1 /*
2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <assert.h>
12 #include <limits.h>
13 #include <math.h>
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <string.h>
17
18 #include "./vpx_dsp_rtcd.h"
19 #include "vpx_dsp/vpx_dsp_common.h"
20 #include "vpx_mem/vpx_mem.h"
21 #include "vpx_ports/mem.h"
22 #include "vpx_ports/system_state.h"
23
24 #include "vp9/common/vp9_alloccommon.h"
25 #include "vp9/encoder/vp9_aq_cyclicrefresh.h"
26 #include "vp9/common/vp9_common.h"
27 #include "vp9/common/vp9_entropymode.h"
28 #include "vp9/common/vp9_quant_common.h"
29 #include "vp9/common/vp9_seg_common.h"
30
31 #include "vp9/encoder/vp9_encodemv.h"
32 #include "vp9/encoder/vp9_ratectrl.h"
33
34 // Max rate per frame for 1080P and below encodes if no level requirement given.
35 // For larger formats limit to MAX_MB_RATE bits per MB
36 // 4Mbits is derived from the level requirement for level 4 (1080P 30) which
37 // requires that HW can sustain a rate of 16Mbits over a 4 frame group.
38 // If a lower level requirement is specified then this may over ride this value.
39 #define MAX_MB_RATE 250
40 #define MAXRATE_1080P 4000000
41
42 #define DEFAULT_KF_BOOST 2000
43 #define DEFAULT_GF_BOOST 2000
44
45 #define LIMIT_QRANGE_FOR_ALTREF_AND_KEY 1
46
47 #define MIN_BPB_FACTOR 0.005
48 #define MAX_BPB_FACTOR 50
49
50 #if CONFIG_VP9_HIGHBITDEPTH
51 #define ASSIGN_MINQ_TABLE(bit_depth, name) \
52 do { \
53 switch (bit_depth) { \
54 case VPX_BITS_8: name = name##_8; break; \
55 case VPX_BITS_10: name = name##_10; break; \
56 default: \
57 assert(bit_depth == VPX_BITS_12); \
58 name = name##_12; \
59 break; \
60 } \
61 } while (0)
62 #else
63 #define ASSIGN_MINQ_TABLE(bit_depth, name) \
64 do { \
65 (void)bit_depth; \
66 name = name##_8; \
67 } while (0)
68 #endif
69
70 // Tables relating active max Q to active min Q
71 static int kf_low_motion_minq_8[QINDEX_RANGE];
72 static int kf_high_motion_minq_8[QINDEX_RANGE];
73 static int arfgf_low_motion_minq_8[QINDEX_RANGE];
74 static int arfgf_high_motion_minq_8[QINDEX_RANGE];
75 static int inter_minq_8[QINDEX_RANGE];
76 static int rtc_minq_8[QINDEX_RANGE];
77
78 #if CONFIG_VP9_HIGHBITDEPTH
79 static int kf_low_motion_minq_10[QINDEX_RANGE];
80 static int kf_high_motion_minq_10[QINDEX_RANGE];
81 static int arfgf_low_motion_minq_10[QINDEX_RANGE];
82 static int arfgf_high_motion_minq_10[QINDEX_RANGE];
83 static int inter_minq_10[QINDEX_RANGE];
84 static int rtc_minq_10[QINDEX_RANGE];
85 static int kf_low_motion_minq_12[QINDEX_RANGE];
86 static int kf_high_motion_minq_12[QINDEX_RANGE];
87 static int arfgf_low_motion_minq_12[QINDEX_RANGE];
88 static int arfgf_high_motion_minq_12[QINDEX_RANGE];
89 static int inter_minq_12[QINDEX_RANGE];
90 static int rtc_minq_12[QINDEX_RANGE];
91 #endif
92
93 #ifdef AGGRESSIVE_VBR
94 static int gf_high = 2400;
95 static int gf_low = 400;
96 static int kf_high = 4000;
97 static int kf_low = 400;
98 #else
99 static int gf_high = 2000;
100 static int gf_low = 400;
101 static int kf_high = 4800;
102 static int kf_low = 300;
103 #endif
104
105 // Functions to compute the active minq lookup table entries based on a
106 // formulaic approach to facilitate easier adjustment of the Q tables.
107 // The formulae were derived from computing a 3rd order polynomial best
108 // fit to the original data (after plotting real maxq vs minq (not q index))
get_minq_index(double maxq,double x3,double x2,double x1,vpx_bit_depth_t bit_depth)109 static int get_minq_index(double maxq, double x3, double x2, double x1,
110 vpx_bit_depth_t bit_depth) {
111 int i;
112 const double minqtarget = VPXMIN(((x3 * maxq + x2) * maxq + x1) * maxq, maxq);
113
114 // Special case handling to deal with the step from q2.0
115 // down to lossless mode represented by q 1.0.
116 if (minqtarget <= 2.0) return 0;
117
118 for (i = 0; i < QINDEX_RANGE; i++) {
119 if (minqtarget <= vp9_convert_qindex_to_q(i, bit_depth)) return i;
120 }
121
122 return QINDEX_RANGE - 1;
123 }
124
init_minq_luts(int * kf_low_m,int * kf_high_m,int * arfgf_low,int * arfgf_high,int * inter,int * rtc,vpx_bit_depth_t bit_depth)125 static void init_minq_luts(int *kf_low_m, int *kf_high_m, int *arfgf_low,
126 int *arfgf_high, int *inter, int *rtc,
127 vpx_bit_depth_t bit_depth) {
128 int i;
129 for (i = 0; i < QINDEX_RANGE; i++) {
130 const double maxq = vp9_convert_qindex_to_q(i, bit_depth);
131 kf_low_m[i] = get_minq_index(maxq, 0.000001, -0.0004, 0.150, bit_depth);
132 kf_high_m[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.45, bit_depth);
133 #ifdef AGGRESSIVE_VBR
134 arfgf_low[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.275, bit_depth);
135 inter[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.80, bit_depth);
136 #else
137 arfgf_low[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.30, bit_depth);
138 inter[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.70, bit_depth);
139 #endif
140 arfgf_high[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth);
141 rtc[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.70, bit_depth);
142 }
143 }
144
vp9_rc_init_minq_luts(void)145 void vp9_rc_init_minq_luts(void) {
146 init_minq_luts(kf_low_motion_minq_8, kf_high_motion_minq_8,
147 arfgf_low_motion_minq_8, arfgf_high_motion_minq_8,
148 inter_minq_8, rtc_minq_8, VPX_BITS_8);
149 #if CONFIG_VP9_HIGHBITDEPTH
150 init_minq_luts(kf_low_motion_minq_10, kf_high_motion_minq_10,
151 arfgf_low_motion_minq_10, arfgf_high_motion_minq_10,
152 inter_minq_10, rtc_minq_10, VPX_BITS_10);
153 init_minq_luts(kf_low_motion_minq_12, kf_high_motion_minq_12,
154 arfgf_low_motion_minq_12, arfgf_high_motion_minq_12,
155 inter_minq_12, rtc_minq_12, VPX_BITS_12);
156 #endif
157 }
158
159 // These functions use formulaic calculations to make playing with the
