1 /*
2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <assert.h>
12 #include <stdio.h>
13 #include <limits.h>
14
15 #include "vpx/vpx_encoder.h"
16 #include "vpx_dsp/bitwriter_buffer.h"
17 #include "vpx_dsp/vpx_dsp_common.h"
18 #include "vpx_mem/vpx_mem.h"
19 #include "vpx_ports/mem_ops.h"
20 #include "vpx_ports/system_state.h"
21 #if CONFIG_BITSTREAM_DEBUG
22 #include "vpx_util/vpx_debug_util.h"
23 #endif // CONFIG_BITSTREAM_DEBUG
24
25 #include "vp9/common/vp9_entropy.h"
26 #include "vp9/common/vp9_entropymode.h"
27 #include "vp9/common/vp9_entropymv.h"
28 #include "vp9/common/vp9_mvref_common.h"
29 #include "vp9/common/vp9_pred_common.h"
30 #include "vp9/common/vp9_seg_common.h"
31 #include "vp9/common/vp9_tile_common.h"
32
33 #include "vp9/encoder/vp9_cost.h"
34 #include "vp9/encoder/vp9_bitstream.h"
35 #include "vp9/encoder/vp9_encodemv.h"
36 #include "vp9/encoder/vp9_mcomp.h"
37 #include "vp9/encoder/vp9_segmentation.h"
38 #include "vp9/encoder/vp9_subexp.h"
39 #include "vp9/encoder/vp9_tokenize.h"
40
41 static const struct vp9_token intra_mode_encodings[INTRA_MODES] = {
42 { 0, 1 }, { 6, 3 }, { 28, 5 }, { 30, 5 }, { 58, 6 },
43 { 59, 6 }, { 126, 7 }, { 127, 7 }, { 62, 6 }, { 2, 2 }
44 };
45 static const struct vp9_token
46 switchable_interp_encodings[SWITCHABLE_FILTERS] = { { 0, 1 },
47 { 2, 2 },
48 { 3, 2 } };
49 static const struct vp9_token partition_encodings[PARTITION_TYPES] = {
50 { 0, 1 }, { 2, 2 }, { 6, 3 }, { 7, 3 }
51 };
52 static const struct vp9_token inter_mode_encodings[INTER_MODES] = {
53 { 2, 2 }, { 6, 3 }, { 0, 1 }, { 7, 3 }
54 };
55
write_intra_mode(vpx_writer * w,PREDICTION_MODE mode,const vpx_prob * probs)56 static void write_intra_mode(vpx_writer *w, PREDICTION_MODE mode,
57 const vpx_prob *probs) {
58 vp9_write_token(w, vp9_intra_mode_tree, probs, &intra_mode_encodings[mode]);
59 }
60
write_inter_mode(vpx_writer * w,PREDICTION_MODE mode,const vpx_prob * probs)61 static void write_inter_mode(vpx_writer *w, PREDICTION_MODE mode,
62 const vpx_prob *probs) {
63 assert(is_inter_mode(mode));
64 vp9_write_token(w, vp9_inter_mode_tree, probs,
65 &inter_mode_encodings[INTER_OFFSET(mode)]);
66 }
67
encode_unsigned_max(struct vpx_write_bit_buffer * wb,int data,int max)68 static void encode_unsigned_max(struct vpx_write_bit_buffer *wb, int data,
69 int max) {
70 vpx_wb_write_literal(wb, data, get_unsigned_bits(max));
71 }
72
prob_diff_update(const vpx_tree_index * tree,vpx_prob probs[],const unsigned int counts[],int n,vpx_writer * w)73 static void prob_diff_update(const vpx_tree_index *tree,
74 vpx_prob probs[/*n - 1*/],
75 const unsigned int counts[/*n - 1*/], int n,
76 vpx_writer *w) {
77 int i;
78 unsigned int branch_ct[32][2];
79
80 // Assuming max number of probabilities <= 32
81 assert(n <= 32);
82
83 vp9_tree_probs_from_distribution(tree, branch_ct, counts);
84 for (i = 0; i < n - 1; ++i)
85 vp9_cond_prob_diff_update(w, &probs[i], branch_ct[i]);
86 }
87
write_selected_tx_size(const VP9_COMMON * cm,const MACROBLOCKD * const xd,vpx_writer * w)88 static void write_selected_tx_size(const VP9_COMMON *cm,
89 const MACROBLOCKD *const xd, vpx_writer *w) {
90 TX_SIZE tx_size = xd->mi[0]->tx_size;
91 BLOCK_SIZE bsize = xd->mi[0]->sb_type;
92 const TX_SIZE max_tx_size = max_txsize_lookup[bsize];
93 const vpx_prob *const tx_probs =
94 get_tx_probs(max_tx_size, get_tx_size_context(xd), &cm->fc->tx_probs);
95 vpx_write(w, tx_size != TX_4X4, tx_probs[0]);
96 if (tx_size != TX_4X4 && max_tx_size >= TX_16X16) {
97 vpx_write(w, tx_size != TX_8X8, tx_probs[1]);
98 if (tx_size != TX_8X8 && max_tx_size >= TX_32X32)
99 vpx_write(w, tx_size != TX_16X16, tx_probs[2]);
100 }
101 }
102
write_skip(const VP9_COMMON * cm,const MACROBLOCKD * const xd,int segment_id,const MODE_INFO * mi,vpx_writer * w)103 static int write_skip(const VP9_COMMON *cm, const MACROBLOCKD *const xd,
104 int segment_id, const MODE_INFO *mi, vpx_writer *w) {
105 if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
106 return 1;
107 } else {
108 const int skip = mi->skip;
109 vpx_write(w, skip, vp9_get_skip_prob(cm, xd));
110 return skip;
111 }
112 }
113
update_skip_probs(VP9_COMMON * cm,vpx_writer * w,FRAME_COUNTS * counts)114 static void update_skip_probs(VP9_COMMON *cm, vpx_writer *w,
115 FRAME_COUNTS *counts) {
116 int k;
117
118 for (k = 0; k < SKIP_CONTEXTS; ++k)
119 vp9_cond_prob_diff_update(w, &cm->fc->skip_probs[k], counts->skip[k]);
120 }
121
update_switchable_interp_probs(VP9_COMMON * cm,vpx_writer * w,FRAME_COUNTS * counts)122 static void update_switchable_interp_probs(VP9_COMMON *cm, vpx_writer *w,
123 FRAME_COUNTS *counts) {
124 int j;
125 for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
126 prob_diff_update(vp9_switchable_interp_tree,
127 cm->fc->switchable_interp_prob[j],
128 counts->switchable_interp[j], SWITCHABLE_FILTERS, w);
129 }
130
pack_mb_tokens(vpx_writer * w,TOKENEXTRA ** tp,const TOKENEXTRA * const stop,vpx_bit_depth_t bit_depth)131 static void pack_mb_tokens(vpx_writer *w, TOKENEXTRA **tp,
132 const TOKENEXTRA *const stop,
133 vpx_bit_depth_t bit_depth) {
134 const TOKENEXTRA *p;
135 const vp9_extra_bit *const extra_bits =
136 #if CONFIG_VP9_HIGHBITDEPTH
137 (bit_depth == VPX_BITS_12)
138 ? vp9_extra_bits_high12
139 : (bit_depth == VPX_BITS_10) ? vp9_extra_bits_high10 : vp9_extra_bits;
140 #else
141 vp9_extra_bits;
142 (void)bit_depth;
143 #endif // CONFIG_VP9_HIGHBITDEPTH
144
145 for (p = *tp; p < stop && p->token != EOSB_TOKEN; ++p) {
146 if (p->token == EOB_TOKEN) {
147 vpx_write(w, 0, p->context_tree[0]);
148 continue;
149 }
150 vpx_write(w, 1, p->context_tree[0]);
151 while (p->token == ZERO_TOKEN) {
152 vpx_write(w, 0, p->context_tree[1]);
153 ++p;
154 if (p == stop || p->token == EOSB_TOKEN) {
155 *tp = (TOKENEXTRA *)(uintptr_t)p + (p->token == EOSB_TOKEN);
156 return;
157 }
158 }
159
160 {
161 const int t = p->token;
162 const vpx_prob *const context_tree = p->context_tree;
163 assert(t != ZERO_TOKEN);
164 assert(t != EOB_TOKEN);
165 assert(t != EOSB_TOKEN);
166 vpx_write(w, 1, context_tree[1]);
167 if (t == ONE_TOKEN) {
168 vpx_write(w, 0, context_tree[2]);
169 vpx_write_bit(w, p->extra & 1);
170 } else { // t >= TWO_TOKEN && t < EOB_TOKEN
171 const struct vp9_token *const a = &vp9_coef_encodings[t];
172 const int v = a->value;
173 const int n = a->len;
174 const int e = p->extra;
175 vpx_write(w, 1, context_tree[2]);
176 vp9_write_tree(w, vp9_coef_con_tree,
177 vp9_pareto8_full[context_tree[PIVOT_NODE] - 1], v,
178 n - UNCONSTRAINED_NODES, 0);
179 if (t >= CATEGORY1_TOKEN) {
180 const vp9_extra_bit *const b = &extra_bits[t];
181 const unsigned char *pb = b->prob;
182 int v = e >> 1;
183 int n = b->len; // number of bits in v, assumed nonzero
184 do {
185 const int bb = (v >> --n) & 1;
186 vpx_write(w, bb, *pb++);
187 } while (n);
188 }
189 vpx_write_bit(w, e & 1);
190 }
191 }
192 }
193 *tp = (TOKENEXTRA *)(uintptr_t)p + (p->token == EOSB_TOKEN);
194 }
195
write_segment_id(vpx_writer * w,const struct segmentation * seg,int segment_id)196 static void write_segment_id(vpx_writer *w, const struct segmentation *seg,
197 int segment_id) {
198 if (seg->enabled && seg->update_map)
199 vp9_write_tree(w, vp9_segment_tree, seg->tree_probs, segment_id, 3, 0);
200 }
201
202 // This function encodes the reference frame
write_ref_frames(const VP9_COMMON * cm,const MACROBLOCKD * const xd,vpx_writer * w)203 static void write_ref_frames(const VP9_COMMON *cm, const MACROBLOCKD *const xd,
204 vpx_writer *w) {
205 const MODE_INFO *const mi = xd->mi[0];
206 const int is_compound = has_second_ref(mi);
207 const int segment_id = mi->segment_id;
208
209 // If segment level coding of this signal is disabled...
