pc_tree->vertical[0].mic = *xd->mi[0];
5258 pc_tree->vertical[0].mbmi_ext = *x->mbmi_ext;
5259 pc_tree->vertical[0].skip_txfm[0] = x->skip_txfm[0];
5260 pc_tree->vertical[0].skip = x->skip;
5261 encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled,
5262 subsize, &pc_tree->vertical[0]);
5263 if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
5264 pc_tree->vertical[1].pred_pixel_ready = 1;
5265 nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs, dummy_cost,
5266 subsize, &pc_tree->vertical[1]);
5267 pc_tree->vertical[1].mic = *xd->mi[0];
5268 pc_tree->vertical[1].mbmi_ext = *x->mbmi_ext;
5269 pc_tree->vertical[1].skip_txfm[0] = x->skip_txfm[0];
5270 pc_tree->vertical[1].skip = x->skip;
5271 encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col + hbs,
5272 output_enabled, subsize, &pc_tree->vertical[1]);
5273 }
5274 break;
5275 case PARTITION_HORZ:
5276 pc_tree->horizontal[0].pred_pixel_ready = 1;
5277 nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost,
5278 subsize, &pc_tree->horizontal[0]);
5279 pc_tree->horizontal[0].mic = *xd->mi[0];
5280 pc_tree->horizontal[0].mbmi_ext = *x->mbmi_ext;
5281 pc_tree->horizontal[0].skip_txfm[0] = x->skip_txfm[0];
5282 pc_tree->horizontal[0].skip = x->skip;
5283 encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled,
5284 subsize, &pc_tree->horizontal[0]);
5285
5286 if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
5287 pc_tree->horizontal[1].pred_pixel_ready = 1;
5288 nonrd_pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col, dummy_cost,
5289 subsize, &pc_tree->horizontal[1]);
5290 pc_tree->horizontal[1].mic = *xd->mi[0];
5291 pc_tree->horizontal[1].mbmi_ext = *x->mbmi_ext;
5292 pc_tree->horizontal[1].skip_txfm[0] = x->skip_txfm[0];
5293 pc_tree->horizontal[1].skip = x->skip;
5294 encode_b_rt(cpi, td, tile_info, tp, mi_row + hbs, mi_col,
5295 output_enabled, subsize, &pc_tree->horizontal[1]);
5296 }
5297 break;
5298 default:
5299 assert(partition == PARTITION_SPLIT);
5300 subsize = get_subsize(bsize, PARTITION_SPLIT);
5301 if (bsize == BLOCK_8X8) {
5302 nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost,
5303 subsize, pc_tree->leaf_split[0]);
5304 encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled,
5305 subsize, pc_tree->leaf_split[0]);
5306 } else {
5307 nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, subsize,
5308 output_enabled, dummy_cost, pc_tree->split[0]);
5309 nonrd_use_partition(cpi, td, tile_data, mi + hbs, tp, mi_row,
5310 mi_col + hbs, subsize, output_enabled, dummy_cost,
5311 pc_tree->split[1]);
5312 nonrd_use_partition(cpi, td, tile_data, mi + hbs * mis, tp,
5313 mi_row + hbs, mi_col, subsize, output_enabled,
5314 dummy_cost, pc_tree->split[2]);
5315 nonrd_use_partition(cpi, td, tile_data, mi + hbs * mis + hbs, tp,
5316 mi_row + hbs, mi_col + hbs, subsize, output_enabled,
5317 dummy_cost, pc_tree->split[3]);
5318 }
5319 break;
5320 }
5321
5322 if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
5323 update_partition_context(xd, mi_row, mi_col, subsize, bsize);
5324 }
5325
5326 // Get a prediction(stored in x->est_pred) for the whole 64x64 superblock.
get_estimated_pred(VP9_COMP * cpi,const TileInfo * const tile,MACROBLOCK * x,int mi_row,int mi_col)5327 static void get_estimated_pred(VP9_COMP *cpi, const TileInfo *const tile,
5328 MACROBLOCK *x, int mi_row, int mi_col) {
5329 VP9_COMMON *const cm = &cpi->common;
5330 const int is_key_frame = frame_is_intra_only(cm);
5331 MACROBLOCKD *xd = &x->e_mbd;
5332
5333 set_offsets(cpi, tile, x, mi_row, mi_col, BLOCK_64X64);
5334
5335 if (!is_key_frame) {
5336 MODE_INFO *mi = xd->mi[0];
5337 YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
5338 const YV12_BUFFER_CONFIG *yv12_g = NULL;
5339 const BLOCK_SIZE bsize = BLOCK_32X32 + (mi_col + 4 < cm->mi_cols) * 2 +
5340 (mi_row + 4 < cm->mi_rows);
5341 unsigned int y_sad_g, y_sad_thr;
5342 unsigned int y_sad = UINT_MAX;
5343
5344 assert(yv12 != NULL);
5345
5346 if (!(is_one_pass_cbr_svc(cpi) && cpi->svc.spatial_layer_id) ||
5347 cpi->svc.use_gf_temporal_ref_current_layer) {
5348 // For now, GOLDEN will not be used for non-zero spatial layers, since
5349 // it may not be a temporal reference.
5350 yv12_g = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
5351 }
5352
5353 // Only compute y_sad_g (sad for golden reference) for speed < 8.
5354 if (cpi->oxcf.speed < 8 && yv12_g && yv12_g != yv12 &&
5355 (cpi->ref_frame_flags & VP9_GOLD_FLAG)) {
5356 vp9_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
5357 &cm->frame_refs[GOLDEN_FRAME - 1].sf);
5358 y_sad_g = cpi->fn_ptr[bsize].sdf(
5359 x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf,
5360 xd->plane[0].pre[0].stride);
5361 } else {
5362 y_sad_g = UINT_MAX;
5363 }
5364
5365 if (cpi->oxcf.lag_in_frames > 0 && cpi->oxcf.rc_mode == VPX_VBR &&
5366 cpi->rc.is_src_frame_alt_ref) {
5367 yv12 = get_ref_frame_buffer(cpi, ALTREF_FRAME);
5368 vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col,
5369 &cm->frame_refs[ALTREF_FRAME - 1].sf);
5370 mi->ref_frame[0] = ALTREF_FRAME;
5371 y_sad_g = UINT_MAX;
5372 } else {
5373 vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col,
5374 &cm->frame_refs[LAST_FRAME - 1].sf);
5375 mi->ref_frame[0] = LAST_FRAME;
5376 }
5377 mi->ref_frame[1] = NONE;
5378 mi->sb_type = BLOCK_64X64;
5379 mi->mv[0].as_int = 0;
5380 mi->interp_filter = BILINEAR;
5381
5382 {
5383 const MV dummy_mv = { 0, 0 };
5384 y_sad = vp9_int_pro_motion_estimation(cpi, x, bsize, mi_row, mi_col,
5385 &dummy_mv);
5386 x->sb_use_mv_part = 1;
5387 x->sb_mvcol_part = mi->mv[0].as_mv.col;
5388 x->sb_mvrow_part = mi->mv[0].as_mv.row;
5389 }
5390
5391 // Pick ref frame for partitioning, bias last frame when y_sad_g and y_sad
5392 // are close if short_circuit_low_temp_var is on.