160 // quantizer tables easier. If necessary they can be replaced by lookup
161 // tables if and when things settle down in the experimental bitstream
vp9_convert_qindex_to_q(int qindex,vpx_bit_depth_t bit_depth)162 double vp9_convert_qindex_to_q(int qindex, vpx_bit_depth_t bit_depth) {
163 // Convert the index to a real Q value (scaled down to match old Q values)
164 #if CONFIG_VP9_HIGHBITDEPTH
165 switch (bit_depth) {
166 case VPX_BITS_8: return vp9_ac_quant(qindex, 0, bit_depth) / 4.0;
167 case VPX_BITS_10: return vp9_ac_quant(qindex, 0, bit_depth) / 16.0;
168 default:
169 assert(bit_depth == VPX_BITS_12);
170 return vp9_ac_quant(qindex, 0, bit_depth) / 64.0;
171 }
172 #else
173 return vp9_ac_quant(qindex, 0, bit_depth) / 4.0;
174 #endif
175 }
176
vp9_convert_q_to_qindex(double q_val,vpx_bit_depth_t bit_depth)177 int vp9_convert_q_to_qindex(double q_val, vpx_bit_depth_t bit_depth) {
178 int i;
179
180 for (i = 0; i < QINDEX_RANGE; ++i)
181 if (vp9_convert_qindex_to_q(i, bit_depth) >= q_val) break;
182
183 if (i == QINDEX_RANGE) i--;
184
185 return i;
186 }
187
vp9_rc_bits_per_mb(FRAME_TYPE frame_type,int qindex,double correction_factor,vpx_bit_depth_t bit_depth)188 int vp9_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex,
189 double correction_factor, vpx_bit_depth_t bit_depth) {
190 const double q = vp9_convert_qindex_to_q(qindex, bit_depth);
191 int enumerator = frame_type == KEY_FRAME ? 2700000 : 1800000;
192
193 assert(correction_factor <= MAX_BPB_FACTOR &&
194 correction_factor >= MIN_BPB_FACTOR);
195
196 // q based adjustment to baseline enumerator
197 enumerator += (int)(enumerator * q) >> 12;
198 return (int)(enumerator * correction_factor / q);
199 }
200
vp9_estimate_bits_at_q(FRAME_TYPE frame_type,int q,int mbs,double correction_factor,vpx_bit_depth_t bit_depth)201 int vp9_estimate_bits_at_q(FRAME_TYPE frame_type, int q, int mbs,
202 double correction_factor,
203 vpx_bit_depth_t bit_depth) {
204 const int bpm =
205 (int)(vp9_rc_bits_per_mb(frame_type, q, correction_factor, bit_depth));
206 return VPXMAX(FRAME_OVERHEAD_BITS,
207 (int)(((uint64_t)bpm * mbs) >> BPER_MB_NORMBITS));
208 }
209
vp9_rc_clamp_pframe_target_size(const VP9_COMP * const cpi,int target)210 int vp9_rc_clamp_pframe_target_size(const VP9_COMP *const cpi, int target) {
211 const RATE_CONTROL *rc = &cpi->rc;
212 const VP9EncoderConfig *oxcf = &cpi->oxcf;
213
214 const int min_frame_target =
215 VPXMAX(rc->min_frame_bandwidth, rc->avg_frame_bandwidth >> 5);
216 if (target < min_frame_target) target = min_frame_target;
217 if (cpi->refresh_golden_frame && rc->is_src_frame_alt_ref) {
218 // If there is an active ARF at this location use the minimum
219 // bits on this frame even if it is a constructed arf.
220 // The active maximum quantizer insures that an appropriate
221 // number of bits will be spent if needed for constructed ARFs.
222 target = min_frame_target;
223 }
224
225 // Clip the frame target to the maximum allowed value.
226 if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth;
227
228 if (oxcf->rc_max_inter_bitrate_pct) {
229 const int max_rate =
230 rc->avg_frame_bandwidth * oxcf->rc_max_inter_bitrate_pct / 100;
231 target = VPXMIN(target, max_rate);
232 }
233 return target;
234 }
235
vp9_rc_clamp_iframe_target_size(const VP9_COMP * const cpi,int target)236 int vp9_rc_clamp_iframe_target_size(const VP9_COMP *const cpi, int target) {
237 const RATE_CONTROL *rc = &cpi->rc;
238 const VP9EncoderConfig *oxcf = &cpi->oxcf;
239 if (oxcf->rc_max_intra_bitrate_pct) {
240 const int max_rate =
241 rc->avg_frame_bandwidth * oxcf->rc_max_intra_bitrate_pct / 100;
242 target = VPXMIN(target, max_rate);
243 }
244 if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth;
245 return target;
246 }
247
248 // TODO(marpan/jianj): bits_off_target and buffer_level are used in the saame
249 // way for CBR mode, for the buffering updates below. Look into removing one
250 // of these (i.e., bits_off_target).
251 // Update the buffer level before encoding with the per-frame-bandwidth,
update_buffer_level_preencode(VP9_COMP * cpi)252 static void update_buffer_level_preencode(VP9_COMP *cpi) {
253 RATE_CONTROL *const rc = &cpi->rc;
254 rc->bits_off_target += rc->avg_frame_bandwidth;
255 // Clip the buffer level to the maximum specified buffer size.
256 rc->bits_off_target = VPXMIN(rc->bits_off_target, rc->maximum_buffer_size);
257 rc->buffer_level = rc->bits_off_target;
258 }
259
260 // Update the buffer level before encoding with the per-frame-bandwidth
261 // for SVC. The current and all upper temporal layers are updated, needed
262 // for the layered rate control which involves cumulative buffer levels for
263 // the temporal layers. Allow for using the timestamp(pts) delta for the
264 // framerate when the set_ref_frame_config is used.
update_buffer_level_svc_preencode(VP9_COMP * cpi)265 static void update_buffer_level_svc_preencode(VP9_COMP *cpi) {
266 SVC *const svc = &cpi->svc;
267 int i;
268 // Set this to 1 to use timestamp delta for "framerate" under
269 // ref_frame_config usage.
270 int use_timestamp = 1;
271 const int64_t ts_delta =
272 svc->time_stamp_superframe - svc->time_stamp_prev[svc->spatial_layer_id];
273 for (i = svc->temporal_layer_id; i < svc->number_temporal_layers; ++i) {
274 const int layer =
275 LAYER_IDS_TO_IDX(svc->spatial_layer_id, i, svc->number_temporal_layers);
276 LAYER_CONTEXT *const lc = &svc->layer_context[layer];
277 RATE_CONTROL *const lrc = &lc->rc;
278 if (use_timestamp && cpi->svc.use_set_ref_frame_config &&
279 svc->number_temporal_layers == 1 && ts_delta > 0 &&
280 svc->current_superframe > 0) {
281 // TODO(marpan): This may need to be modified for temporal layers.