210 // or the segment allows multiple reference frame options
211 if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
212 assert(!is_compound);
213 assert(mi->ref_frame[0] ==
214 get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME));
215 } else {
216 // does the feature use compound prediction or not
217 // (if not specified at the frame/segment level)
218 if (cm->reference_mode == REFERENCE_MODE_SELECT) {
219 vpx_write(w, is_compound, vp9_get_reference_mode_prob(cm, xd));
220 } else {
221 assert((!is_compound) == (cm->reference_mode == SINGLE_REFERENCE));
222 }
223
224 if (is_compound) {
225 const int idx = cm->ref_frame_sign_bias[cm->comp_fixed_ref];
226 vpx_write(w, mi->ref_frame[!idx] == cm->comp_var_ref[1],
227 vp9_get_pred_prob_comp_ref_p(cm, xd));
228 } else {
229 const int bit0 = mi->ref_frame[0] != LAST_FRAME;
230 vpx_write(w, bit0, vp9_get_pred_prob_single_ref_p1(cm, xd));
231 if (bit0) {
232 const int bit1 = mi->ref_frame[0] != GOLDEN_FRAME;
233 vpx_write(w, bit1, vp9_get_pred_prob_single_ref_p2(cm, xd));
234 }
235 }
236 }
237 }
238
pack_inter_mode_mvs(VP9_COMP * cpi,const MACROBLOCKD * const xd,const MB_MODE_INFO_EXT * const mbmi_ext,vpx_writer * w,unsigned int * const max_mv_magnitude,int interp_filter_selected[MAX_REF_FRAMES][SWITCHABLE])239 static void pack_inter_mode_mvs(
240 VP9_COMP *cpi, const MACROBLOCKD *const xd,
241 const MB_MODE_INFO_EXT *const mbmi_ext, vpx_writer *w,
242 unsigned int *const max_mv_magnitude,
243 int interp_filter_selected[MAX_REF_FRAMES][SWITCHABLE]) {
244 VP9_COMMON *const cm = &cpi->common;
245 const nmv_context *nmvc = &cm->fc->nmvc;
246 const struct segmentation *const seg = &cm->seg;
247 const MODE_INFO *const mi = xd->mi[0];
248 const PREDICTION_MODE mode = mi->mode;
249 const int segment_id = mi->segment_id;
250 const BLOCK_SIZE bsize = mi->sb_type;
251 const int allow_hp = cm->allow_high_precision_mv;
252 const int is_inter = is_inter_block(mi);
253 const int is_compound = has_second_ref(mi);
254 int skip, ref;
255
256 if (seg->update_map) {
257 if (seg->temporal_update) {
258 const int pred_flag = mi->seg_id_predicted;
259 vpx_prob pred_prob = vp9_get_pred_prob_seg_id(seg, xd);
260 vpx_write(w, pred_flag, pred_prob);
261 if (!pred_flag) write_segment_id(w, seg, segment_id);
262 } else {
263 write_segment_id(w, seg, segment_id);
264 }
265 }
266
267 skip = write_skip(cm, xd, segment_id, mi, w);
268
269 if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME))
270 vpx_write(w, is_inter, vp9_get_intra_inter_prob(cm, xd));
271
272 if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT &&
273 !(is_inter && skip)) {
274 write_selected_tx_size(cm, xd, w);
275 }
276
277 if (!is_inter) {
278 if (bsize >= BLOCK_8X8) {
279 write_intra_mode(w, mode, cm->fc->y_mode_prob[size_group_lookup[bsize]]);
280 } else {
281 int idx, idy;
282 const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
283 const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
284 for (idy = 0; idy < 2; idy += num_4x4_h) {
285 for (idx = 0; idx < 2; idx += num_4x4_w) {
286 const PREDICTION_MODE b_mode = mi->bmi[idy * 2 + idx].as_mode;
287 write_intra_mode(w, b_mode, cm->fc->y_mode_prob[0]);
288 }
289 }
290 }
291 write_intra_mode(w, mi->uv_mode, cm->fc->uv_mode_prob[mode]);
292 } else {
293 const int mode_ctx = mbmi_ext->mode_context[mi->ref_frame[0]];
294 const vpx_prob *const inter_probs = cm->fc->inter_mode_probs[mode_ctx];
295 write_ref_frames(cm, xd, w);
296
297 // If segment skip is not enabled code the mode.