5393 y_sad_thr = cpi->sf.short_circuit_low_temp_var ? (y_sad * 7) >> 3 : y_sad;
5394 if (y_sad_g < y_sad_thr) {
5395 vp9_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
5396 &cm->frame_refs[GOLDEN_FRAME - 1].sf);
5397 mi->ref_frame[0] = GOLDEN_FRAME;
5398 mi->mv[0].as_int = 0;
5399 } else {
5400 x->pred_mv[LAST_FRAME] = mi->mv[0].as_mv;
5401 }
5402
5403 set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]);
5404 xd->plane[0].dst.buf = x->est_pred;
5405 xd->plane[0].dst.stride = 64;
5406 vp9_build_inter_predictors_sb(xd, mi_row, mi_col, BLOCK_64X64);
5407 } else {
5408 #if CONFIG_VP9_HIGHBITDEPTH
5409 switch (xd->bd) {
5410 case 8: memset(x->est_pred, 128, 64 * 64 * sizeof(x->est_pred[0])); break;
5411 case 10:
5412 memset(x->est_pred, 128 * 4, 64 * 64 * sizeof(x->est_pred[0]));
5413 break;
5414 case 12:
5415 memset(x->est_pred, 128 * 16, 64 * 64 * sizeof(x->est_pred[0]));
5416 break;
5417 }
5418 #else
5419 memset(x->est_pred, 128, 64 * 64 * sizeof(x->est_pred[0]));
5420 #endif // CONFIG_VP9_HIGHBITDEPTH
5421 }
5422 }
5423
encode_nonrd_sb_row(VP9_COMP * cpi,ThreadData * td,TileDataEnc * tile_data,int mi_row,TOKENEXTRA ** tp)5424 static void encode_nonrd_sb_row(VP9_COMP *cpi, ThreadData *td,
5425 TileDataEnc *tile_data, int mi_row,
5426 TOKENEXTRA **tp) {
5427 SPEED_FEATURES *const sf = &cpi->sf;
5428 VP9_COMMON *const cm = &cpi->common;
5429 TileInfo *const tile_info = &tile_data->tile_info;
5430 MACROBLOCK *const x = &td->mb;
5431 MACROBLOCKD *const xd = &x->e_mbd;
5432 const int mi_col_start = tile_info->mi_col_start;
5433 const int mi_col_end = tile_info->mi_col_end;
5434 int mi_col;
5435 const int sb_row = mi_row >> MI_BLOCK_SIZE_LOG2;
5436 const int num_sb_cols =
5437 get_num_cols(tile_data->tile_info, MI_BLOCK_SIZE_LOG2);
5438 int sb_col_in_tile;
5439
5440 // Initialize the left context for the new SB row
5441 memset(&xd->left_context, 0, sizeof(xd->left_context));
5442 memset(xd->left_seg_context, 0, sizeof(xd->left_seg_context));
5443
5444 // Code each SB in the row
5445 for (mi_col = mi_col_start, sb_col_in_tile = 0; mi_col < mi_col_end;
5446 mi_col += MI_BLOCK_SIZE, ++sb_col_in_tile) {
5447 const struct segmentation *const seg = &cm->seg;
5448 RD_COST dummy_rdc;
5449 const int idx_str = cm->mi_stride * mi_row + mi_col;
5450 MODE_INFO **mi = cm->mi_grid_visible + idx_str;
5451 PARTITION_SEARCH_TYPE partition_search_type = sf->partition_search_type;
5452 BLOCK_SIZE bsize = BLOCK_64X64;
5453 int seg_skip = 0;
5454 int i;
5455
5456 (*(cpi->row_mt_sync_read_ptr))(&tile_data->row_mt_sync, sb_row,
5457 sb_col_in_tile);
5458
5459 if (cpi->use_skin_detection) {
5460 vp9_compute_skin_sb(cpi, BLOCK_16X16, mi_row, mi_col);
5461 }
5462
5463 x->source_variance = UINT_MAX;
5464 for (i = 0; i < MAX_REF_FRAMES; ++i) {
5465 x->pred_mv[i].row = INT16_MAX;
5466 x->pred_mv[i].col = INT16_MAX;
5467 }
5468 vp9_rd_cost_init(&dummy_rdc);
5469 x->color_sensitivity[0] = 0;
5470 x->color_sensitivity[1] = 0;
5471 x->sb_is_skin = 0;
5472 x->skip_low_source_sad = 0;
5473 x->lowvar_highsumdiff = 0;
5474 x->content_state_sb = 0;
5475 x->zero_temp_sad_source = 0;
5476 x->sb_use_mv_part = 0;
5477 x->sb_mvcol_part = 0;
5478 x->sb_mvrow_part = 0;
5479 x->sb_pickmode_part = 0;
5480 x->arf_frame_usage = 0;
5481 x->lastgolden_frame_usage = 0;
5482
5483 if (seg->enabled) {
5484 const uint8_t *const map =
5485 seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
5486 int segment_id = get_segment_id(cm, map, BLOCK_64X64, mi_row, mi_col);
5487 seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP);
5488 if (seg_skip) {
5489 partition_search_type = FIXED_PARTITION;
5490 }
5491 }
5492
5493 if (cpi->compute_source_sad_onepass && cpi->sf.use_source_sad) {
5494 int shift = cpi->Source->y_stride * (mi_row << 3) + (mi_col << 3);
5495 int sb_offset2 = ((cm->mi_cols + 7) >> 3) * (mi_row >> 3) + (mi_col >> 3);
5496 int64_t source_sad = avg_source_sad(cpi, x, shift, sb_offset2);
5497 if (sf->adapt_partition_source_sad &&
5498 (cpi->oxcf.rc_mode == VPX_VBR && !cpi->rc.is_src_frame_alt_ref &&
5499 source_sad > sf->adapt_partition_thresh &&
5500 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)))
5501 partition_search_type = REFERENCE_PARTITION;
5502 }
5503
5504 // Set the partition type of the 64X64 block
5505 switch (partition_search_type) {
5506 case VAR_BASED_PARTITION:
5507 // TODO(jingning, marpan): The mode decision and encoding process
5508 // support both intra and inter sub8x8 block coding for RTC mode.
5509 // Tune the thresholds accordingly to use sub8x8 block coding for
5510 // coding performance improvement.
5511 choose_partitioning(cpi, tile_info, x, mi_row, mi_col);
5512 nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
5513 BLOCK_64X64, 1, &dummy_rdc, td->pc_root);
5514 break;
5515 case ML_BASED_PARTITION:
5516 get_estimated_pred(cpi, tile_info, x, mi_row, mi_col);
5517 x->max_partition_size = BLOCK_64X64;
5518 x->min_partition_size = BLOCK_8X8;
5519 x->sb_pickmode_part = 1;
5520 nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col,
5521 BLOCK_64X64, &dummy_rdc, 1, INT64_MAX,
5522 td->pc_root);
5523 break;
5524 case SOURCE_VAR_BASED_PARTITION:
5525 set_source_var_based_partition(cpi, tile_info, x, mi, mi_row, mi_col);
5526 nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
5527 BLOCK_64X64, 1, &dummy_rdc, td->pc_root);
5528 break;
5529 case FIXED_PARTITION:
5530 if (!seg_skip) bsize = sf->always_this_block_size;
5531 set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
5532 nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
5533 BLOCK_64X64, 1, &dummy_rdc, td->pc_root);
5534 break;
5535 default:
5536 assert(partition_search_type == REFERENCE_PARTITION);
5537 x->sb_pickmode_part = 1;
5538 set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64);
5539 // Use nonrd_pick_partition on scene-cut for VBR mode.
5540 // nonrd_pick_partition does not support 4x4 partition, so avoid it
5541 // on key frame for now.
5542 if ((cpi->oxcf.rc_mode == VPX_VBR && cpi->rc.high_source_sad &&
5543 cpi->oxcf.speed < 6 && !frame_is_intra_only(cm) &&
5544 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))) {
5545 // Use lower max_partition_size for low resoultions.
5546 if (cm->width <= 352 && cm->height <= 288)
5547 x->max_partition_size = BLOCK_32X32;
5548 else
5549 x->max_partition_size = BLOCK_64X64;
5550 x->min_partition_size = BLOCK_8X8;
5551 nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col,
5552 BLOCK_64X64, &dummy_rdc, 1, INT64_MAX,
5553 td->pc_root);
5554 } else {
5555 choose_partitioning(cpi, tile_info, x, mi_row, mi_col);
5556 // TODO(marpan): Seems like nonrd_select_partition does not support
5557 // 4x4 partition. Since 4x4 is used on key frame, use this switch
5558 // for now.