282 const double framerate_pts = 10000000.0 / ts_delta;
283 lrc->bits_off_target += (int)(lc->target_bandwidth / framerate_pts);
284 } else {
285 lrc->bits_off_target += (int)(lc->target_bandwidth / lc->framerate);
286 }
287 // Clip buffer level to maximum buffer size for the layer.
288 lrc->bits_off_target =
289 VPXMIN(lrc->bits_off_target, lrc->maximum_buffer_size);
290 lrc->buffer_level = lrc->bits_off_target;
291 if (i == svc->temporal_layer_id) {
292 cpi->rc.bits_off_target = lrc->bits_off_target;
293 cpi->rc.buffer_level = lrc->buffer_level;
294 }
295 }
296 }
297
298 // Update the buffer level for higher temporal layers, given the encoded current
299 // temporal layer.
update_layer_buffer_level_postencode(SVC * svc,int encoded_frame_size)300 static void update_layer_buffer_level_postencode(SVC *svc,
301 int encoded_frame_size) {
302 int i = 0;
303 const int current_temporal_layer = svc->temporal_layer_id;
304 for (i = current_temporal_layer + 1; i < svc->number_temporal_layers; ++i) {
305 const int layer =
306 LAYER_IDS_TO_IDX(svc->spatial_layer_id, i, svc->number_temporal_layers);
307 LAYER_CONTEXT *lc = &svc->layer_context[layer];
308 RATE_CONTROL *lrc = &lc->rc;
309 lrc->bits_off_target -= encoded_frame_size;
310 // Clip buffer level to maximum buffer size for the layer.
311 lrc->bits_off_target =
312 VPXMIN(lrc->bits_off_target, lrc->maximum_buffer_size);
313 lrc->buffer_level = lrc->bits_off_target;
314 }
315 }
316
317 // Update the buffer level after encoding with encoded frame size.
update_buffer_level_postencode(VP9_COMP * cpi,int encoded_frame_size)318 static void update_buffer_level_postencode(VP9_COMP *cpi,
319 int encoded_frame_size) {
320 RATE_CONTROL *const rc = &cpi->rc;
321 rc->bits_off_target -= encoded_frame_size;
322 // Clip the buffer level to the maximum specified buffer size.
323 rc->bits_off_target = VPXMIN(rc->bits_off_target, rc->maximum_buffer_size);
324 // For screen-content mode, and if frame-dropper is off, don't let buffer
325 // level go below threshold, given here as -rc->maximum_ buffer_size.
326 if (cpi->oxcf.content == VP9E_CONTENT_SCREEN &&
327 cpi->oxcf.drop_frames_water_mark == 0)
328 rc->bits_off_target = VPXMAX(rc->bits_off_target, -rc->maximum_buffer_size);
329
330 rc->buffer_level = rc->bits_off_target;
331
332 if (is_one_pass_cbr_svc(cpi)) {
333 update_layer_buffer_level_postencode(&cpi->svc, encoded_frame_size);
334 }
335 }
336
vp9_rc_get_default_min_gf_interval(int width,int height,double framerate)337 int vp9_rc_get_default_min_gf_interval(int width, int height,
338 double framerate) {
339 // Assume we do not need any constraint lower than 4K 20 fps
340 static const double factor_safe = 3840 * 2160 * 20.0;
341 const double factor = width * height * framerate;
342 const int default_interval =
343 clamp((int)(framerate * 0.125), MIN_GF_INTERVAL, MAX_GF_INTERVAL);
344
345 if (factor <= factor_safe)
346 return default_interval;
347 else
348 return VPXMAX(default_interval,
349 (int)(MIN_GF_INTERVAL * factor / factor_safe + 0.5));
350 // Note this logic makes:
351 // 4K24: 5
352 // 4K30: 6
353 // 4K60: 12
354 }
355
vp9_rc_get_default_max_gf_interval(double framerate,int min_gf_interval)356 int vp9_rc_get_default_max_gf_interval(double framerate, int min_gf_interval) {
357 int interval = VPXMIN(MAX_GF_INTERVAL, (int)(framerate * 0.75));
358 interval += (interval & 0x01); // Round to even value
359 return VPXMAX(interval, min_gf_interval);
360 }
361
vp9_rc_init(const VP9EncoderConfig * oxcf,int pass,RATE_CONTROL * rc)362 void vp9_rc_init(const VP9EncoderConfig *oxcf, int pass, RATE_CONTROL *rc) {
363 int i;
364
365 if (pass == 0 && oxcf->rc_mode == VPX_CBR) {
366 rc->avg_frame_qindex[KEY_FRAME] = oxcf->worst_allowed_q;
367 rc->avg_frame_qindex[INTER_FRAME] = oxcf->worst_allowed_q;
368 } else {
369 rc->avg_frame_qindex[KEY_FRAME] =
370 (oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2;
371 rc->avg_frame_qindex[INTER_FRAME] =
372 (oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2;
373 }
374
375 rc->last_q[KEY_FRAME] = oxcf->best_allowed_q;
376 rc->last_q[INTER_FRAME] = oxcf->worst_allowed_q;
377
378 rc->buffer_level = rc->starting_buffer_level;
379 rc->bits_off_target = rc->starting_buffer_level;
380
381 rc->rolling_target_bits = rc->avg_frame_bandwidth;
382 rc->rolling_actual_bits = rc->avg_frame_bandwidth;
383 rc->long_rolling_target_bits = rc->avg_frame_bandwidth;
384 rc->long_rolling_actual_bits = rc->avg_frame_bandwidth;
385
386 rc->total_actual_bits = 0;
387 rc->total_target_bits = 0;
388 rc->total_target_vs_actual = 0;
389 rc->avg_frame_low_motion = 0;
390 rc->count_last_scene_change = 0;
391 rc->af_ratio_onepass_vbr = 10;
392 rc->prev_avg_source_sad_lag = 0;
393 rc->high_source_sad = 0;
394 rc->reset_high_source_sad = 0;
395 rc->high_source_sad_lagindex = -1;
396 rc->high_num_blocks_with_motion = 0;
397 rc->hybrid_intra_scene_change = 0;
398 rc->re_encode_maxq_scene_change = 0;
399 rc->alt_ref_gf_group = 0;
400 rc->last_frame_is_src_altref = 0;
401 rc->fac_active_worst_inter = 150;
402 rc->fac_active_worst_gf = 100;
403 rc->force_qpmin = 0;
404 for (i = 0; i < MAX_LAG_BUFFERS; ++i) rc->avg_source_sad[i] = 0;
405 rc->frames_since_key = 8; // Sensible default for first frame.