298 if (!segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
299 if (bsize >= BLOCK_8X8) {
300 write_inter_mode(w, mode, inter_probs);
301 }
302 }
303
304 if (cm->interp_filter == SWITCHABLE) {
305 const int ctx = get_pred_context_switchable_interp(xd);
306 vp9_write_token(w, vp9_switchable_interp_tree,
307 cm->fc->switchable_interp_prob[ctx],
308 &switchable_interp_encodings[mi->interp_filter]);
309 ++interp_filter_selected[0][mi->interp_filter];
310 } else {
311 assert(mi->interp_filter == cm->interp_filter);
312 }
313
314 if (bsize < BLOCK_8X8) {
315 const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
316 const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
317 int idx, idy;
318 for (idy = 0; idy < 2; idy += num_4x4_h) {
319 for (idx = 0; idx < 2; idx += num_4x4_w) {
320 const int j = idy * 2 + idx;
321 const PREDICTION_MODE b_mode = mi->bmi[j].as_mode;
322 write_inter_mode(w, b_mode, inter_probs);
323 if (b_mode == NEWMV) {
324 for (ref = 0; ref < 1 + is_compound; ++ref)
325 vp9_encode_mv(cpi, w, &mi->bmi[j].as_mv[ref].as_mv,
326 &mbmi_ext->ref_mvs[mi->ref_frame[ref]][0].as_mv,
327 nmvc, allow_hp, max_mv_magnitude);
328 }
329 }
330 }
331 } else {
332 if (mode == NEWMV) {
333 for (ref = 0; ref < 1 + is_compound; ++ref)
334 vp9_encode_mv(cpi, w, &mi->mv[ref].as_mv,
335 &mbmi_ext->ref_mvs[mi->ref_frame[ref]][0].as_mv, nmvc,
336 allow_hp, max_mv_magnitude);
337 }
338 }
339 }
340 }
341
write_mb_modes_kf(const VP9_COMMON * cm,const MACROBLOCKD * xd,vpx_writer * w)342 static void write_mb_modes_kf(const VP9_COMMON *cm, const MACROBLOCKD *xd,
343 vpx_writer *w) {
344 const struct segmentation *const seg = &cm->seg;
345 const MODE_INFO *const mi = xd->mi[0];
346 const MODE_INFO *const above_mi = xd->above_mi;
347 const MODE_INFO *const left_mi = xd->left_mi;
348 const BLOCK_SIZE bsize = mi->sb_type;
349
350 if (seg->update_map) write_segment_id(w, seg, mi->segment_id);
351
352 write_skip(cm, xd, mi->segment_id, mi, w);
353
354 if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT)
355 write_selected_tx_size(cm, xd, w);
356
357 if (bsize >= BLOCK_8X8) {
358 write_intra_mode(w, mi->mode, get_y_mode_probs(mi, above_mi, left_mi, 0));
359 } else {
360 const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
361 const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
362 int idx, idy;
363
364 for (idy = 0; idy < 2; idy += num_4x4_h) {
365 for (idx = 0; idx < 2; idx += num_4x4_w) {
366 const int block = idy * 2 + idx;
367 write_intra_mode(w, mi->bmi[block].as_mode,
368 get_y_mode_probs(mi, above_mi, left_mi, block));
369 }
370 }
371 }
372
373 write_intra_mode(w, mi->uv_mode, vp9_kf_uv_mode_prob[mi->mode]);
374 }
375
write_modes_b(VP9_COMP * cpi,MACROBLOCKD * const xd,const TileInfo * const tile,vpx_writer * w,TOKENEXTRA ** tok,const TOKENEXTRA * const tok_end,int mi_row,int mi_col,unsigned int * const max_mv_magnitude,int interp_filter_selected[MAX_REF_FRAMES][SWITCHABLE])376 static void write_modes_b(
377 VP9_COMP *cpi, MACROBLOCKD *const xd, const TileInfo *const tile,
378 vpx_writer *w, TOKENEXTRA **tok, const TOKENEXTRA *const tok_end,
379 int mi_row, int mi_col, unsigned int *const max_mv_magnitude,
380 int interp_filter_selected[MAX_REF_FRAMES][SWITCHABLE]) {
381 const VP9_COMMON *const cm = &cpi->common;
382 const MB_MODE_INFO_EXT *const mbmi_ext =
383 cpi->td.mb.mbmi_ext_base + (mi_row * cm->mi_cols + mi_col);
384 MODE_INFO *m;
385
386 xd->mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col);
387 m = xd->mi[0];
388
389 set_mi_row_col(xd, tile, mi_row, num_8x8_blocks_high_lookup[m->sb_type],
390 mi_col, num_8x8_blocks_wide_lookup[m->sb_type], cm->mi_rows,
391 cm->mi_cols);
392 if (frame_is_intra_only(cm)) {
393 write_mb_modes_kf(cm, xd, w);
394 } else {
395 pack_inter_mode_mvs(cpi, xd, mbmi_ext, w, max_mv_magnitude,
396 interp_filter_selected);
397 }
398
399 assert(*tok < tok_end);
400 pack_mb_tokens(w, tok, tok_end, cm->bit_depth);
401 }
402
write_partition(const VP9_COMMON * const cm,const MACROBLOCKD * const xd,int hbs,int mi_row,int mi_col,PARTITION_TYPE p,BLOCK_SIZE bsize,vpx_writer * w)403 static void write_partition(const VP9_COMMON *const cm,
404 const MACROBLOCKD *const xd, int hbs, int mi_row,
405 int mi_col, PARTITION_TYPE p, BLOCK_SIZE bsize,
406 vpx_writer *w) {
407 const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
408 const vpx_prob *const probs = xd->partition_probs[ctx];
409 const int has_rows = (mi_row + hbs) < cm->mi_rows;
410 const int has_cols = (mi_col + hbs) < cm->mi_cols;
411
412 if (has_rows && has_cols) {
413 vp9_write_token(w, vp9_partition_tree, probs, &partition_encodings[p]);
414 } else if (!has_rows && has_cols) {
415 assert(p == PARTITION_SPLIT || p == PARTITION_HORZ);
416 vpx_write(w, p == PARTITION_SPLIT, probs[1]);
417 } else if (has_rows && !has_cols) {
418 assert(p == PARTITION_SPLIT || p == PARTITION_VERT);
419 vpx_write(w, p == PARTITION_SPLIT, probs[2]);
420 } else {
421 assert(p == PARTITION_SPLIT);
422 }
423 }
424
write_modes_sb(VP9_COMP * cpi,MACROBLOCKD * const xd,const TileInfo * const tile,vpx_writer * w,TOKENEXTRA ** tok,const TOKENEXTRA * const tok_end,int mi_row,int mi_col,BLOCK_SIZE bsize,unsigned int * const max_mv_magnitude,int interp_filter_selected[MAX_REF_FRAMES][SWITCHABLE])425 static void write_modes_sb(
426 VP9_COMP *cpi, MACROBLOCKD *const xd, const TileInfo *const tile,
427 vpx_writer *w, TOKENEXTRA **tok, const TOKENEXTRA *const tok_end,
428 int mi_row, int mi_col, BLOCK_SIZE bsize,
429 unsigned int *const max_mv_magnitude,
430 int interp_filter_selected[MAX_REF_FRAMES][SWITCHABLE]) {
431 const VP9_COMMON *const cm = &cpi->common;
432 const int bsl = b_width_log2_lookup[bsize];
433 const int bs = (1 << bsl) / 4;
434 PARTITION_TYPE partition;
435 BLOCK_SIZE subsize;
436 const MODE_INFO *m = NULL;
437
438 if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
439
440 m = cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col];
441
442 partition = partition_lookup[bsl][m->sb_type];
443 write_partition(cm, xd, bs, mi_row, mi_col, partition, bsize, w);
444 subsize = get_subsize(bsize, partition);
445 if (subsize < BLOCK_8X8) {
446 write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col,
447 max_mv_magnitude, interp_filter_selected);
448 } else {
449 switch (partition) {
450 case PARTITION_NONE:
451 write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col,
452 max_mv_magnitude, interp_filter_selected);
453 break;
454 case PARTITION_HORZ:
455 write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col,
456 max_mv_magnitude, interp_filter_selected);
457 if (mi_row + bs < cm->mi_rows)
458 write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row + bs, mi_col,
459 max_mv_magnitude, interp_filter_selected);
460 break;
461 case PARTITION_VERT:
462 write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col,
463 max_mv_magnitude, interp_filter_selected);
464 if (mi_col + bs < cm->mi_cols)
465 write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col + bs,
466 max_mv_magnitude, interp_filter_selected);
467 break;
468 default:
469 assert(partition == PARTITION_SPLIT);
470 write_modes_sb(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col, subsize,
471 max_mv_magnitude, interp_filter_selected);
472 write_modes_sb(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col + bs,
473 subsize, max_mv_magnitude, interp_filter_selected);
474 write_modes_sb(cpi, xd, tile, w, tok, tok_end, mi_row + bs, mi_col,
475 subsize, max_mv_magnitude, interp_filter_selected);
476 write_modes_sb(cpi, xd, tile, w, tok, tok_end, mi_row + bs, mi_col + bs,
477 subsize, max_mv_magnitude, interp_filter_selected);
478 break;
479 }
480 }
481
482 // update partition context
483 if (bsize >= BLOCK_8X8 &&
484 (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
485 update_partition_context(xd, mi_row, mi_col, subsize, bsize);