5559 if (frame_is_intra_only(cm))
5560 nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
5561 BLOCK_64X64, 1, &dummy_rdc, td->pc_root);
5562 else
5563 nonrd_select_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
5564 BLOCK_64X64, 1, &dummy_rdc, td->pc_root);
5565 }
5566
5567 break;
5568 }
5569
5570 // Update ref_frame usage for inter frame if this group is ARF group.
5571 if (!cpi->rc.is_src_frame_alt_ref && !cpi->refresh_golden_frame &&
5572 !cpi->refresh_alt_ref_frame && cpi->rc.alt_ref_gf_group &&
5573 cpi->sf.use_altref_onepass) {
5574 int sboffset = ((cm->mi_cols + 7) >> 3) * (mi_row >> 3) + (mi_col >> 3);
5575 if (cpi->count_arf_frame_usage != NULL)
5576 cpi->count_arf_frame_usage[sboffset] = x->arf_frame_usage;
5577 if (cpi->count_lastgolden_frame_usage != NULL)
5578 cpi->count_lastgolden_frame_usage[sboffset] = x->lastgolden_frame_usage;
5579 }
5580
5581 (*(cpi->row_mt_sync_write_ptr))(&tile_data->row_mt_sync, sb_row,
5582 sb_col_in_tile, num_sb_cols);
5583 }
5584 }
5585 // end RTC play code
5586
variance(const diff * const d)5587 static INLINE uint32_t variance(const diff *const d) {
5588 return d->sse - (uint32_t)(((int64_t)d->sum * d->sum) >> 8);
5589 }
5590
5591 #if CONFIG_VP9_HIGHBITDEPTH
variance_highbd(diff * const d)5592 static INLINE uint32_t variance_highbd(diff *const d) {
5593 const int64_t var = (int64_t)d->sse - (((int64_t)d->sum * d->sum) >> 8);
5594 return (var >= 0) ? (uint32_t)var : 0;
5595 }
5596 #endif // CONFIG_VP9_HIGHBITDEPTH
5597
set_var_thresh_from_histogram(VP9_COMP * cpi)5598 static int set_var_thresh_from_histogram(VP9_COMP *cpi) {
5599 const SPEED_FEATURES *const sf = &cpi->sf;
5600 const VP9_COMMON *const cm = &cpi->common;
5601
5602 const uint8_t *src = cpi->Source->y_buffer;
5603 const uint8_t *last_src = cpi->Last_Source->y_buffer;
5604 const int src_stride = cpi->Source->y_stride;
5605 const int last_stride = cpi->Last_Source->y_stride;
5606
5607 // Pick cutoff threshold
5608 const int cutoff = (VPXMIN(cm->width, cm->height) >= 720)
5609 ? (cm->MBs * VAR_HIST_LARGE_CUT_OFF / 100)
5610 : (cm->MBs * VAR_HIST_SMALL_CUT_OFF / 100);
5611 DECLARE_ALIGNED(16, int, hist[VAR_HIST_BINS]);
5612 diff *var16 = cpi->source_diff_var;
5613
5614 int sum = 0;
5615 int i, j;
5616
5617 memset(hist, 0, VAR_HIST_BINS * sizeof(hist[0]));
5618
5619 for (i = 0; i < cm->mb_rows; i++) {
5620 for (j = 0; j < cm->mb_cols; j++) {
5621 #if CONFIG_VP9_HIGHBITDEPTH
5622 if (cm->use_highbitdepth) {
5623 switch (cm->bit_depth) {
5624 case VPX_BITS_8:
5625 vpx_highbd_8_get16x16var(src, src_stride, last_src, last_stride,
5626 &var16->sse, &var16->sum);
5627 var16->var = variance(var16);
5628 break;
5629 case VPX_BITS_10:
5630 vpx_highbd_10_get16x16var(src, src_stride, last_src, last_stride,
5631 &var16->sse, &var16->sum);
5632 var16->var = variance_highbd(var16);
5633 break;
5634 default:
5635 assert(cm->bit_depth == VPX_BITS_12);
5636 vpx_highbd_12_get16x16var(src, src_stride, last_src, last_stride,
5637 &var16->sse, &var16->sum);
5638 var16->var = variance_highbd(var16);
5639 break;
5640 }
5641 } else {
5642 vpx_get16x16var(src, src_stride, last_src, last_stride, &var16->sse,
5643 &var16->sum);
5644 var16->var = variance(var16);
5645 }
5646 #else
5647 vpx_get16x16var(src, src_stride, last_src, last_stride, &var16->sse,
5648 &var16->sum);
5649 var16->var = variance(var16);
5650 #endif // CONFIG_VP9_HIGHBITDEPTH
5651
5652 if (var16->var >= VAR_HIST_MAX_BG_VAR)
5653 hist[VAR_HIST_BINS - 1]++;
5654 else
5655 hist[var16->var / VAR_HIST_FACTOR]++;
5656
5657 src += 16;
5658 last_src += 16;
5659 var16++;
5660 }
5661
5662 src = src - cm->mb_cols * 16 + 16 * src_stride;
5663 last_src = last_src - cm->mb_cols * 16 + 16 * last_stride;
5664 }
5665
5666 cpi->source_var_thresh = 0;
5667
5668 if (hist[VAR_HIST_BINS - 1] < cutoff) {
5669 for (i = 0; i < VAR_HIST_BINS - 1; i++) {
5670 sum += hist[i];
5671
5672 if (sum > cutoff) {
5673 cpi->source_var_thresh = (i + 1) * VAR_HIST_FACTOR;
5674 return 0;
5675 }
5676 }
5677 }
5678
5679 return sf->search_type_check_frequency;
5680 }
5681
source_var_based_partition_search_method(VP9_COMP * cpi)5682 static void source_var_based_partition_search_method(VP9_COMP *cpi) {
5683 VP9_COMMON *const cm = &cpi->common;
5684 SPEED_FEATURES *const sf = &cpi->sf;
5685
5686 if (cm->frame_type == KEY_FRAME) {
5687 // For key frame, use SEARCH_PARTITION.