406 rc->this_key_frame_forced = 0;
407 rc->next_key_frame_forced = 0;
408 rc->source_alt_ref_pending = 0;
409 rc->source_alt_ref_active = 0;
410
411 rc->frames_till_gf_update_due = 0;
412 rc->ni_av_qi = oxcf->worst_allowed_q;
413 rc->ni_tot_qi = 0;
414 rc->ni_frames = 0;
415
416 rc->tot_q = 0.0;
417 rc->avg_q = vp9_convert_qindex_to_q(oxcf->worst_allowed_q, oxcf->bit_depth);
418
419 for (i = 0; i < RATE_FACTOR_LEVELS; ++i) {
420 rc->rate_correction_factors[i] = 1.0;
421 rc->damped_adjustment[i] = 0;
422 }
423
424 rc->min_gf_interval = oxcf->min_gf_interval;
425 rc->max_gf_interval = oxcf->max_gf_interval;
426 if (rc->min_gf_interval == 0)
427 rc->min_gf_interval = vp9_rc_get_default_min_gf_interval(
428 oxcf->width, oxcf->height, oxcf->init_framerate);
429 if (rc->max_gf_interval == 0)
430 rc->max_gf_interval = vp9_rc_get_default_max_gf_interval(
431 oxcf->init_framerate, rc->min_gf_interval);
432 rc->baseline_gf_interval = (rc->min_gf_interval + rc->max_gf_interval) / 2;
433
434 rc->force_max_q = 0;
435 rc->last_post_encode_dropped_scene_change = 0;
436 rc->use_post_encode_drop = 0;
437 rc->ext_use_post_encode_drop = 0;
438 rc->arf_active_best_quality_adjustment_factor = 1.0;
439 rc->arf_increase_active_best_quality = 0;
440 rc->preserve_arf_as_gld = 0;
441 rc->preserve_next_arf_as_gld = 0;
442 rc->show_arf_as_gld = 0;
443 }
444
check_buffer_above_thresh(VP9_COMP * cpi,int drop_mark)445 static int check_buffer_above_thresh(VP9_COMP *cpi, int drop_mark) {
446 SVC *svc = &cpi->svc;
447 if (!cpi->use_svc || cpi->svc.framedrop_mode != FULL_SUPERFRAME_DROP) {
448 RATE_CONTROL *const rc = &cpi->rc;
449 return (rc->buffer_level > drop_mark);
450 } else {
451 int i;
452 // For SVC in the FULL_SUPERFRAME_DROP): the condition on
453 // buffer (if its above threshold, so no drop) is checked on current and
454 // upper spatial layers. If any spatial layer is not above threshold then
455 // we return 0.
456 for (i = svc->spatial_layer_id; i < svc->number_spatial_layers; ++i) {
457 const int layer = LAYER_IDS_TO_IDX(i, svc->temporal_layer_id,
458 svc->number_temporal_layers);
459 LAYER_CONTEXT *lc = &svc->layer_context[layer];
460 RATE_CONTROL *lrc = &lc->rc;
461 // Exclude check for layer whose bitrate is 0.
462 if (lc->target_bandwidth > 0) {
463 const int drop_mark_layer = (int)(cpi->svc.framedrop_thresh[i] *
464 lrc->optimal_buffer_level / 100);
465 if (!(lrc->buffer_level > drop_mark_layer)) return 0;
466 }
467 }
468 return 1;
469 }
470 }
471
check_buffer_below_thresh(VP9_COMP * cpi,int drop_mark)472 static int check_buffer_below_thresh(VP9_COMP *cpi, int drop_mark) {
473 SVC *svc = &cpi->svc;
474 if (!cpi->use_svc || cpi->svc.framedrop_mode == LAYER_DROP) {
475 RATE_CONTROL *const rc = &cpi->rc;
476 return (rc->buffer_level <= drop_mark);
477 } else {
478 int i;
479 // For SVC in the constrained framedrop mode (svc->framedrop_mode =
480 // CONSTRAINED_LAYER_DROP or FULL_SUPERFRAME_DROP): the condition on
481 // buffer (if its below threshold, so drop frame) is checked on current
482 // and upper spatial layers. For FULL_SUPERFRAME_DROP mode if any
483 // spatial layer is <= threshold, then we return 1 (drop).
484 for (i = svc->spatial_layer_id; i < svc->number_spatial_layers; ++i) {
485 const int layer = LAYER_IDS_TO_IDX(i, svc->temporal_layer_id,
486 svc->number_temporal_layers);
487 LAYER_CONTEXT *lc = &svc->layer_context[layer];
488 RATE_CONTROL *lrc = &lc->rc;
489 // Exclude check for layer whose bitrate is 0.
490 if (lc->target_bandwidth > 0) {
491 const int drop_mark_layer = (int)(cpi->svc.framedrop_thresh[i] *
492 lrc->optimal_buffer_level / 100);
493 if (cpi->svc.framedrop_mode == FULL_SUPERFRAME_DROP) {
494 if (lrc->buffer_level <= drop_mark_layer) return 1;
495 } else {
496 if (!(lrc->buffer_level <= drop_mark_layer)) return 0;
497 }
498 }
499 }
500 if (cpi->svc.framedrop_mode == FULL_SUPERFRAME_DROP)
501 return 0;
502 else
503 return 1;
504 }
505 }
506
vp9_test_drop(VP9_COMP * cpi)507 int vp9_test_drop(VP9_COMP *cpi) {
508 const VP9EncoderConfig *oxcf = &cpi->oxcf;
509 RATE_CONTROL *const rc = &cpi->rc;
510 SVC *svc = &cpi->svc;
511 int drop_frames_water_mark = oxcf->drop_frames_water_mark;
512 if (cpi->use_svc) {
513 // If we have dropped max_consec_drop frames, then we don't
514 // drop this spatial layer, and reset counter to 0.
515 if (svc->drop_count[svc->spatial_layer_id] == svc->max_consec_drop) {
516 svc->drop_count[svc->spatial_layer_id] = 0;
517 return 0;
518 } else {
519 drop_frames_water_mark = svc->framedrop_thresh[svc->spatial_layer_id];
520 }
521 }
522 if (!drop_frames_water_mark ||
523 (svc->spatial_layer_id > 0 &&
524 svc->framedrop_mode == FULL_SUPERFRAME_DROP)) {
525 return 0;
526 } else {
527 if ((rc->buffer_level < 0 && svc->framedrop_mode != FULL_SUPERFRAME_DROP) ||
528 (check_buffer_below_thresh(cpi, -1) &&
529 svc->framedrop_mode == FULL_SUPERFRAME_DROP)) {
530 // Always drop if buffer is below 0.
531 return 1;
532 } else {
533 // If buffer is below drop_mark, for now just drop every other frame
534 // (starting with the next frame) until it increases back over drop_mark.