486 }
487
write_modes(VP9_COMP * cpi,MACROBLOCKD * const xd,const TileInfo * const tile,vpx_writer * w,int tile_row,int tile_col,unsigned int * const max_mv_magnitude,int interp_filter_selected[MAX_REF_FRAMES][SWITCHABLE])488 static void write_modes(
489 VP9_COMP *cpi, MACROBLOCKD *const xd, const TileInfo *const tile,
490 vpx_writer *w, int tile_row, int tile_col,
491 unsigned int *const max_mv_magnitude,
492 int interp_filter_selected[MAX_REF_FRAMES][SWITCHABLE]) {
493 const VP9_COMMON *const cm = &cpi->common;
494 int mi_row, mi_col, tile_sb_row;
495 TOKENEXTRA *tok = NULL;
496 TOKENEXTRA *tok_end = NULL;
497
498 set_partition_probs(cm, xd);
499
500 for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
501 mi_row += MI_BLOCK_SIZE) {
502 tile_sb_row = mi_cols_aligned_to_sb(mi_row - tile->mi_row_start) >>
503 MI_BLOCK_SIZE_LOG2;
504 tok = cpi->tplist[tile_row][tile_col][tile_sb_row].start;
505 tok_end = tok + cpi->tplist[tile_row][tile_col][tile_sb_row].count;
506
507 vp9_zero(xd->left_seg_context);
508 for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
509 mi_col += MI_BLOCK_SIZE)
510 write_modes_sb(cpi, xd, tile, w, &tok, tok_end, mi_row, mi_col,
511 BLOCK_64X64, max_mv_magnitude, interp_filter_selected);
512
513 assert(tok == cpi->tplist[tile_row][tile_col][tile_sb_row].stop);
514 }
515 }
516
build_tree_distribution(VP9_COMP * cpi,TX_SIZE tx_size,vp9_coeff_stats * coef_branch_ct,vp9_coeff_probs_model * coef_probs)517 static void build_tree_distribution(VP9_COMP *cpi, TX_SIZE tx_size,
518 vp9_coeff_stats *coef_branch_ct,
519 vp9_coeff_probs_model *coef_probs) {
520 vp9_coeff_count *coef_counts = cpi->td.rd_counts.coef_counts[tx_size];
521 unsigned int(*eob_branch_ct)[REF_TYPES][COEF_BANDS][COEFF_CONTEXTS] =
522 cpi->common.counts.eob_branch[tx_size];
523 int i, j, k, l, m;
524
525 for (i = 0; i < PLANE_TYPES; ++i) {
526 for (j = 0; j < REF_TYPES; ++j) {
527 for (k = 0; k < COEF_BANDS; ++k) {
528 for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
529 vp9_tree_probs_from_distribution(vp9_coef_tree,
530 coef_branch_ct[i][j][k][l],
531 coef_counts[i][j][k][l]);
532 coef_branch_ct[i][j][k][l][0][1] =
533 eob_branch_ct[i][j][k][l] - coef_branch_ct[i][j][k][l][0][0];
534 for (m = 0; m < UNCONSTRAINED_NODES; ++m)
535 coef_probs[i][j][k][l][m] =
536 get_binary_prob(coef_branch_ct[i][j][k][l][m][0],
537 coef_branch_ct[i][j][k][l][m][1]);
538 }
539 }
540 }
541 }
542 }
543
update_coef_probs_common(vpx_writer * const bc,VP9_COMP * cpi,TX_SIZE tx_size,vp9_coeff_stats * frame_branch_ct,vp9_coeff_probs_model * new_coef_probs)544 static void update_coef_probs_common(vpx_writer *const bc, VP9_COMP *cpi,
545 TX_SIZE tx_size,
546 vp9_coeff_stats *frame_branch_ct,
547 vp9_coeff_probs_model *new_coef_probs) {
548 vp9_coeff_probs_model *old_coef_probs = cpi->common.fc->coef_probs[tx_size];
549 const vpx_prob upd = DIFF_UPDATE_PROB;
550 const int entropy_nodes_update = UNCONSTRAINED_NODES;
551 int i, j, k, l, t;
552 int stepsize = cpi->sf.coeff_prob_appx_step;
553
554 switch (cpi->sf.use_fast_coef_updates) {
555 case TWO_LOOP: {
556 /* dry run to see if there is any update at all needed */
557 int savings = 0;
558 int update[2] = { 0, 0 };
559 for (i = 0; i < PLANE_TYPES; ++i) {
560 for (j = 0; j < REF_TYPES; ++j) {
561 for (k = 0; k < COEF_BANDS; ++k) {
562 for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
563 for (t = 0; t < entropy_nodes_update; ++t) {
564 vpx_prob newp = new_coef_probs[i][j][k][l][t];
565 const vpx_prob oldp = old_coef_probs[i][j][k][l][t];
566 int s;
567 int u = 0;
568 if (t == PIVOT_NODE)
569 s = vp9_prob_diff_update_savings_search_model(
570 frame_branch_ct[i][j][k][l][0], oldp, &newp, upd,
571 stepsize);
572 else
573 s = vp9_prob_diff_update_savings_search(
574 frame_branch_ct[i][j][k][l][t], oldp, &newp, upd);
575 if (s > 0 && newp != oldp) u = 1;
576 if (u)
577 savings += s - (int)(vp9_cost_zero(upd));
578 else
579 savings -= (int)(vp9_cost_zero(upd));
580 update[u]++;
581 }
582 }
583 }
584 }
585 }
586
587 // printf("Update %d %d, savings %d\n", update[0], update[1], savings);
588 /* Is coef updated at all */
589 if (update[1] == 0 || savings < 0) {
590 vpx_write_bit(bc, 0);
591 return;
592 }
593 vpx_write_bit(bc, 1);
594 for (i = 0; i < PLANE_TYPES; ++i) {
595 for (j = 0; j < REF_TYPES; ++j) {
596 for (k = 0; k < COEF_BANDS; ++k) {
597 for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
598 // calc probs and branch cts for this frame only
599 for (t = 0; t < entropy_nodes_update; ++t) {
600 vpx_prob newp = new_coef_probs[i][j][k][l][t];
601 vpx_prob *oldp = old_coef_probs[i][j][k][l] + t;
602 const vpx_prob upd = DIFF_UPDATE_PROB;
603 int s;
604 int u = 0;
605 if (t == PIVOT_NODE)
606 s = vp9_prob_diff_update_savings_search_model(
607 frame_branch_ct[i][j][k][l][0], *oldp, &newp, upd,
608 stepsize);
609 else
610 s = vp9_prob_diff_update_savings_search(
611 frame_branch_ct[i][j][k][l][t], *oldp, &newp, upd);
612 if (s > 0 && newp != *oldp) u = 1;
613 vpx_write(bc, u, upd);
614 if (u) {
615 /* send/use new probability */
616 vp9_write_prob_diff_update(bc, newp, *oldp);
617 *oldp = newp;
618 }
619 }
620 }
621 }
622 }
623 }
624 return;
625 }
626
627 default: {
628 int updates = 0;
629 int noupdates_before_first = 0;
630 assert(cpi->sf.use_fast_coef_updates == ONE_LOOP_REDUCED);
631 for (i = 0; i < PLANE_TYPES; ++i) {
632 for (j = 0; j < REF_TYPES; ++j) {
633 for (k = 0; k < COEF_BANDS; ++k) {
634 for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
635 // calc probs and branch cts for this frame only
636 for (t = 0; t < entropy_nodes_update; ++t) {
637 vpx_prob newp = new_coef_probs[i][j][k][l][t];
638 vpx_prob *oldp = old_coef_probs[i][j][k][l] + t;
639 int s;
640 int u = 0;
641
642 if (t == PIVOT_NODE) {
643 s = vp9_prob_diff_update_savings_search_model(
644 frame_branch_ct[i][j][k][l][0], *oldp, &newp, upd,
645 stepsize);
646 } else {
647 s = vp9_prob_diff_update_savings_search(
648 frame_branch_ct[i][j][k][l][t], *oldp, &newp, upd);
649 }
650
651 if (s > 0 && newp != *oldp) u = 1;
652 updates += u;
653 if (u == 0 && updates == 0) {
654 noupdates_before_first++;
655 continue;
656 }
657 if (u == 1 && updates == 1) {
658 int v;
659 // first update
660 vpx_write_bit(bc, 1);
661 for (v = 0; v < noupdates_before_first; ++v)
662 vpx_write(bc, 0, upd);
663 }
664 vpx_write(bc, u, upd);
665 if (u) {
666 /* send/use new probability */
667 vp9_write_prob_diff_update(bc, newp, *oldp);
668 *oldp = newp;
669 }
670 }
671 }
672 }
673 }
674 }
675 if (updates == 0) {
676 vpx_write_bit(bc, 0); // no updates
677 }
678 return;
679 }
680 }
681 }
682
update_coef_probs(VP9_COMP * cpi,vpx_writer * w)683 static void update_coef_probs(VP9_COMP *cpi, vpx_writer *w) {
684 const TX_MODE tx_mode = cpi->common.tx_mode;
685 const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
686 TX_SIZE tx_size;
687 for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size) {
688 vp9_coeff_stats frame_branch_ct[PLANE_TYPES];
689 vp9_coeff_probs_model frame_coef_probs[PLANE_TYPES];
690 if (cpi->td.counts->tx.tx_totals[tx_size] <= 20 ||
691 (tx_size >= TX_16X16 && cpi->sf.tx_size_search_method == USE_TX_8X8)) {
692 vpx_write_bit(w, 0);
693 } else {
694 build_tree_distribution(cpi, tx_size, frame_branch_ct, frame_coef_probs);
695 update_coef_probs_common(w, cpi, tx_size, frame_branch_ct,
696 frame_coef_probs);
697 }
698 }
699 }
700
encode_loopfilter(struct loopfilter * lf,struct vpx_write_bit_buffer * wb)701 static void encode_loopfilter(struct loopfilter *lf,
702 struct vpx_write_bit_buffer *wb) {
703 int i;
704
705 // Encode the loop filter level and type
706 vpx_wb_write_literal(wb, lf->filter_level, 6);
707 vpx_wb_write_literal(wb, lf->sharpness_level, 3);
708
709 // Write out loop filter deltas applied at the MB level based on mode or
710 // ref frame (if they are enabled).