5688 sf->partition_search_type = SEARCH_PARTITION;
5689 } else if (cm->intra_only) {
5690 sf->partition_search_type = FIXED_PARTITION;
5691 } else {
5692 if (cm->last_width != cm->width || cm->last_height != cm->height) {
5693 if (cpi->source_diff_var) vpx_free(cpi->source_diff_var);
5694
5695 CHECK_MEM_ERROR(cm, cpi->source_diff_var,
5696 vpx_calloc(cm->MBs, sizeof(diff)));
5697 }
5698
5699 if (!cpi->frames_till_next_var_check)
5700 cpi->frames_till_next_var_check = set_var_thresh_from_histogram(cpi);
5701
5702 if (cpi->frames_till_next_var_check > 0) {
5703 sf->partition_search_type = FIXED_PARTITION;
5704 cpi->frames_till_next_var_check--;
5705 }
5706 }
5707 }
5708
get_skip_encode_frame(const VP9_COMMON * cm,ThreadData * const td)5709 static int get_skip_encode_frame(const VP9_COMMON *cm, ThreadData *const td) {
5710 unsigned int intra_count = 0, inter_count = 0;
5711 int j;
5712
5713 for (j = 0; j < INTRA_INTER_CONTEXTS; ++j) {
5714 intra_count += td->counts->intra_inter[j][0];
5715 inter_count += td->counts->intra_inter[j][1];
5716 }
5717
5718 return (intra_count << 2) < inter_count && cm->frame_type != KEY_FRAME &&
5719 cm->show_frame;
5720 }
5721
vp9_init_tile_data(VP9_COMP * cpi)5722 void vp9_init_tile_data(VP9_COMP *cpi) {
5723 VP9_COMMON *const cm = &cpi->common;
5724 const int tile_cols = 1 << cm->log2_tile_cols;
5725 const int tile_rows = 1 << cm->log2_tile_rows;
5726 int tile_col, tile_row;
5727 TOKENEXTRA *pre_tok = cpi->tile_tok[0][0];
5728 TOKENLIST *tplist = cpi->tplist[0][0];
5729 int tile_tok = 0;
5730 int tplist_count = 0;
5731
5732 if (cpi->tile_data == NULL || cpi->allocated_tiles < tile_cols * tile_rows) {
5733 if (cpi->tile_data != NULL) vpx_free(cpi->tile_data);
5734 CHECK_MEM_ERROR(
5735 cm, cpi->tile_data,
5736 vpx_malloc(tile_cols * tile_rows * sizeof(*cpi->tile_data)));
5737 cpi->allocated_tiles = tile_cols * tile_rows;
5738
5739 for (tile_row = 0; tile_row < tile_rows; ++tile_row)
5740 for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
5741 TileDataEnc *tile_data =
5742 &cpi->tile_data[tile_row * tile_cols + tile_col];
5743 int i, j;
5744 for (i = 0; i < BLOCK_SIZES; ++i) {
5745 for (j = 0; j < MAX_MODES; ++j) {
5746 tile_data->thresh_freq_fact[i][j] = RD_THRESH_INIT_FACT;
5747 #if CONFIG_CONSISTENT_RECODE
5748 tile_data->thresh_freq_fact_prev[i][j] = RD_THRESH_INIT_FACT;
5749 #endif
5750 tile_data->mode_map[i][j] = j;
5751 }
5752 }
5753 #if CONFIG_MULTITHREAD
5754 tile_data->row_base_thresh_freq_fact = NULL;
5755 #endif
5756 }
5757 }
5758
5759 for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
5760 for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
5761 TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col];
5762 TileInfo *tile_info = &this_tile->tile_info;
5763 if (cpi->sf.adaptive_rd_thresh_row_mt &&
5764 this_tile->row_base_thresh_freq_fact == NULL)
5765 vp9_row_mt_alloc_rd_thresh(cpi, this_tile);
5766 vp9_tile_init(tile_info, cm, tile_row, tile_col);
5767
5768 cpi->tile_tok[tile_row][tile_col] = pre_tok + tile_tok;
5769 pre_tok = cpi->tile_tok[tile_row][tile_col];
5770 tile_tok = allocated_tokens(*tile_info);
5771
5772 cpi->tplist[tile_row][tile_col] = tplist + tplist_count;
5773 tplist = cpi->tplist[tile_row][tile_col];
5774 tplist_count = get_num_vert_units(*tile_info, MI_BLOCK_SIZE_LOG2);
5775 }
5776 }
5777 }
5778
vp9_encode_sb_row(VP9_COMP * cpi,ThreadData * td,int tile_row,int tile_col,int mi_row)5779 void vp9_encode_sb_row(VP9_COMP *cpi, ThreadData *td, int tile_row,
5780 int tile_col, int mi_row) {
5781 VP9_COMMON *const cm = &cpi->common;
5782 const int tile_cols = 1 << cm->log2_tile_cols;
5783 TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col];
5784 const TileInfo *const tile_info = &this_tile->tile_info;
5785 TOKENEXTRA *tok = NULL;
5786 int tile_sb_row;
5787 int tile_mb_cols = (tile_info->mi_col_end - tile_info->mi_col_start + 1) >> 1;
5788
5789 tile_sb_row = mi_cols_aligned_to_sb(mi_row - tile_info->mi_row_start) >>
5790 MI_BLOCK_SIZE_LOG2;
5791 get_start_tok(cpi, tile_row, tile_col, mi_row, &tok);
5792 cpi->tplist[tile_row][tile_col][tile_sb_row].start = tok;
5793
5794 if (cpi->sf.use_nonrd_pick_mode)
5795 encode_nonrd_sb_row(cpi, td, this_tile, mi_row, &tok);
5796 #if !CONFIG_REALTIME_ONLY
5797 else
5798 encode_rd_sb_row(cpi, td, this_tile, mi_row, &tok);
5799 #endif
5800
5801 cpi->tplist[tile_row][tile_col][tile_sb_row].stop = tok;
5802 cpi->tplist[tile_row][tile_col][tile_sb_row].count =
5803 (unsigned int)(cpi->tplist[tile_row][tile_col][tile_sb_row].stop -
5804 cpi->tplist[tile_row][tile_col][tile_sb_row].start);
5805 assert(tok - cpi->tplist[tile_row][tile_col][tile_sb_row].start <=
5806 get_token_alloc(MI_BLOCK_SIZE >> 1, tile_mb_cols));
5807
5808 (void)tile_mb_cols;
5809 }
5810
vp9_encode_tile(VP9_COMP * cpi,ThreadData * td,int tile_row,int tile_col)5811 void vp9_encode_tile(VP9_COMP *cpi, ThreadData *td, int tile_row,
5812 int tile_col) {
5813 VP9_COMMON *const cm = &cpi->common;
5814 const int tile_cols = 1 << cm->log2_tile_cols;
5815 TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col];
5816 const TileInfo *const tile_info = &this_tile->tile_info;
5817 const int mi_row_start = tile_info->mi_row_start;
5818 const int mi_row_end = tile_info->mi_row_end;
5819 int mi_row;
5820
5821 for (mi_row = mi_row_start; mi_row < mi_row_end; mi_row += MI_BLOCK_SIZE)
5822 vp9_encode_sb_row(cpi, td, tile_row, tile_col, mi_row);
5823 }
5824
encode_tiles(VP9_COMP * cpi)5825 static void encode_tiles(VP9_COMP *cpi) {
5826 VP9_COMMON *const cm = &cpi->common;
5827 const int tile_cols = 1 << cm->log2_tile_cols;
5828 const int tile_rows = 1 << cm->log2_tile_rows;
5829 int tile_col, tile_row;
5830
5831 vp9_init_tile_data(cpi);
5832
5833 for (tile_row = 0; tile_row < tile_rows; ++tile_row)
5834 for (tile_col = 0; tile_col < tile_cols; ++tile_col)
5835 vp9_encode_tile(cpi, &cpi->td, tile_row, tile_col);
5836 }
5837
5838 #if CONFIG_FP_MB_STATS
input_fpmb_stats(FIRSTPASS_MB_STATS * firstpass_mb_stats,VP9_COMMON * cm,uint8_t ** this_frame_mb_stats)5839 static int input_fpmb_stats(FIRSTPASS_MB_STATS *firstpass_mb_stats,
5840 VP9_COMMON *cm, uint8_t **this_frame_mb_stats) {
5841 uint8_t *mb_stats_in = firstpass_mb_stats->mb_stats_start +
5842 cm->current_video_frame * cm->MBs * sizeof(uint8_t);
5843
5844 if (mb_stats_in > firstpass_mb_stats->mb_stats_end) return EOF;
5845
5846 *this_frame_mb_stats = mb_stats_in;
5847
5848 return 1;
5849 }
5850 #endif
5851
compare_kmeans_data(const void * a,const void * b)5852 static int compare_kmeans_data(const void *a, const void *b) {
5853 if (((const KMEANS_DATA *)a)->value > ((const KMEANS_DATA *)b)->value) {
5854 return 1;
5855 } else if (((const KMEANS_DATA *)a)->value <
5856 ((const KMEANS_DATA *)b)->value) {
5857 return -1;
5858 } else {
5859 return 0;
5860 }
5861 }
5862
compute_boundary_ls(const double * ctr_ls,int k,double * boundary_ls)5863 static void compute_boundary_ls(const double *ctr_ls, int k,
5864 double *boundary_ls) {
5865 // boundary_ls[j] is the upper bound of data centered at ctr_ls[j]
5866 int j;
5867 for (j = 0; j < k - 1; ++j) {
5868 boundary_ls[j] = (ctr_ls[j] + ctr_ls[j + 1]) / 2.;
5869 }
5870 boundary_ls[k - 1] = DBL_MAX;
5871 }
5872
vp9_get_group_idx(double value,double * boundary_ls,int k)5873 int vp9_get_group_idx(double value, double *boundary_ls, int k) {
5874 int group_idx = 0;
5875 while (value >= boundary_ls[group_idx]) {
5876 ++group_idx;
5877 if (group_idx == k - 1) {
5878 break;
5879 }
5880 }
5881 return group_idx;
5882 }
5883
vp9_kmeans(double * ctr_ls,double * boundary_ls,int * count_ls,int k,KMEANS_DATA * arr,int size)5884 void vp9_kmeans(double *ctr_ls, double *boundary_ls, int *count_ls, int k,
5885 KMEANS_DATA *arr, int size) {
5886 int i, j;
5887 int itr;
5888 int group_idx;
5889 double sum[MAX_KMEANS_GROUPS];
5890 int count[MAX_KMEANS_GROUPS];
5891
5892 vpx_clear_system_state();
5893
5894 assert(k >= 2 && k <= MAX_KMEANS_GROUPS);
5895
5896 qsort(arr, size, sizeof(*arr), compare_kmeans_data);
5897
5898 // initialize the center points
5899 for (j = 0; j < k; ++j) {
5900 ctr_ls[j] = arr[(size * (2 * j + 1)) / (2 * k)].value;
5901 }
5902
5903 for (itr = 0; itr < 10; ++itr) {
5904 compute_boundary_ls(ctr_ls, k, boundary_ls);
5905 for (i = 0; i < MAX_KMEANS_GROUPS; ++i) {
5906 sum[i] = 0;
5907 count[i] = 0;
5908 }
5909
5910 // Both the data and centers are sorted in ascending order.