535 int drop_mark =
536 (int)(drop_frames_water_mark * rc->optimal_buffer_level / 100);
537 if (check_buffer_above_thresh(cpi, drop_mark) &&
538 (rc->decimation_factor > 0)) {
539 --rc->decimation_factor;
540 } else if (check_buffer_below_thresh(cpi, drop_mark) &&
541 rc->decimation_factor == 0) {
542 rc->decimation_factor = 1;
543 }
544 if (rc->decimation_factor > 0) {
545 if (rc->decimation_count > 0) {
546 --rc->decimation_count;
547 return 1;
548 } else {
549 rc->decimation_count = rc->decimation_factor;
550 return 0;
551 }
552 } else {
553 rc->decimation_count = 0;
554 return 0;
555 }
556 }
557 }
558 }
559
post_encode_drop_cbr(VP9_COMP * cpi,size_t * size)560 int post_encode_drop_cbr(VP9_COMP *cpi, size_t *size) {
561 size_t frame_size = *size << 3;
562 int64_t new_buffer_level =
563 cpi->rc.buffer_level + cpi->rc.avg_frame_bandwidth - (int64_t)frame_size;
564
565 // For now we drop if new buffer level (given the encoded frame size) goes
566 // below 0.
567 if (new_buffer_level < 0) {
568 *size = 0;
569 vp9_rc_postencode_update_drop_frame(cpi);
570 // Update flag to use for next frame.
571 if (cpi->rc.high_source_sad ||
572 (cpi->use_svc && cpi->svc.high_source_sad_superframe))
573 cpi->rc.last_post_encode_dropped_scene_change = 1;
574 // Force max_q on next fame.
575 cpi->rc.force_max_q = 1;
576 cpi->rc.avg_frame_qindex[INTER_FRAME] = cpi->rc.worst_quality;
577 cpi->last_frame_dropped = 1;
578 cpi->ext_refresh_frame_flags_pending = 0;
579 if (cpi->use_svc) {
580 SVC *svc = &cpi->svc;
581 int sl = 0;
582 int tl = 0;
583 svc->last_layer_dropped[svc->spatial_layer_id] = 1;
584 svc->drop_spatial_layer[svc->spatial_layer_id] = 1;
585 svc->drop_count[svc->spatial_layer_id]++;
586 svc->skip_enhancement_layer = 1;
587 // Postencode drop is only checked on base spatial layer,
588 // for now if max-q is set on base we force it on all layers.
589 for (sl = 0; sl < svc->number_spatial_layers; ++sl) {
590 for (tl = 0; tl < svc->number_temporal_layers; ++tl) {
591 const int layer =
592 LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers);
593 LAYER_CONTEXT *lc = &svc->layer_context[layer];
594 RATE_CONTROL *lrc = &lc->rc;
595 lrc->force_max_q = 1;
596 lrc->avg_frame_qindex[INTER_FRAME] = cpi->rc.worst_quality;
597 }
598 }
599 }
600 return 1;
601 }
602
603 cpi->rc.force_max_q = 0;
604 cpi->rc.last_post_encode_dropped_scene_change = 0;
605 return 0;
606 }
607
vp9_rc_drop_frame(VP9_COMP * cpi)608 int vp9_rc_drop_frame(VP9_COMP *cpi) {
609 SVC *svc = &cpi->svc;
610 int svc_prev_layer_dropped = 0;
611 // In the constrained or full_superframe framedrop mode for svc
612 // (framedrop_mode != (LAYER_DROP && CONSTRAINED_FROM_ABOVE)),
613 // if the previous spatial layer was dropped, drop the current spatial layer.
614 if (cpi->use_svc && svc->spatial_layer_id > 0 &&
615 svc->drop_spatial_layer[svc->spatial_layer_id - 1])
616 svc_prev_layer_dropped = 1;
617 if ((svc_prev_layer_dropped && svc->framedrop_mode != LAYER_DROP &&
618 svc->framedrop_mode != CONSTRAINED_FROM_ABOVE_DROP) ||
619 svc->force_drop_constrained_from_above[svc->spatial_layer_id] ||
620 vp9_test_drop(cpi)) {
621 vp9_rc_postencode_update_drop_frame(cpi);
622 cpi->ext_refresh_frame_flags_pending = 0;
623 cpi->last_frame_dropped = 1;
624 if (cpi->use_svc) {
625 svc->last_layer_dropped[svc->spatial_layer_id] = 1;
626 svc->drop_spatial_layer[svc->spatial_layer_id] = 1;
627 svc->drop_count[svc->spatial_layer_id]++;
628 svc->skip_enhancement_layer = 1;
629 if (svc->framedrop_mode == LAYER_DROP ||
630 (svc->framedrop_mode == CONSTRAINED_FROM_ABOVE_DROP &&
631 svc->force_drop_constrained_from_above[svc->number_spatial_layers -
632 1] == 0) ||
633 svc->drop_spatial_layer[0] == 0) {
634 // For the case of constrained drop mode where full superframe is
635 // dropped, we don't increment the svc frame counters.
636 // In particular temporal layer counter (which is incremented in
637 // vp9_inc_frame_in_layer()) won't be incremented, so on a dropped
638 // frame we try the same temporal_layer_id on next incoming frame.
639 // This is to avoid an issue with temporal alignement with full
640 // superframe dropping.
641 vp9_inc_frame_in_layer(cpi);
642 }
643 if (svc->spatial_layer_id == svc->number_spatial_layers - 1) {
644 int i;
645 int all_layers_drop = 1;
646 for (i = 0; i < svc->spatial_layer_id; i++) {
647 if (svc->drop_spatial_layer[i] == 0) {
648 all_layers_drop = 0;
649 break;
650 }
651 }
652 if (all_layers_drop == 1) svc->skip_enhancement_layer = 0;
653 }
654 }
655 return 1;
656 }
657 return 0;
658 }
659
adjust_q_cbr(const VP9_COMP * cpi,int q)660 static int adjust_q_cbr(const VP9_COMP *cpi, int q) {
661 // This makes sure q is between oscillating Qs to prevent resonance.
662 if (!cpi->rc.reset_high_source_sad &&
663 (!cpi->oxcf.gf_cbr_boost_pct ||
664 !(cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame)) &&
665 (cpi->rc.rc_1_frame * cpi->rc.rc_2_frame == -1) &&
666 cpi->rc.q_1_frame != cpi->rc.q_2_frame) {
667 int qclamp = clamp(q, VPXMIN(cpi->rc.q_1_frame, cpi->rc.q_2_frame),
668 VPXMAX(cpi->rc.q_1_frame, cpi->rc.q_2_frame));
669 // If the previous frame had overshoot and the current q needs to increase
670 // above the clamped value, reduce the clamp for faster reaction to
671 // overshoot.