711 vpx_wb_write_bit(wb, lf->mode_ref_delta_enabled);
712
713 if (lf->mode_ref_delta_enabled) {
714 vpx_wb_write_bit(wb, lf->mode_ref_delta_update);
715 if (lf->mode_ref_delta_update) {
716 for (i = 0; i < MAX_REF_LF_DELTAS; i++) {
717 const int delta = lf->ref_deltas[i];
718 const int changed = delta != lf->last_ref_deltas[i];
719 vpx_wb_write_bit(wb, changed);
720 if (changed) {
721 lf->last_ref_deltas[i] = delta;
722 vpx_wb_write_literal(wb, abs(delta) & 0x3F, 6);
723 vpx_wb_write_bit(wb, delta < 0);
724 }
725 }
726
727 for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
728 const int delta = lf->mode_deltas[i];
729 const int changed = delta != lf->last_mode_deltas[i];
730 vpx_wb_write_bit(wb, changed);
731 if (changed) {
732 lf->last_mode_deltas[i] = delta;
733 vpx_wb_write_literal(wb, abs(delta) & 0x3F, 6);
734 vpx_wb_write_bit(wb, delta < 0);
735 }
736 }
737 }
738 }
739 }
740
write_delta_q(struct vpx_write_bit_buffer * wb,int delta_q)741 static void write_delta_q(struct vpx_write_bit_buffer *wb, int delta_q) {
742 if (delta_q != 0) {
743 vpx_wb_write_bit(wb, 1);
744 vpx_wb_write_literal(wb, abs(delta_q), 4);
745 vpx_wb_write_bit(wb, delta_q < 0);
746 } else {
747 vpx_wb_write_bit(wb, 0);
748 }
749 }
750
encode_quantization(const VP9_COMMON * const cm,struct vpx_write_bit_buffer * wb)751 static void encode_quantization(const VP9_COMMON *const cm,
752 struct vpx_write_bit_buffer *wb) {
753 vpx_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS);
754 write_delta_q(wb, cm->y_dc_delta_q);
755 write_delta_q(wb, cm->uv_dc_delta_q);
756 write_delta_q(wb, cm->uv_ac_delta_q);
757 }
758
encode_segmentation(VP9_COMMON * cm,MACROBLOCKD * xd,struct vpx_write_bit_buffer * wb)759 static void encode_segmentation(VP9_COMMON *cm, MACROBLOCKD *xd,
760 struct vpx_write_bit_buffer *wb) {
761 int i, j;
762
763 const struct segmentation *seg = &cm->seg;
764
765 vpx_wb_write_bit(wb, seg->enabled);
766 if (!seg->enabled) return;
767
768 // Segmentation map
769 vpx_wb_write_bit(wb, seg->update_map);
770 if (seg->update_map) {
771 // Select the coding strategy (temporal or spatial)
772 vp9_choose_segmap_coding_method(cm, xd);
773 // Write out probabilities used to decode unpredicted macro-block segments
774 for (i = 0; i < SEG_TREE_PROBS; i++) {
775 const int prob = seg->tree_probs[i];
776 const int update = prob != MAX_PROB;
777 vpx_wb_write_bit(wb, update);
778 if (update) vpx_wb_write_literal(wb, prob, 8);
779 }
780
781 // Write out the chosen coding method.
782 vpx_wb_write_bit(wb, seg->temporal_update);
783 if (seg->temporal_update) {
784 for (i = 0; i < PREDICTION_PROBS; i++) {
785 const int prob = seg->pred_probs[i];
786 const int update = prob != MAX_PROB;
787 vpx_wb_write_bit(wb, update);
788 if (update) vpx_wb_write_literal(wb, prob, 8);
789 }
790 }
791 }
792
793 // Segmentation data
794 vpx_wb_write_bit(wb, seg->update_data);
795 if (seg->update_data) {
796 vpx_wb_write_bit(wb, seg->abs_delta);
797
798 for (i = 0; i < MAX_SEGMENTS; i++) {
799 for (j = 0; j < SEG_LVL_MAX; j++) {
800 const int active = segfeature_active(seg, i, j);
801 vpx_wb_write_bit(wb, active);
802 if (active) {
803 const int data = get_segdata(seg, i, j);
804 const int data_max = vp9_seg_feature_data_max(j);
805
806 if (vp9_is_segfeature_signed(j)) {
807 encode_unsigned_max(wb, abs(data), data_max);
808 vpx_wb_write_bit(wb, data < 0);
809 } else {
810 encode_unsigned_max(wb, data, data_max);
811 }
812 }
813 }
814 }
815 }
816 }
817
encode_txfm_probs(VP9_COMMON * cm,vpx_writer * w,FRAME_COUNTS * counts)818 static void encode_txfm_probs(VP9_COMMON *cm, vpx_writer *w,
819 FRAME_COUNTS *counts) {
820 // Mode
821 vpx_write_literal(w, VPXMIN(cm->tx_mode, ALLOW_32X32), 2);
822 if (cm->tx_mode >= ALLOW_32X32)
823 vpx_write_bit(w, cm->tx_mode == TX_MODE_SELECT);
824
825 // Probabilities
826 if (cm->tx_mode == TX_MODE_SELECT) {
827 int i, j;
828 unsigned int ct_8x8p[TX_SIZES - 3][2];
829 unsigned int ct_16x16p[TX_SIZES - 2][2];
830 unsigned int ct_32x32p[TX_SIZES - 1][2];
831
832 for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
833 tx_counts_to_branch_counts_8x8(counts->tx.p8x8[i], ct_8x8p);
834 for (j = 0; j < TX_SIZES - 3; j++)
835 vp9_cond_prob_diff_update(w, &cm->fc->tx_probs.p8x8[i][j], ct_8x8p[j]);
836 }
837
838 for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
839 tx_counts_to_branch_counts_16x16(counts->tx.p16x16[i], ct_16x16p);
840 for (j = 0; j < TX_SIZES - 2; j++)
841 vp9_cond_prob_diff_update(w, &cm->fc->tx_probs.p16x16[i][j],
842 ct_16x16p[j]);
843 }
844
845 for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
846 tx_counts_to_branch_counts_32x32(counts->tx.p32x32[i], ct_32x32p);
847 for (j = 0; j < TX_SIZES - 1; j++)
848 vp9_cond_prob_diff_update(w, &cm->fc->tx_probs.p32x32[i][j],
849 ct_32x32p[j]);
850 }
851 }
852 }
853
write_interp_filter(INTERP_FILTER filter,struct vpx_write_bit_buffer * wb)854 static void write_interp_filter(INTERP_FILTER filter,
855 struct vpx_write_bit_buffer *wb) {
856 const int filter_to_literal[] = { 1, 0, 2, 3 };
857
858 vpx_wb_write_bit(wb, filter == SWITCHABLE);
859 if (filter != SWITCHABLE)
860 vpx_wb_write_literal(wb, filter_to_literal[filter], 2);
861 }
862
fix_interp_filter(VP9_COMMON * cm,FRAME_COUNTS * counts)863 static void fix_interp_filter(VP9_COMMON *cm, FRAME_COUNTS *counts) {
864 if (cm->interp_filter == SWITCHABLE) {
865 // Check to see if only one of the filters is actually used
866 int count[SWITCHABLE_FILTERS];
867 int i, j, c = 0;
868 for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
869 count[i] = 0;
870 for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
871 count[i] += counts->switchable_interp[j][i];
872 c += (count[i] > 0);
873 }
874 if (c == 1) {
875 // Only one filter is used. So set the filter at frame level
876 for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
877 if (count[i]) {
878 cm->interp_filter = i;
879 break;
880 }
881 }
882 }
883 }
884 }
885
write_tile_info(const VP9_COMMON * const cm,struct vpx_write_bit_buffer * wb)886 static void write_tile_info(const VP9_COMMON *const cm,
887 struct vpx_write_bit_buffer *wb) {
888 int min_log2_tile_cols, max_log2_tile_cols, ones;
889 vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
890
891 // columns
892 ones = cm->log2_tile_cols - min_log2_tile_cols;
893 while (ones--) vpx_wb_write_bit(wb, 1);
894
895 if (cm->log2_tile_cols < max_log2_tile_cols) vpx_wb_write_bit(wb, 0);
896
897 // rows
898 vpx_wb_write_bit(wb, cm->log2_tile_rows != 0);
899 if (cm->log2_tile_rows != 0) vpx_wb_write_bit(wb, cm->log2_tile_rows != 1);
900 }
901
vp9_get_refresh_mask(VP9_COMP * cpi)902 int vp9_get_refresh_mask(VP9_COMP *cpi) {
903 if (vp9_preserve_existing_gf(cpi)) {
904 // We have decided to preserve the previously existing golden frame as our
905 // new ARF frame. However, in the short term we leave it in the GF slot and,
906 // if we're updating the GF with the current decoded frame, we save it
907 // instead to the ARF slot.