5911 // As each data point is processed in order, its corresponding group index
5912 // can only increase. So we only need to reset the group index to zero here.
5913 group_idx = 0;
5914 for (i = 0; i < size; ++i) {
5915 while (arr[i].value >= boundary_ls[group_idx]) {
5916 // place samples into clusters
5917 ++group_idx;
5918 if (group_idx == k - 1) {
5919 break;
5920 }
5921 }
5922 sum[group_idx] += arr[i].value;
5923 ++count[group_idx];
5924 }
5925
5926 for (group_idx = 0; group_idx < k; ++group_idx) {
5927 if (count[group_idx] > 0)
5928 ctr_ls[group_idx] = sum[group_idx] / count[group_idx];
5929
5930 sum[group_idx] = 0;
5931 count[group_idx] = 0;
5932 }
5933 }
5934
5935 // compute group_idx, boundary_ls and count_ls
5936 for (j = 0; j < k; ++j) {
5937 count_ls[j] = 0;
5938 }
5939 compute_boundary_ls(ctr_ls, k, boundary_ls);
5940 group_idx = 0;
5941 for (i = 0; i < size; ++i) {
5942 while (arr[i].value >= boundary_ls[group_idx]) {
5943 ++group_idx;
5944 if (group_idx == k - 1) {
5945 break;
5946 }
5947 }
5948 arr[i].group_idx = group_idx;
5949 ++count_ls[group_idx];
5950 }
5951 }
5952
encode_frame_internal(VP9_COMP * cpi)5953 static void encode_frame_internal(VP9_COMP *cpi) {
5954 SPEED_FEATURES *const sf = &cpi->sf;
5955 ThreadData *const td = &cpi->td;
5956 MACROBLOCK *const x = &td->mb;
5957 VP9_COMMON *const cm = &cpi->common;
5958 MACROBLOCKD *const xd = &x->e_mbd;
5959 const int gf_group_index = cpi->twopass.gf_group.index;
5960
5961 xd->mi = cm->mi_grid_visible;
5962 xd->mi[0] = cm->mi;
5963 vp9_zero(*td->counts);
5964 vp9_zero(cpi->td.rd_counts);
5965
5966 xd->lossless = cm->base_qindex == 0 && cm->y_dc_delta_q == 0 &&
5967 cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0;
5968
5969 #if CONFIG_VP9_HIGHBITDEPTH
5970 if (cm->use_highbitdepth)
5971 x->fwd_txfm4x4 = xd->lossless ? vp9_highbd_fwht4x4 : vpx_highbd_fdct4x4;
5972 else
5973 x->fwd_txfm4x4 = xd->lossless ? vp9_fwht4x4 : vpx_fdct4x4;
5974 x->highbd_inv_txfm_add =
5975 xd->lossless ? vp9_highbd_iwht4x4_add : vp9_highbd_idct4x4_add;
5976 #else
5977 x->fwd_txfm4x4 = xd->lossless ? vp9_fwht4x4 : vpx_fdct4x4;
5978 #endif // CONFIG_VP9_HIGHBITDEPTH
5979 x->inv_txfm_add = xd->lossless ? vp9_iwht4x4_add : vp9_idct4x4_add;
5980 #if CONFIG_CONSISTENT_RECODE
5981 x->optimize = sf->optimize_coefficients == 1 && cpi->oxcf.pass != 1;
5982 #endif
5983 if (xd->lossless) x->optimize = 0;
5984 x->sharpness = cpi->oxcf.sharpness;
5985 x->adjust_rdmult_by_segment = (cpi->oxcf.aq_mode == VARIANCE_AQ);
5986
5987 cm->tx_mode = select_tx_mode(cpi, xd);
5988
5989 vp9_frame_init_quantizer(cpi);
5990
5991 vp9_initialize_rd_consts(cpi);
5992 vp9_initialize_me_consts(cpi, x, cm->base_qindex);
5993 init_encode_frame_mb_context(cpi);
5994 cm->use_prev_frame_mvs =
5995 !cm->error_resilient_mode && cm->width == cm->last_width &&
5996 cm->height == cm->last_height && !cm->intra_only && cm->last_show_frame;
5997 // Special case: set prev_mi to NULL when the previous mode info
5998 // context cannot be used.
5999 cm->prev_mi =
6000 cm->use_prev_frame_mvs ? cm->prev_mip + cm->mi_stride + 1 : NULL;
6001
6002 x->quant_fp = cpi->sf.use_quant_fp;
6003 vp9_zero(x->skip_txfm);
6004 if (sf->use_nonrd_pick_mode) {
6005 // Initialize internal buffer pointers for rtc coding, where non-RD
6006 // mode decision is used and hence no buffer pointer swap needed.