672 if (cpi->rc.rc_1_frame == -1 && q > qclamp)
673 q = (q + qclamp) >> 1;
674 else
675 q = qclamp;
676 }
677 if (cpi->oxcf.content == VP9E_CONTENT_SCREEN)
678 vp9_cyclic_refresh_limit_q(cpi, &q);
679 return VPXMAX(VPXMIN(q, cpi->rc.worst_quality), cpi->rc.best_quality);
680 }
681
get_rate_correction_factor(const VP9_COMP * cpi)682 static double get_rate_correction_factor(const VP9_COMP *cpi) {
683 const RATE_CONTROL *const rc = &cpi->rc;
684 const VP9_COMMON *const cm = &cpi->common;
685 double rcf;
686
687 if (frame_is_intra_only(cm)) {
688 rcf = rc->rate_correction_factors[KF_STD];
689 } else if (cpi->oxcf.pass == 2) {
690 RATE_FACTOR_LEVEL rf_lvl =
691 cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index];
692 rcf = rc->rate_correction_factors[rf_lvl];
693 } else {
694 if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
695 !rc->is_src_frame_alt_ref && !cpi->use_svc &&
696 (cpi->oxcf.rc_mode != VPX_CBR || cpi->oxcf.gf_cbr_boost_pct > 100))
697 rcf = rc->rate_correction_factors[GF_ARF_STD];
698 else
699 rcf = rc->rate_correction_factors[INTER_NORMAL];
700 }
701 rcf *= rcf_mult[rc->frame_size_selector];
702 return fclamp(rcf, MIN_BPB_FACTOR, MAX_BPB_FACTOR);
703 }
704
set_rate_correction_factor(VP9_COMP * cpi,double factor)705 static void set_rate_correction_factor(VP9_COMP *cpi, double factor) {
706 RATE_CONTROL *const rc = &cpi->rc;
707 const VP9_COMMON *const cm = &cpi->common;
708
709 // Normalize RCF to account for the size-dependent scaling factor.
710 factor /= rcf_mult[cpi->rc.frame_size_selector];
711
712 factor = fclamp(factor, MIN_BPB_FACTOR, MAX_BPB_FACTOR);
713
714 if (frame_is_intra_only(cm)) {
715 rc->rate_correction_factors[KF_STD] = factor;
716 } else if (cpi->oxcf.pass == 2) {
717 RATE_FACTOR_LEVEL rf_lvl =
718 cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index];
719 rc->rate_correction_factors[rf_lvl] = factor;
720 } else {
721 if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
722 !rc->is_src_frame_alt_ref && !cpi->use_svc &&
723 (cpi->oxcf.rc_mode != VPX_CBR || cpi->oxcf.gf_cbr_boost_pct > 100))
724 rc->rate_correction_factors[GF_ARF_STD] = factor;
725 else
726 rc->rate_correction_factors[INTER_NORMAL] = factor;
727 }
728 }
729
vp9_rc_update_rate_correction_factors(VP9_COMP * cpi)730 void vp9_rc_update_rate_correction_factors(VP9_COMP *cpi) {
731 const VP9_COMMON *const cm = &cpi->common;
732 int correction_factor = 100;
733 double rate_correction_factor = get_rate_correction_factor(cpi);
734 double adjustment_limit;
735 RATE_FACTOR_LEVEL rf_lvl =
736 cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index];
737
738 int projected_size_based_on_q = 0;
739
740 // Do not update the rate factors for arf overlay frames.
741 if (cpi->rc.is_src_frame_alt_ref) return;
742
743 // Clear down mmx registers to allow floating point in what follows
744 vpx_clear_system_state();
745
746 // Work out how big we would have expected the frame to be at this Q given
747 // the current correction factor.
748 // Stay in double to avoid int overflow when values are large
749 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->common.seg.enabled) {
750 projected_size_based_on_q =
751 vp9_cyclic_refresh_estimate_bits_at_q(cpi, rate_correction_factor);
752 } else {
753 FRAME_TYPE frame_type = cm->intra_only ? KEY_FRAME : cm->frame_type;
754 projected_size_based_on_q =
755 vp9_estimate_bits_at_q(frame_type, cm->base_qindex, cm->MBs,
756 rate_correction_factor, cm->bit_depth);
757 }
758 // Work out a size correction factor.
759 if (projected_size_based_on_q > FRAME_OVERHEAD_BITS)
760 correction_factor = (int)((100 * (int64_t)cpi->rc.projected_frame_size) /
761 projected_size_based_on_q);
762
763 // Do not use damped adjustment for the first frame of each frame type
764 if (!cpi->rc.damped_adjustment[rf_lvl]) {
765 adjustment_limit = 1.0;
766 cpi->rc.damped_adjustment[rf_lvl] = 1;
767 } else {
768 // More heavily damped adjustment used if we have been oscillating either
769 // side of target.
770 adjustment_limit =
771 0.25 + 0.5 * VPXMIN(1, fabs(log10(0.01 * correction_factor)));
772 }
773
774 cpi->rc.q_2_frame = cpi->rc.q_1_frame;
775 cpi->rc.q_1_frame = cm->base_qindex;
776 cpi->rc.rc_2_frame = cpi->rc.rc_1_frame;
777 if (correction_factor > 110)
778 cpi->rc.rc_1_frame = -1;
779 else if (correction_factor < 90)
780 cpi->rc.rc_1_frame = 1;
781 else
782 cpi->rc.rc_1_frame = 0;
783
784 // Turn off oscilation detection in the case of massive overshoot.
785 if (cpi->rc.rc_1_frame == -1 && cpi->rc.rc_2_frame == 1 &&
786 correction_factor > 1000) {
787 cpi->rc.rc_2_frame = 0;
788 }
789
790 if (correction_factor > 102) {
791 // We are not already at the worst allowable quality
792 correction_factor =
793 (int)(100 + ((correction_factor - 100) * adjustment_limit));
794 rate_correction_factor = (rate_correction_factor * correction_factor) / 100;
795 // Keep rate_correction_factor within limits
796 if (rate_correction_factor > MAX_BPB_FACTOR)
797 rate_correction_factor = MAX_BPB_FACTOR;
798 } else if (correction_factor < 99) {
799 // We are not already at the best allowable quality
800 correction_factor =
801 (int)(100 - ((100 - correction_factor) * adjustment_limit));
802 rate_correction_factor = (rate_correction_factor * correction_factor) / 100;
803
804 // Keep rate_correction_factor within limits
805 if (rate_correction_factor < MIN_BPB_FACTOR)
806 rate_correction_factor = MIN_BPB_FACTOR;
807 }
808
809 set_rate_correction_factor(cpi, rate_correction_factor);
810 }
811
vp9_rc_regulate_q(const VP9_COMP * cpi,int target_bits_per_frame,int active_best_quality,int active_worst_quality)812 int vp9_rc_regulate_q(const VP9_COMP *cpi, int target_bits_per_frame,
813 int active_best_quality, int active_worst_quality) {
814 const VP9_COMMON *const cm = &cpi->common;
815 CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
816 int q = active_worst_quality;
817 int last_error = INT_MAX;
818 int i, target_bits_per_mb, bits_per_mb_at_this_q;
819 const double correction_factor = get_rate_correction_factor(cpi);
820
821 // Calculate required scaling factor based on target frame size and size of
822 // frame produced using previous Q.