908 // Later, in the function vp9_encoder.c:vp9_update_reference_frames() we
909 // will swap gld_fb_idx and alt_fb_idx to achieve our objective. We do it
910 // there so that it can be done outside of the recode loop.
911 // Note: This is highly specific to the use of ARF as a forward reference,
912 // and this needs to be generalized as other uses are implemented
913 // (like RTC/temporal scalability).
914 return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
915 (cpi->refresh_golden_frame << cpi->alt_fb_idx);
916 } else {
917 int arf_idx = cpi->alt_fb_idx;
918 GF_GROUP *const gf_group = &cpi->twopass.gf_group;
919
920 if (cpi->multi_layer_arf) {
921 for (arf_idx = 0; arf_idx < REF_FRAMES; ++arf_idx) {
922 if (arf_idx != cpi->alt_fb_idx && arf_idx != cpi->lst_fb_idx &&
923 arf_idx != cpi->gld_fb_idx) {
924 int idx;
925 for (idx = 0; idx < gf_group->stack_size; ++idx)
926 if (arf_idx == gf_group->arf_index_stack[idx]) break;
927 if (idx == gf_group->stack_size) break;
928 }
929 }
930 }
931 cpi->twopass.gf_group.top_arf_idx = arf_idx;
932
933 if (cpi->use_svc && cpi->svc.use_set_ref_frame_config &&
934 cpi->svc.temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_BYPASS)
935 return cpi->svc.update_buffer_slot[cpi->svc.spatial_layer_id];
936 return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
937 (cpi->refresh_golden_frame << cpi->gld_fb_idx) |
938 (cpi->refresh_alt_ref_frame << arf_idx);
939 }
940 }
941
encode_tile_worker(void * arg1,void * arg2)942 static int encode_tile_worker(void *arg1, void *arg2) {
943 VP9_COMP *cpi = (VP9_COMP *)arg1;
944 VP9BitstreamWorkerData *data = (VP9BitstreamWorkerData *)arg2;
945 MACROBLOCKD *const xd = &data->xd;
946 const int tile_row = 0;
947 vpx_start_encode(&data->bit_writer, data->dest);
948 write_modes(cpi, xd, &cpi->tile_data[data->tile_idx].tile_info,
949 &data->bit_writer, tile_row, data->tile_idx,
950 &data->max_mv_magnitude, data->interp_filter_selected);
951 vpx_stop_encode(&data->bit_writer);
952 return 1;
953 }
954
vp9_bitstream_encode_tiles_buffer_dealloc(VP9_COMP * const cpi)955 void vp9_bitstream_encode_tiles_buffer_dealloc(VP9_COMP *const cpi) {
956 if (cpi->vp9_bitstream_worker_data) {
957 int i;
958 for (i = 1; i < cpi->num_workers; ++i) {
959 vpx_free(cpi->vp9_bitstream_worker_data[i].dest);
960 }
961 vpx_free(cpi->vp9_bitstream_worker_data);
962 cpi->vp9_bitstream_worker_data = NULL;
963 }
964 }
965
encode_tiles_buffer_alloc(VP9_COMP * const cpi)966 static int encode_tiles_buffer_alloc(VP9_COMP *const cpi) {
967 int i;
968 const size_t worker_data_size =
969 cpi->num_workers * sizeof(*cpi->vp9_bitstream_worker_data);
970 cpi->vp9_bitstream_worker_data = vpx_memalign(16, worker_data_size);
971 memset(cpi->vp9_bitstream_worker_data, 0, worker_data_size);
972 if (!cpi->vp9_bitstream_worker_data) return 1;
973 for (i = 1; i < cpi->num_workers; ++i) {
974 cpi->vp9_bitstream_worker_data[i].dest_size =
975 cpi->oxcf.width * cpi->oxcf.height;
976 cpi->vp9_bitstream_worker_data[i].dest =
977 vpx_malloc(cpi->vp9_bitstream_worker_data[i].dest_size);
978 if (!cpi->vp9_bitstream_worker_data[i].dest) return 1;
979 }
980 return 0;
981 }
982
encode_tiles_mt(VP9_COMP * cpi,uint8_t * data_ptr)983 static size_t encode_tiles_mt(VP9_COMP *cpi, uint8_t *data_ptr) {
984 const VPxWorkerInterface *const winterface = vpx_get_worker_interface();
985 VP9_COMMON *const cm = &cpi->common;
986 const int tile_cols = 1 << cm->log2_tile_cols;
987 const int num_workers = cpi->num_workers;
988 size_t total_size = 0;
989 int tile_col = 0;
990
991 if (!cpi->vp9_bitstream_worker_data ||
992 cpi->vp9_bitstream_worker_data[1].dest_size >
993 (cpi->oxcf.width * cpi->oxcf.height)) {
994 vp9_bitstream_encode_tiles_buffer_dealloc(cpi);
995 if (encode_tiles_buffer_alloc(cpi)) return 0;
996 }
997
998 while (tile_col < tile_cols) {
999 int i, j;
1000 for (i = 0; i < num_workers && tile_col < tile_cols; ++i) {
1001 VPxWorker *const worker = &cpi->workers[i];
1002 VP9BitstreamWorkerData *const data = &cpi->vp9_bitstream_worker_data[i];
1003
1004 // Populate the worker data.
1005 data->xd = cpi->td.mb.e_mbd;
1006 data->tile_idx = tile_col;
1007 data->max_mv_magnitude = cpi->max_mv_magnitude;
1008 memset(data->interp_filter_selected, 0,
1009 sizeof(data->interp_filter_selected[0][0]) * SWITCHABLE);
1010
1011 // First thread can directly write into the output buffer.
1012 if (i == 0) {
1013 // If this worker happens to be for the last tile, then do not offset it
1014 // by 4 for the tile size.