6007 int i;
6008 struct macroblock_plane *const p = x->plane;
6009 struct macroblockd_plane *const pd = xd->plane;
6010 PICK_MODE_CONTEXT *ctx = &cpi->td.pc_root->none;
6011
6012 for (i = 0; i < MAX_MB_PLANE; ++i) {
6013 p[i].coeff = ctx->coeff_pbuf[i][0];
6014 p[i].qcoeff = ctx->qcoeff_pbuf[i][0];
6015 pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0];
6016 p[i].eobs = ctx->eobs_pbuf[i][0];
6017 }
6018 vp9_zero(x->zcoeff_blk);
6019
6020 if (cm->frame_type != KEY_FRAME && cpi->rc.frames_since_golden == 0 &&
6021 !(cpi->oxcf.lag_in_frames > 0 && cpi->oxcf.rc_mode == VPX_VBR) &&
6022 !cpi->use_svc)
6023 cpi->ref_frame_flags &= (~VP9_GOLD_FLAG);
6024
6025 if (sf->partition_search_type == SOURCE_VAR_BASED_PARTITION)
6026 source_var_based_partition_search_method(cpi);
6027 } else if (gf_group_index && gf_group_index < MAX_ARF_GOP_SIZE &&
6028 cpi->sf.enable_tpl_model) {
6029 TplDepFrame *tpl_frame = &cpi->tpl_stats[cpi->twopass.gf_group.index];
6030 TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
6031
6032 int tpl_stride = tpl_frame->stride;
6033 int64_t intra_cost_base = 0;
6034 int64_t mc_dep_cost_base = 0;
6035 int row, col;
6036
6037 for (row = 0; row < cm->mi_rows && tpl_frame->is_valid; ++row) {
6038 for (col = 0; col < cm->mi_cols; ++col) {
6039 TplDepStats *this_stats = &tpl_stats[row * tpl_stride + col];
6040 intra_cost_base += this_stats->intra_cost;
6041 mc_dep_cost_base += this_stats->mc_dep_cost;
6042 }
6043 }
6044
6045 vpx_clear_system_state();
6046
6047 if (tpl_frame->is_valid)
6048 cpi->rd.r0 = (double)intra_cost_base / mc_dep_cost_base;
6049 }
6050
6051 // Frame segmentation
6052 if (cpi->oxcf.aq_mode == PERCEPTUAL_AQ) build_kmeans_segmentation(cpi);
6053
6054 {
6055 struct vpx_usec_timer emr_timer;
6056 vpx_usec_timer_start(&emr_timer);
6057
6058 #if CONFIG_FP_MB_STATS
6059 if (cpi->use_fp_mb_stats) {
6060 input_fpmb_stats(&cpi->twopass.firstpass_mb_stats, cm,
6061 &cpi->twopass.this_frame_mb_stats);
6062 }
6063 #endif
6064
6065 if (!cpi->row_mt) {
6066 cpi->row_mt_sync_read_ptr = vp9_row_mt_sync_read_dummy;
6067 cpi->row_mt_sync_write_ptr = vp9_row_mt_sync_write_dummy;
6068 // If allowed, encoding tiles in parallel with one thread handling one
6069 // tile when row based multi-threading is disabled.
6070 if (VPXMIN(cpi->oxcf.max_threads, 1 << cm->log2_tile_cols) > 1)
6071 vp9_encode_tiles_mt(cpi);
6072 else
6073 encode_tiles(cpi);
6074 } else {
6075 cpi->row_mt_sync_read_ptr = vp9_row_mt_sync_read;
6076 cpi->row_mt_sync_write_ptr = vp9_row_mt_sync_write;
6077 vp9_encode_tiles_row_mt(cpi);
6078 }
6079
6080 vpx_usec_timer_mark(&emr_timer);
6081 cpi->time_encode_sb_row += vpx_usec_timer_elapsed(&emr_timer);
6082 }
6083
6084 sf->skip_encode_frame =
6085 sf->skip_encode_sb ? get_skip_encode_frame(cm, td) : 0;
6086
6087 #if 0
6088 // Keep record of the total distortion this time around for future use
6089 cpi->last_frame_distortion = cpi->frame_distortion;
6090 #endif
6091 }
6092
get_interp_filter(const int64_t threshes[SWITCHABLE_FILTER_CONTEXTS],int is_alt_ref)6093 static INTERP_FILTER get_interp_filter(
6094 const int64_t threshes[SWITCHABLE_FILTER_CONTEXTS], int is_alt_ref) {
6095 if (!is_alt_ref && threshes[EIGHTTAP_SMOOTH] > threshes[EIGHTTAP] &&
6096 threshes[EIGHTTAP_SMOOTH] > threshes[EIGHTTAP_SHARP] &&
6097 threshes[EIGHTTAP_SMOOTH] > threshes[SWITCHABLE - 1]) {
6098 return EIGHTTAP_SMOOTH;
6099 } else if (threshes[EIGHTTAP_SHARP] > threshes[EIGHTTAP] &&
6100 threshes[EIGHTTAP_SHARP] > threshes[SWITCHABLE - 1]) {
6101 return EIGHTTAP_SHARP;
6102 } else if (threshes[EIGHTTAP] > threshes[SWITCHABLE - 1]) {
6103 return EIGHTTAP;
6104 } else {
6105 return SWITCHABLE;
6106 }
6107 }
6108
compute_frame_aq_offset(struct VP9_COMP * cpi)6109 static int compute_frame_aq_offset(struct VP9_COMP *cpi) {
6110 VP9_COMMON *const cm = &cpi->common;
6111 MODE_INFO **mi_8x8_ptr = cm->mi_grid_visible;
6112 struct segmentation *const seg = &cm->seg;
6113
6114 int mi_row, mi_col;
6115 int sum_delta = 0;
6116 int map_index = 0;
6117 int qdelta_index;
6118 int segment_id;
6119
6120 for (mi_row = 0; mi_row < cm->mi_rows; mi_row++) {
6121 MODE_INFO **mi_8x8 = mi_8x8_ptr;
6122 for (mi_col = 0; mi_col < cm->mi_cols; mi_col++, mi_8x8++) {
6123 segment_id = mi_8x8[0]->segment_id;
6124 qdelta_index = get_segdata(seg, segment_id, SEG_LVL_ALT_Q);
6125 sum_delta += qdelta_index;
6126 map_index++;
6127 }
6128 mi_8x8_ptr += cm->mi_stride;
6129 }
6130
6131 return sum_delta / (cm->mi_rows * cm->mi_cols);
6132 }
6133
6134 #if CONFIG_CONSISTENT_RECODE
restore_encode_params(VP9_COMP * cpi)6135 static void restore_encode_params(VP9_COMP *cpi) {
6136 VP9_COMMON *const cm = &cpi->common;
6137 const int tile_cols = 1 << cm->log2_tile_cols;
6138 const int tile_rows = 1 << cm->log2_tile_rows;
6139 int tile_col, tile_row;
6140 int i, j;
6141 RD_OPT *rd_opt = &cpi->rd;
6142 for (i = 0; i < MAX_REF_FRAMES; i++) {
6143 for (j = 0; j < REFERENCE_MODES; j++)
6144 rd_opt->prediction_type_threshes[i][j] =
6145 rd_opt->prediction_type_threshes_prev[i][j];
6146
6147 for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; j++)
6148 rd_opt->filter_threshes[i][j] = rd_opt->filter_threshes_prev[i][j];
6149 }
6150
6151 if (cpi->tile_data != NULL) {
6152 for (tile_row = 0; tile_row < tile_rows; ++tile_row)
6153 for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
6154 TileDataEnc *tile_data =
6155 &cpi->tile_data[tile_row * tile_cols + tile_col];
6156 for (i = 0; i < BLOCK_SIZES; ++i) {
6157 for (j = 0; j < MAX_MODES; ++j) {
6158 tile_data->thresh_freq_fact[i][j] =
6159 tile_data->thresh_freq_fact_prev[i][j];
6160 }
6161 }
6162 }
6163 }
6164
6165 cm->interp_filter = cpi->sf.default_interp_filter;
6166 }
6167 #endif
6168
vp9_encode_frame(VP9_COMP * cpi)6169 void vp9_encode_frame(VP9_COMP *cpi) {
6170 VP9_COMMON *const cm = &cpi->common;
6171
6172 #if CONFIG_CONSISTENT_RECODE
6173 restore_encode_params(cpi);
6174 #endif
6175
6176 #if CONFIG_MISMATCH_DEBUG
6177 mismatch_reset_frame(MAX_MB_PLANE);
6178 #endif
6179
6180 // In the longer term the encoder should be generalized to match the
6181 // decoder such that we allow compound where one of the 3 buffers has a
6182 // different sign bias and that buffer is then the fixed ref. However, this
6183 // requires further work in the rd loop. For now the only supported encoder
6184 // side behavior is where the ALT ref buffer has opposite sign bias to
6185 // the other two.