823 target_bits_per_mb =
824 (int)(((uint64_t)target_bits_per_frame << BPER_MB_NORMBITS) / cm->MBs);
825
826 i = active_best_quality;
827
828 do {
829 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled &&
830 cr->apply_cyclic_refresh &&
831 (!cpi->oxcf.gf_cbr_boost_pct || !cpi->refresh_golden_frame)) {
832 bits_per_mb_at_this_q =
833 (int)vp9_cyclic_refresh_rc_bits_per_mb(cpi, i, correction_factor);
834 } else {
835 FRAME_TYPE frame_type = cm->intra_only ? KEY_FRAME : cm->frame_type;
836 bits_per_mb_at_this_q = (int)vp9_rc_bits_per_mb(
837 frame_type, i, correction_factor, cm->bit_depth);
838 }
839
840 if (bits_per_mb_at_this_q <= target_bits_per_mb) {
841 if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error)
842 q = i;
843 else
844 q = i - 1;
845
846 break;
847 } else {
848 last_error = bits_per_mb_at_this_q - target_bits_per_mb;
849 }
850 } while (++i <= active_worst_quality);
851
852 // Adjustment to q for CBR mode.
853 if (cpi->oxcf.rc_mode == VPX_CBR) return adjust_q_cbr(cpi, q);
854
855 return q;
856 }
857
get_active_quality(int q,int gfu_boost,int low,int high,int * low_motion_minq,int * high_motion_minq)858 static int get_active_quality(int q, int gfu_boost, int low, int high,
859 int *low_motion_minq, int *high_motion_minq) {
860 if (gfu_boost > high) {
861 return low_motion_minq[q];
862 } else if (gfu_boost < low) {
863 return high_motion_minq[q];
864 } else {
865 const int gap = high - low;
866 const int offset = high - gfu_boost;
867 const int qdiff = high_motion_minq[q] - low_motion_minq[q];
868 const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap;
869 return low_motion_minq[q] + adjustment;
870 }
871 }
872
get_kf_active_quality(const RATE_CONTROL * const rc,int q,vpx_bit_depth_t bit_depth)873 static int get_kf_active_quality(const RATE_CONTROL *const rc, int q,
874 vpx_bit_depth_t bit_depth) {
875 int *kf_low_motion_minq;
876 int *kf_high_motion_minq;
877 ASSIGN_MINQ_TABLE(bit_depth, kf_low_motion_minq);
878 ASSIGN_MINQ_TABLE(bit_depth, kf_high_motion_minq);
879 return get_active_quality(q, rc->kf_boost, kf_low, kf_high,
880 kf_low_motion_minq, kf_high_motion_minq);
881 }
882
get_gf_active_quality(const VP9_COMP * const cpi,int q,vpx_bit_depth_t bit_depth)883 static int get_gf_active_quality(const VP9_COMP *const cpi, int q,
884 vpx_bit_depth_t bit_depth) {
885 const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
886 const RATE_CONTROL *const rc = &cpi->rc;
887
888 int *arfgf_low_motion_minq;
889 int *arfgf_high_motion_minq;
890 const int gfu_boost = cpi->multi_layer_arf
891 ? gf_group->gfu_boost[gf_group->index]
892 : rc->gfu_boost;
893 ASSIGN_MINQ_TABLE(bit_depth, arfgf_low_motion_minq);
894 ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq);
895 return get_active_quality(q, gfu_boost, gf_low, gf_high,
896 arfgf_low_motion_minq, arfgf_high_motion_minq);
897 }
898
calc_active_worst_quality_one_pass_vbr(const VP9_COMP * cpi)899 static int calc_active_worst_quality_one_pass_vbr(const VP9_COMP *cpi) {
900 const RATE_CONTROL *const rc = &cpi->rc;
901 const unsigned int curr_frame = cpi->common.current_video_frame;
902 int active_worst_quality;
903
904 if (cpi->common.frame_type == KEY_FRAME) {
905 active_worst_quality =
906 curr_frame == 0 ? rc->worst_quality : rc->last_q[KEY_FRAME] << 1;
907 } else {
908 if (!rc->is_src_frame_alt_ref &&
909 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
910 active_worst_quality =
911 curr_frame == 1
912 ? rc->last_q[KEY_FRAME] * 5 >> 2
913 : rc->last_q[INTER_FRAME] * rc->fac_active_worst_gf / 100;
914 } else {
915 active_worst_quality = curr_frame == 1
916 ? rc->last_q[KEY_FRAME] << 1
917 : rc->avg_frame_qindex[INTER_FRAME] *
918 rc->fac_active_worst_inter / 100;
919 }
920 }
921 return VPXMIN(active_worst_quality, rc->worst_quality);
922 }
923
924 // Adjust active_worst_quality level based on buffer level.
calc_active_worst_quality_one_pass_cbr(const VP9_COMP * cpi)925 static int calc_active_worst_quality_one_pass_cbr(const VP9_COMP *cpi) {
926 // Adjust active_worst_quality: If buffer is above the optimal/target level,
927 // bring active_worst_quality down depending on fullness of buffer.
928 // If buffer is below the optimal level, let the active_worst_quality go from
929 // ambient Q (at buffer = optimal level) to worst_quality level
930 // (at buffer = critical level).
931 const VP9_COMMON *const cm = &cpi->common;
932 const RATE_CONTROL *rc = &cpi->rc;
933 // Buffer level below which we push active_worst to worst_quality.
934 int64_t critical_level = rc->optimal_buffer_level >> 3;
935 int64_t buff_lvl_step = 0;
936 int adjustment = 0;
937 int active_worst_quality;
938 int ambient_qp;
939 unsigned int num_frames_weight_key = 5 * cpi->svc.number_temporal_layers;
940 if (frame_is_intra_only(cm) || rc->reset_high_source_sad || rc->force_max_q)
941 return rc->worst_quality;
942 // For ambient_qp we use minimum of avg_frame_qindex[KEY_FRAME/INTER_FRAME]
943 // for the first few frames following key frame. These are both initialized
944 // to worst_quality and updated with (3/4, 1/4) average in postencode_update.
945 // So for first few frames following key, the qp of that key frame is weighted
946 // into the active_worst_quality setting.
947 ambient_qp = (cm->current_video_frame < num_frames_weight_key)
948 ? VPXMIN(rc->avg_frame_qindex[INTER_FRAME],
949 rc->avg_frame_qindex[KEY_FRAME])
950 : rc->avg_frame_qindex[INTER_FRAME];
951 active_worst_quality = VPXMIN(rc->worst_quality, (ambient_qp * 5) >> 2);
952 // For SVC if the current base spatial layer was key frame, use the QP from
953 // that base layer for ambient_qp.