1015 data->dest =
1016 data_ptr + total_size + (tile_col == tile_cols - 1 ? 0 : 4);
1017 }
1018 worker->data1 = cpi;
1019 worker->data2 = data;
1020 worker->hook = encode_tile_worker;
1021 worker->had_error = 0;
1022
1023 if (i < num_workers - 1) {
1024 winterface->launch(worker);
1025 } else {
1026 winterface->execute(worker);
1027 }
1028 ++tile_col;
1029 }
1030 for (j = 0; j < i; ++j) {
1031 VPxWorker *const worker = &cpi->workers[j];
1032 VP9BitstreamWorkerData *const data =
1033 (VP9BitstreamWorkerData *)worker->data2;
1034 uint32_t tile_size;
1035 int k;
1036
1037 if (!winterface->sync(worker)) return 0;
1038 tile_size = data->bit_writer.pos;
1039
1040 // Aggregate per-thread bitstream stats.
1041 cpi->max_mv_magnitude =
1042 VPXMAX(cpi->max_mv_magnitude, data->max_mv_magnitude);
1043 for (k = 0; k < SWITCHABLE; ++k) {
1044 cpi->interp_filter_selected[0][k] += data->interp_filter_selected[0][k];
1045 }
1046
1047 // Prefix the size of the tile on all but the last.
1048 if (tile_col != tile_cols || j < i - 1) {
1049 mem_put_be32(data_ptr + total_size, tile_size);
1050 total_size += 4;
1051 }
1052 if (j > 0) {
1053 memcpy(data_ptr + total_size, data->dest, tile_size);
1054 }
1055 total_size += tile_size;
1056 }
1057 }
1058 return total_size;
1059 }
1060
encode_tiles(VP9_COMP * cpi,uint8_t * data_ptr)1061 static size_t encode_tiles(VP9_COMP *cpi, uint8_t *data_ptr) {
1062 VP9_COMMON *const cm = &cpi->common;
1063 MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
1064 vpx_writer residual_bc;
1065 int tile_row, tile_col;
1066 size_t total_size = 0;
1067 const int tile_cols = 1 << cm->log2_tile_cols;
1068 const int tile_rows = 1 << cm->log2_tile_rows;
1069
1070 memset(cm->above_seg_context, 0,
1071 sizeof(*cm->above_seg_context) * mi_cols_aligned_to_sb(cm->mi_cols));
1072
1073 // Encoding tiles in parallel is done only for realtime mode now. In other
1074 // modes the speed up is insignificant and requires further testing to ensure
1075 // that it does not make the overall process worse in any case.
1076 if (cpi->oxcf.mode == REALTIME && cpi->num_workers > 1 && tile_rows == 1 &&
1077 tile_cols > 1) {
1078 return encode_tiles_mt(cpi, data_ptr);
1079 }
1080
1081 for (tile_row = 0; tile_row < tile_rows; tile_row++) {
1082 for (tile_col = 0; tile_col < tile_cols; tile_col++) {
1083 int tile_idx = tile_row * tile_cols + tile_col;
1084
1085 if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1)
1086 vpx_start_encode(&residual_bc, data_ptr + total_size + 4);
1087 else
1088 vpx_start_encode(&residual_bc, data_ptr + total_size);
1089
1090 write_modes(cpi, xd, &cpi->tile_data[tile_idx].tile_info, &residual_bc,
1091 tile_row, tile_col, &cpi->max_mv_magnitude,
1092 cpi->interp_filter_selected);
1093
1094 vpx_stop_encode(&residual_bc);
1095 if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1) {
1096 // size of this tile
1097 mem_put_be32(data_ptr + total_size, residual_bc.pos);
1098 total_size += 4;
1099 }
1100
1101 total_size += residual_bc.pos;
1102 }
1103 }
1104 return total_size;
1105 }
1106
write_render_size(const VP9_COMMON * cm,struct vpx_write_bit_buffer * wb)1107 static void write_render_size(const VP9_COMMON *cm,
1108 struct vpx_write_bit_buffer *wb) {
1109 const int scaling_active =
1110 cm->width != cm->render_width || cm->height != cm->render_height;
1111 vpx_wb_write_bit(wb, scaling_active);
1112 if (scaling_active) {
1113 vpx_wb_write_literal(wb, cm->render_width - 1, 16);
1114 vpx_wb_write_literal(wb, cm->render_height - 1, 16);
1115 }
1116 }
1117
write_frame_size(const VP9_COMMON * cm,struct vpx_write_bit_buffer * wb)1118 static void write_frame_size(const VP9_COMMON *cm,
1119 struct vpx_write_bit_buffer *wb) {
1120 vpx_wb_write_literal(wb, cm->width - 1, 16);
1121 vpx_wb_write_literal(wb, cm->height - 1, 16);
1122
1123 write_render_size(cm, wb);
1124 }
1125
write_frame_size_with_refs(VP9_COMP * cpi,struct vpx_write_bit_buffer * wb)1126 static void write_frame_size_with_refs(VP9_COMP *cpi,
1127 struct vpx_write_bit_buffer *wb) {
1128 VP9_COMMON *const cm = &cpi->common;
1129 int found = 0;
1130
1131 MV_REFERENCE_FRAME ref_frame;
1132 for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
1133 YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, ref_frame);
1134
1135 // Set "found" to 0 for temporal svc and for spatial svc key frame
1136 if (cpi->use_svc &&
1137 ((cpi->svc.number_temporal_layers > 1 &&
1138 cpi->oxcf.rc_mode == VPX_CBR) ||
1139 (cpi->svc.number_spatial_layers > 1 &&
1140 cpi->svc.layer_context[cpi->svc.spatial_layer_id].is_key_frame))) {
1141 found = 0;
1142 } else if (cfg != NULL) {
1143 found =
1144 cm->width == cfg->y_crop_width && cm->height == cfg->y_crop_height;
1145 }
1146 vpx_wb_write_bit(wb, found);
1147 if (found) {
1148 break;
1149 }
1150 }
1151
1152 if (!found) {
1153 vpx_wb_write_literal(wb, cm->width - 1, 16);
1154 vpx_wb_write_literal(wb, cm->height - 1, 16);
1155 }
1156
1157 write_render_size(cm, wb);
1158 }
1159
write_sync_code(struct vpx_write_bit_buffer * wb)1160 static void write_sync_code(struct vpx_write_bit_buffer *wb) {
1161 vpx_wb_write_literal(wb, VP9_SYNC_CODE_0, 8);
1162 vpx_wb_write_literal(wb, VP9_SYNC_CODE_1, 8);
1163 vpx_wb_write_literal(wb, VP9_SYNC_CODE_2, 8);
1164 }
1165
write_profile(BITSTREAM_PROFILE profile,struct vpx_write_bit_buffer * wb)1166 static void write_profile(BITSTREAM_PROFILE profile,
1167 struct vpx_write_bit_buffer *wb) {
1168 switch (profile) {
1169 case PROFILE_0: vpx_wb_write_literal(wb, 0, 2); break;
1170 case PROFILE_1: vpx_wb_write_literal(wb, 2, 2); break;
1171 case PROFILE_2: vpx_wb_write_literal(wb, 1, 2); break;
1172 default:
1173 assert(profile == PROFILE_3);
1174 vpx_wb_write_literal(wb, 6, 3);
1175 break;
1176 }
1177 }
1178
write_bitdepth_colorspace_sampling(VP9_COMMON * const cm,struct vpx_write_bit_buffer * wb)1179 static void write_bitdepth_colorspace_sampling(
1180 VP9_COMMON *const cm, struct vpx_write_bit_buffer *wb) {
1181 if (cm->profile >= PROFILE_2) {
1182 assert(cm->bit_depth > VPX_BITS_8);
1183 vpx_wb_write_bit(wb, cm->bit_depth == VPX_BITS_10 ? 0 : 1);
1184 }
1185 vpx_wb_write_literal(wb, cm->color_space, 3);
1186 if (cm->color_space != VPX_CS_SRGB) {
1187 // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
1188 vpx_wb_write_bit(wb, cm->color_range);
1189 if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
1190 assert(cm->subsampling_x != 1 || cm->subsampling_y != 1);
1191 vpx_wb_write_bit(wb, cm->subsampling_x);
1192 vpx_wb_write_bit(wb, cm->subsampling_y);
1193 vpx_wb_write_bit(wb, 0); // unused
1194 } else {
1195 assert(cm->subsampling_x == 1 && cm->subsampling_y == 1);
1196 }
1197 } else {
1198 assert(cm->profile == PROFILE_1 || cm->profile == PROFILE_3);
1199 vpx_wb_write_bit(wb, 0); // unused
1200 }
1201 }
1202
write_uncompressed_header(VP9_COMP * cpi,struct vpx_write_bit_buffer * wb)1203 static void write_uncompressed_header(VP9_COMP *cpi,
1204 struct vpx_write_bit_buffer *wb) {
1205 VP9_COMMON *const cm = &cpi->common;
1206 MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
1207
1208 vpx_wb_write_literal(wb, VP9_FRAME_MARKER, 2);
1209
1210 write_profile(cm->profile, wb);
1211
1212 // If to use show existing frame.