6186 if (!frame_is_intra_only(cm)) {
6187 if (vp9_compound_reference_allowed(cm)) {
6188 cpi->allow_comp_inter_inter = 1;
6189 vp9_setup_compound_reference_mode(cm);
6190 } else {
6191 cpi->allow_comp_inter_inter = 0;
6192 }
6193 }
6194
6195 if (cpi->sf.frame_parameter_update) {
6196 int i;
6197 RD_OPT *const rd_opt = &cpi->rd;
6198 FRAME_COUNTS *counts = cpi->td.counts;
6199 RD_COUNTS *const rdc = &cpi->td.rd_counts;
6200
6201 // This code does a single RD pass over the whole frame assuming
6202 // either compound, single or hybrid prediction as per whatever has
6203 // worked best for that type of frame in the past.
6204 // It also predicts whether another coding mode would have worked
6205 // better than this coding mode. If that is the case, it remembers
6206 // that for subsequent frames.
6207 // It also does the same analysis for transform size selection.
6208 const MV_REFERENCE_FRAME frame_type = get_frame_type(cpi);
6209 int64_t *const mode_thrs = rd_opt->prediction_type_threshes[frame_type];
6210 int64_t *const filter_thrs = rd_opt->filter_threshes[frame_type];
6211 const int is_alt_ref = frame_type == ALTREF_FRAME;
6212
6213 /* prediction (compound, single or hybrid) mode selection */
6214 if (is_alt_ref || !cpi->allow_comp_inter_inter)
6215 cm->reference_mode = SINGLE_REFERENCE;
6216 else if (mode_thrs[COMPOUND_REFERENCE] > mode_thrs[SINGLE_REFERENCE] &&
6217 mode_thrs[COMPOUND_REFERENCE] > mode_thrs[REFERENCE_MODE_SELECT] &&
6218 check_dual_ref_flags(cpi) && cpi->static_mb_pct == 100)
6219 cm->reference_mode = COMPOUND_REFERENCE;
6220 else if (mode_thrs[SINGLE_REFERENCE] > mode_thrs[REFERENCE_MODE_SELECT])
6221 cm->reference_mode = SINGLE_REFERENCE;
6222 else
6223 cm->reference_mode = REFERENCE_MODE_SELECT;
6224
6225 if (cm->interp_filter == SWITCHABLE)
6226 cm->interp_filter = get_interp_filter(filter_thrs, is_alt_ref);
6227
6228 encode_frame_internal(cpi);
6229
6230 for (i = 0; i < REFERENCE_MODES; ++i)
6231 mode_thrs[i] = (mode_thrs[i] + rdc->comp_pred_diff[i] / cm->MBs) / 2;
6232
6233 for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
6234 filter_thrs[i] = (filter_thrs[i] + rdc->filter_diff[i] / cm->MBs) / 2;
6235
6236 if (cm->reference_mode == REFERENCE_MODE_SELECT) {
6237 int single_count_zero = 0;
6238 int comp_count_zero = 0;
6239
6240 for (i = 0; i < COMP_INTER_CONTEXTS; i++) {
6241 single_count_zero += counts->comp_inter[i][0];
6242 comp_count_zero += counts->comp_inter[i][1];
6243 }
6244
6245 if (comp_count_zero == 0) {
6246 cm->reference_mode = SINGLE_REFERENCE;
6247 vp9_zero(counts->comp_inter);
6248 } else if (single_count_zero == 0) {
6249 cm->reference_mode = COMPOUND_REFERENCE;
6250 vp9_zero(counts->comp_inter);
6251 }
6252 }
6253
6254 if (cm->tx_mode == TX_MODE_SELECT) {
6255 int count4x4 = 0;
6256 int count8x8_lp = 0, count8x8_8x8p = 0;
6257 int count16x16_16x16p = 0, count16x16_lp = 0;
6258 int count32x32 = 0;
6259
6260 for (i = 0; i < TX_SIZE_CONTEXTS; ++i) {
6261 count4x4 += counts->tx.p32x32[i][TX_4X4];
6262 count4x4 += counts->tx.p16x16[i][TX_4X4];
6263 count4x4 += counts->tx.p8x8[i][TX_4X4];
6264
6265 count8x8_lp += counts->tx.p32x32[i][TX_8X8];
6266 count8x8_lp += counts->tx.p16x16[i][TX_8X8];
6267 count8x8_8x8p += counts->tx.p8x8[i][TX_8X8];
6268
6269 count16x16_16x16p += counts->tx.p16x16[i][TX_16X16];
6270 count16x16_lp += counts->tx.p32x32[i][TX_16X16];
6271 count32x32 += counts->tx.p32x32[i][TX_32X32];
6272 }
6273 if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0 &&
6274 count32x32 == 0) {
6275 cm->tx_mode = ALLOW_8X8;
6276 reset_skip_tx_size(cm, TX_8X8);
6277 } else if (count8x8_8x8p == 0 && count16x16_16x16p == 0 &&
6278 count8x8_lp == 0 && count16x16_lp == 0 && count32x32 == 0) {
6279 cm->tx_mode = ONLY_4X4;
6280 reset_skip_tx_size(cm, TX_4X4);
6281 } else if (count8x8_lp == 0 && count16x16_lp == 0 && count4x4 == 0) {
6282 cm->tx_mode = ALLOW_32X32;
6283 } else if (count32x32 == 0 && count8x8_lp == 0 && count4x4 == 0) {
6284 cm->tx_mode = ALLOW_16X16;
6285 reset_skip_tx_size(cm, TX_16X16);
6286 }
6287 }
6288 } else {
6289 FRAME_COUNTS *counts = cpi->td.counts;
6290 cm->reference_mode = SINGLE_REFERENCE;
6291 if (cpi->allow_comp_inter_inter && cpi->sf.use_compound_nonrd_pickmode &&
6292 cpi->rc.alt_ref_gf_group && !cpi->rc.is_src_frame_alt_ref &&
6293 cm->frame_type != KEY_FRAME)
6294 cm->reference_mode = REFERENCE_MODE_SELECT;
6295
6296 encode_frame_internal(cpi);
6297
6298 if (cm->reference_mode == REFERENCE_MODE_SELECT) {
6299 int single_count_zero = 0;
6300 int comp_count_zero = 0;
6301 int i;
6302 for (i = 0; i < COMP_INTER_CONTEXTS; i++) {
6303 single_count_zero += counts->comp_inter[i][0];
6304 comp_count_zero += counts->comp_inter[i][1];
6305 }
6306 if (comp_count_zero == 0) {
6307 cm->reference_mode = SINGLE_REFERENCE;
6308 vp9_zero(counts->comp_inter);
6309 } else if (single_count_zero == 0) {
6310 cm->reference_mode = COMPOUND_REFERENCE;
6311 vp9_zero(counts->comp_inter);
6312 }
6313 }
6314 }
6315
6316 // If segmented AQ is enabled compute the average AQ weighting.