1213 vpx_wb_write_bit(wb, cm->show_existing_frame);
1214 if (cm->show_existing_frame) {
1215 vpx_wb_write_literal(wb, cpi->alt_fb_idx, 3);
1216 return;
1217 }
1218
1219 vpx_wb_write_bit(wb, cm->frame_type);
1220 vpx_wb_write_bit(wb, cm->show_frame);
1221 vpx_wb_write_bit(wb, cm->error_resilient_mode);
1222
1223 if (cm->frame_type == KEY_FRAME) {
1224 write_sync_code(wb);
1225 write_bitdepth_colorspace_sampling(cm, wb);
1226 write_frame_size(cm, wb);
1227 } else {
1228 if (!cm->show_frame) vpx_wb_write_bit(wb, cm->intra_only);
1229
1230 if (!cm->error_resilient_mode)
1231 vpx_wb_write_literal(wb, cm->reset_frame_context, 2);
1232
1233 if (cm->intra_only) {
1234 write_sync_code(wb);
1235
1236 // Note for profile 0, 420 8bpp is assumed.
1237 if (cm->profile > PROFILE_0) {
1238 write_bitdepth_colorspace_sampling(cm, wb);
1239 }
1240
1241 vpx_wb_write_literal(wb, vp9_get_refresh_mask(cpi), REF_FRAMES);
1242 write_frame_size(cm, wb);
1243 } else {
1244 MV_REFERENCE_FRAME ref_frame;
1245 vpx_wb_write_literal(wb, vp9_get_refresh_mask(cpi), REF_FRAMES);
1246 for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
1247 assert(get_ref_frame_map_idx(cpi, ref_frame) != INVALID_IDX);
1248 vpx_wb_write_literal(wb, get_ref_frame_map_idx(cpi, ref_frame),
1249 REF_FRAMES_LOG2);
1250 vpx_wb_write_bit(wb, cm->ref_frame_sign_bias[ref_frame]);
1251 }
1252
1253 write_frame_size_with_refs(cpi, wb);
1254
1255 vpx_wb_write_bit(wb, cm->allow_high_precision_mv);
1256
1257 fix_interp_filter(cm, cpi->td.counts);
1258 write_interp_filter(cm->interp_filter, wb);
1259 }
1260 }
1261
1262 if (!cm->error_resilient_mode) {
1263 vpx_wb_write_bit(wb, cm->refresh_frame_context);
1264 vpx_wb_write_bit(wb, cm->frame_parallel_decoding_mode);
1265 }
1266
1267 vpx_wb_write_literal(wb, cm->frame_context_idx, FRAME_CONTEXTS_LOG2);
1268
1269 encode_loopfilter(&cm->lf, wb);
1270 encode_quantization(cm, wb);
1271 encode_segmentation(cm, xd, wb);
1272
1273 write_tile_info(cm, wb);
1274 }
1275
write_compressed_header(VP9_COMP * cpi,uint8_t * data)1276 static size_t write_compressed_header(VP9_COMP *cpi, uint8_t *data) {
1277 VP9_COMMON *const cm = &cpi->common;
1278 MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
1279 FRAME_CONTEXT *const fc = cm->fc;
1280 FRAME_COUNTS *counts = cpi->td.counts;
1281 vpx_writer header_bc;
1282
1283 vpx_start_encode(&header_bc, data);
1284
1285 if (xd->lossless)
1286 cm->tx_mode = ONLY_4X4;
1287 else
1288 encode_txfm_probs(cm, &header_bc, counts);
1289
1290 update_coef_probs(cpi, &header_bc);
1291 update_skip_probs(cm, &header_bc, counts);
1292
1293 if (!frame_is_intra_only(cm)) {
1294 int i;
1295
1296 for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
1297 prob_diff_update(vp9_inter_mode_tree, cm->fc->inter_mode_probs[i],
1298 counts->inter_mode[i], INTER_MODES, &header_bc);
1299
1300 if (cm->interp_filter == SWITCHABLE)
1301 update_switchable_interp_probs(cm, &header_bc, counts);
1302
1303 for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
1304 vp9_cond_prob_diff_update(&header_bc, &fc->intra_inter_prob[i],
1305 counts->intra_inter[i]);
1306
1307 if (cpi->allow_comp_inter_inter) {
1308 const int use_compound_pred = cm->reference_mode != SINGLE_REFERENCE;
1309 const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT;
1310
1311 vpx_write_bit(&header_bc, use_compound_pred);
1312 if (use_compound_pred) {
1313 vpx_write_bit(&header_bc, use_hybrid_pred);
1314 if (use_hybrid_pred)
1315 for (i = 0; i < COMP_INTER_CONTEXTS; i++)
1316 vp9_cond_prob_diff_update(&header_bc, &fc->comp_inter_prob[i],
1317 counts->comp_inter[i]);
1318 }
1319 }
1320
1321 if (cm->reference_mode != COMPOUND_REFERENCE) {
1322 for (i = 0; i < REF_CONTEXTS; i++) {
1323 vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][0],
1324 counts->single_ref[i][0]);
1325 vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][1],
1326 counts->single_ref[i][1]);
1327 }
1328 }
1329
1330 if (cm->reference_mode != SINGLE_REFERENCE)
1331 for (i = 0; i < REF_CONTEXTS; i++)
1332 vp9_cond_prob_diff_update(&header_bc, &fc->comp_ref_prob[i],
1333 counts->comp_ref[i]);
1334
1335 for (i = 0; i < BLOCK_SIZE_GROUPS; ++i)
1336 prob_diff_update(vp9_intra_mode_tree, cm->fc->y_mode_prob[i],
1337 counts->y_mode[i], INTRA_MODES, &header_bc);
1338
1339 for (i = 0; i < PARTITION_CONTEXTS; ++i)
1340 prob_diff_update(vp9_partition_tree, fc->partition_prob[i],
1341 counts->partition[i], PARTITION_TYPES, &header_bc);
1342
1343 vp9_write_nmv_probs(cm, cm->allow_high_precision_mv, &header_bc,
1344 &counts->mv);
1345 }
1346
1347 vpx_stop_encode(&header_bc);
1348 assert(header_bc.pos <= 0xffff);
1349
1350 return header_bc.pos;
1351 }
1352
vp9_pack_bitstream(VP9_COMP * cpi,uint8_t * dest,size_t * size)1353 void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, size_t *size) {
1354 uint8_t *data = dest;
1355 size_t first_part_size, uncompressed_hdr_size;
1356 struct vpx_write_bit_buffer wb = { data, 0 };
1357 struct vpx_write_bit_buffer saved_wb;
1358
1359 #if CONFIG_BITSTREAM_DEBUG
1360 bitstream_queue_reset_write();
1361 #endif
1362
1363 write_uncompressed_header(cpi, &wb);
1364
1365 // Skip the rest coding process if use show existing frame.
1366 if (cpi->common.show_existing_frame) {
1367 uncompressed_hdr_size = vpx_wb_bytes_written(&wb);
1368 data += uncompressed_hdr_size;
1369 *size = data - dest;
1370 return;
1371 }
1372
1373 saved_wb = wb;
1374 vpx_wb_write_literal(&wb, 0, 16); // don't know in advance first part. size
1375
1376 uncompressed_hdr_size = vpx_wb_bytes_written(&wb);
1377 data += uncompressed_hdr_size;
1378
1379 vpx_clear_system_state();
1380
1381 first_part_size = write_compressed_header(cpi, data);
1382 data += first_part_size;
1383 // TODO(jbb): Figure out what to do if first_part_size > 16 bits.
1384 vpx_wb_write_literal(&saved_wb, (int)first_part_size, 16);
1385
1386 data += encode_tiles(cpi, data);
1387
1388 *size = data - dest;
1389 }
1390