6317 if (cm->seg.enabled && (cpi->oxcf.aq_mode != NO_AQ) &&
6318 (cm->seg.update_map || cm->seg.update_data)) {
6319 cm->seg.aq_av_offset = compute_frame_aq_offset(cpi);
6320 }
6321 }
6322
sum_intra_stats(FRAME_COUNTS * counts,const MODE_INFO * mi)6323 static void sum_intra_stats(FRAME_COUNTS *counts, const MODE_INFO *mi) {
6324 const PREDICTION_MODE y_mode = mi->mode;
6325 const PREDICTION_MODE uv_mode = mi->uv_mode;
6326 const BLOCK_SIZE bsize = mi->sb_type;
6327
6328 if (bsize < BLOCK_8X8) {
6329 int idx, idy;
6330 const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
6331 const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
6332 for (idy = 0; idy < 2; idy += num_4x4_h)
6333 for (idx = 0; idx < 2; idx += num_4x4_w)
6334 ++counts->y_mode[0][mi->bmi[idy * 2 + idx].as_mode];
6335 } else {
6336 ++counts->y_mode[size_group_lookup[bsize]][y_mode];
6337 }
6338
6339 ++counts->uv_mode[y_mode][uv_mode];
6340 }
6341
update_zeromv_cnt(VP9_COMP * const cpi,const MODE_INFO * const mi,int mi_row,int mi_col,BLOCK_SIZE bsize)6342 static void update_zeromv_cnt(VP9_COMP *const cpi, const MODE_INFO *const mi,
6343 int mi_row, int mi_col, BLOCK_SIZE bsize) {
6344 const VP9_COMMON *const cm = &cpi->common;
6345 MV mv = mi->mv[0].as_mv;
6346 const int bw = num_8x8_blocks_wide_lookup[bsize];
6347 const int bh = num_8x8_blocks_high_lookup[bsize];
6348 const int xmis = VPXMIN(cm->mi_cols - mi_col, bw);
6349 const int ymis = VPXMIN(cm->mi_rows - mi_row, bh);
6350 const int block_index = mi_row * cm->mi_cols + mi_col;
6351 int x, y;
6352 for (y = 0; y < ymis; y++)
6353 for (x = 0; x < xmis; x++) {
6354 int map_offset = block_index + y * cm->mi_cols + x;
6355 if (mi->ref_frame[0] == LAST_FRAME && is_inter_block(mi) &&
6356 mi->segment_id <= CR_SEGMENT_ID_BOOST2) {
6357 if (abs(mv.row) < 8 && abs(mv.col) < 8) {
6358 if (cpi->consec_zero_mv[map_offset] < 255)
6359 cpi->consec_zero_mv[map_offset]++;
6360 } else {
6361 cpi->consec_zero_mv[map_offset] = 0;
6362 }
6363 }
6364 }
6365 }
6366
encode_superblock(VP9_COMP * cpi,ThreadData * td,TOKENEXTRA ** t,int output_enabled,int mi_row,int mi_col,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx)6367 static void encode_superblock(VP9_COMP *cpi, ThreadData *td, TOKENEXTRA **t,
6368 int output_enabled, int mi_row, int mi_col,
6369 BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
6370 VP9_COMMON *const cm = &cpi->common;
6371 MACROBLOCK *const x = &td->mb;
6372 MACROBLOCKD *const xd = &x->e_mbd;
6373 MODE_INFO *mi = xd->mi[0];
6374 const int seg_skip =
6375 segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP);
6376 x->skip_recode = !x->select_tx_size && mi->sb_type >= BLOCK_8X8 &&
6377 cpi->oxcf.aq_mode != COMPLEXITY_AQ &&
6378 cpi->oxcf.aq_mode != CYCLIC_REFRESH_AQ &&
6379 cpi->sf.allow_skip_recode;
6380
6381 if (!x->skip_recode && !cpi->sf.use_nonrd_pick_mode)
6382 memset(x->skip_txfm, 0, sizeof(x->skip_txfm));
6383
6384 x->skip_optimize = ctx->is_coded;
6385 ctx->is_coded = 1;
6386 x->use_lp32x32fdct = cpi->sf.use_lp32x32fdct;
6387 x->skip_encode = (!output_enabled && cpi->sf.skip_encode_frame &&
6388 x->q_index < QIDX_SKIP_THRESH);
6389
6390 if (x->skip_encode) return;
6391
6392 if (!is_inter_block(mi)) {
6393 int plane;
6394 #if CONFIG_BETTER_HW_COMPATIBILITY && CONFIG_VP9_HIGHBITDEPTH
6395 if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) &&
6396 (xd->above_mi == NULL || xd->left_mi == NULL) &&
6397 need_top_left[mi->uv_mode])
6398 assert(0);
6399 #endif // CONFIG_BETTER_HW_COMPATIBILITY && CONFIG_VP9_HIGHBITDEPTH
6400 mi->skip = 1;
6401 for (plane = 0; plane < MAX_MB_PLANE; ++plane)
6402 vp9_encode_intra_block_plane(x, VPXMAX(bsize, BLOCK_8X8), plane, 1);
6403 if (output_enabled) sum_intra_stats(td->counts, mi);
6404 vp9_tokenize_sb(cpi, td, t, !output_enabled, seg_skip,
6405 VPXMAX(bsize, BLOCK_8X8));
6406 } else {
6407 int ref;
6408 const int is_compound = has_second_ref(mi);
6409 set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]);
6410 for (ref = 0; ref < 1 + is_compound; ++ref) {
6411 YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, mi->ref_frame[ref]);
6412 assert(cfg != NULL);
6413 vp9_setup_pre_planes(xd, ref, cfg, mi_row, mi_col,
6414 &xd->block_refs[ref]->sf);
6415 }
6416 if (!(cpi->sf.reuse_inter_pred_sby && ctx->pred_pixel_ready) || seg_skip)
6417 vp9_build_inter_predictors_sby(xd, mi_row, mi_col,
6418 VPXMAX(bsize, BLOCK_8X8));
6419
6420 vp9_build_inter_predictors_sbuv(xd, mi_row, mi_col,
6421 VPXMAX(bsize, BLOCK_8X8));
6422
6423 #if CONFIG_MISMATCH_DEBUG
6424 if (output_enabled) {
6425 int plane;
6426 for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
6427 const struct macroblockd_plane *pd = &xd->plane[plane];
6428 int pixel_c, pixel_r;
6429 const BLOCK_SIZE plane_bsize =
6430 get_plane_block_size(VPXMAX(bsize, BLOCK_8X8), &xd->plane[plane]);
6431 const int bw = get_block_width(plane_bsize);
6432 const int bh = get_block_height(plane_bsize);
6433 mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, 0, 0,
6434 pd->subsampling_x, pd->subsampling_y);
6435
6436 mismatch_record_block_pre(pd->dst.buf, pd->dst.stride, plane, pixel_c,
6437 pixel_r, bw, bh,
6438 xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH);
6439 }
6440 }
6441 #endif
6442
6443 vp9_encode_sb(x, VPXMAX(bsize, BLOCK_8X8), mi_row, mi_col, output_enabled);
6444 vp9_tokenize_sb(cpi, td, t, !output_enabled, seg_skip,
6445 VPXMAX(bsize, BLOCK_8X8));
6446 }
6447
6448 if (seg_skip) {
6449 assert(mi->skip);
6450 }
6451
6452 if (output_enabled) {
6453 if (cm->tx_mode == TX_MODE_SELECT && mi->sb_type >= BLOCK_8X8 &&
6454 !(is_inter_block(mi) && mi->skip)) {
6455 ++get_tx_counts(max_txsize_lookup[bsize], get_tx_size_context(xd),
6456 &td->counts->tx)[mi->tx_size];
6457 } else {
6458 // The new intra coding scheme requires no change of transform size
6459 if (is_inter_block(mi)) {
6460 mi->tx_size = VPXMIN(tx_mode_to_biggest_tx_size[cm->tx_mode],
6461 max_txsize_lookup[bsize]);
6462 } else {
6463 mi->tx_size = (bsize >= BLOCK_8X8) ? mi->tx_size : TX_4X4;
6464 }
6465 }
6466
6467 ++td->counts->tx.tx_totals[mi->tx_size];
6468 ++td->counts->tx.tx_totals[get_uv_tx_size(mi, &xd->plane[1])];
6469 if (cm->seg.enabled && cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
6470 vp9_cyclic_refresh_update_sb_postencode(cpi, mi, mi_row, mi_col, bsize);
6471 if (cpi->oxcf.pass == 0 && cpi->svc.temporal_layer_id == 0 &&
6472 (!cpi->use_svc ||
6473 (cpi->use_svc &&
6474 !cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame &&
6475 cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1)))
6476 update_zeromv_cnt(cpi, mi, mi_row, mi_col, bsize);
6477 }
6478 }
6479