954 if (cpi->use_svc && cpi->svc.spatial_layer_id > 0) {
955 int layer = LAYER_IDS_TO_IDX(0, cpi->svc.temporal_layer_id,
956 cpi->svc.number_temporal_layers);
957 const LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer];
958 if (lc->is_key_frame) {
959 const RATE_CONTROL *lrc = &lc->rc;
960 ambient_qp = VPXMIN(ambient_qp, lrc->last_q[KEY_FRAME]);
961 active_worst_quality = VPXMIN(rc->worst_quality, (ambient_qp * 9) >> 3);
962 }
963 }
964 if (rc->buffer_level > rc->optimal_buffer_level) {
965 // Adjust down.
966 // Maximum limit for down adjustment ~30%; make it lower for screen content.
967 int max_adjustment_down = active_worst_quality / 3;
968 if (cpi->oxcf.content == VP9E_CONTENT_SCREEN)
969 max_adjustment_down = active_worst_quality >> 3;
970 if (max_adjustment_down) {
971 buff_lvl_step = ((rc->maximum_buffer_size - rc->optimal_buffer_level) /
972 max_adjustment_down);
973 if (buff_lvl_step)
974 adjustment = (int)((rc->buffer_level - rc->optimal_buffer_level) /
975 buff_lvl_step);
976 active_worst_quality -= adjustment;
977 }
978 } else if (rc->buffer_level > critical_level) {
979 // Adjust up from ambient Q.
980 if (critical_level) {
981 buff_lvl_step = (rc->optimal_buffer_level - critical_level);
982 if (buff_lvl_step) {
983 adjustment = (int)((rc->worst_quality - ambient_qp) *
984 (rc->optimal_buffer_level - rc->buffer_level) /
985 buff_lvl_step);
986 }
987 active_worst_quality = ambient_qp + adjustment;
988 }
989 } else {
990 // Set to worst_quality if buffer is below critical level.
991 active_worst_quality = rc->worst_quality;
992 }
993 return active_worst_quality;
994 }
995
rc_pick_q_and_bounds_one_pass_cbr(const VP9_COMP * cpi,int * bottom_index,int * top_index)996 static int rc_pick_q_and_bounds_one_pass_cbr(const VP9_COMP *cpi,
997 int *bottom_index,
998 int *top_index) {
999 const VP9_COMMON *const cm = &cpi->common;
1000 const RATE_CONTROL *const rc = &cpi->rc;
1001 int active_best_quality;
1002 int active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi);
1003 int q;
1004 int *rtc_minq;
1005 ASSIGN_MINQ_TABLE(cm->bit_depth, rtc_minq);
1006
1007 if (frame_is_intra_only(cm)) {
1008 active_best_quality = rc->best_quality;
1009 // Handle the special case for key frames forced when we have reached
1010 // the maximum key frame interval. Here force the Q to a range
1011 // based on the ambient Q to reduce the risk of popping.
1012 if (rc->this_key_frame_forced) {
1013 int qindex = rc->last_boosted_qindex;
1014 double last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
1015 int delta_qindex = vp9_compute_qdelta(
1016 rc, last_boosted_q, (last_boosted_q * 0.75), cm->bit_depth);
1017 active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
1018 } else if (cm->current_video_frame > 0) {
1019 // not first frame of one pass and kf_boost is set
1020 double q_adj_factor = 1.0;
1021 double q_val;
1022
1023 active_best_quality = get_kf_active_quality(
1024 rc, rc->avg_frame_qindex[KEY_FRAME], cm->bit_depth);
1025
1026 // Allow somewhat lower kf minq with small image formats.
1027 if ((cm->width * cm->height) <= (352 * 288)) {
1028 q_adj_factor -= 0.25;
1029 }
1030
1031 // Convert the adjustment factor to a qindex delta
1032 // on active_best_quality.
1033 q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth);
1034 active_best_quality +=
1035 vp9_compute_qdelta(rc, q_val, q_val * q_adj_factor, cm->bit_depth);
1036 }
1037 } else if (!rc->is_src_frame_alt_ref && !cpi->use_svc &&
1038 cpi->oxcf.gf_cbr_boost_pct &&
1039 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
1040 // Use the lower of active_worst_quality and recent
1041 // average Q as basis for GF/ARF best Q limit unless last frame was
1042 // a key frame.
1043 if (rc->frames_since_key > 1 &&
1044 rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
1045 q = rc->avg_frame_qindex[INTER_FRAME];
1046 } else {
1047 q = active_worst_quality;
1048 }
1049 active_best_quality = get_gf_active_quality(cpi, q, cm->bit_depth);
1050 } else {
1051 // Use the lower of active_worst_quality and recent/average Q.
1052 if (cm->current_video_frame > 1) {
1053 if (rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality)
1054 active_best_quality = rtc_minq[rc->avg_frame_qindex[INTER_FRAME]];
1055 else
1056 active_best_quality = rtc_minq[active_worst_quality];
1057 } else {
1058 if (rc->avg_frame_qindex[KEY_FRAME] < active_worst_quality)
1059 active_best_quality = rtc_minq[rc->avg_frame_qindex[KEY_FRAME]];
1060 else
1061 active_best_quality = rtc_minq[active_worst_quality];
1062 }
1063 }
1064
1065 // Clip the active best and worst quality values to limits
1066 active_best_quality =
1067 clamp(active_best_quality, rc->best_quality, rc->worst_quality);
1068 active_worst_quality =
1069 clamp(active_worst_quality, active_best_quality, rc->worst_quality);
1070
1071 *top_index = active_worst_quality;
1072 *bottom_index = active_best_quality;
1073
1074 // Special case code to try and match quality with forced key frames
1075 if (frame_is_intra_only(cm) && rc->this_key_frame_forced) {
1076 q = rc->last_boosted_qindex;
1077 } else {
1078 q = vp9_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
1079 active_worst_quality);
1080 if (q > *top_index) {
1081 // Special case when we are targeting the max allowed rate
1082 if (rc->this_frame_target >= rc->max_frame_bandwidth)
1083 *top_index = q;
1084 else
1085 q = *top_index;
1086 }
1087 }
1088
1089 assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
1090 assert(*bottom_index <= rc->worst_quality &&
1091 *bottom_index >= rc->best_quality);
1092 assert(q <= rc->worst_quality && q >= rc->best_quality);
1093 return q;
1094 }
1095
get_active_cq_level_one_pass(const RATE_CONTROL * rc,const VP9EncoderConfig * const oxcf)1096 static int get_active_cq_level_one_pass(const RATE_CONTROL *rc,
1097 const VP9EncoderConfig *const oxcf) {
1098 static const double cq_adjust_threshold = 0.1;
1099 int active_cq_level = oxcf->cq_level;
1100 if (oxcf->rc_mode == VPX_CQ && rc->total_target_bits > 0) {
1101 const double x = (double)rc->total_actual_bits / rc->total_target_bits;
1102 if (x < cq_adjust_threshold) {
1103 active_cq_level = (int)(active_cq_level * x / cq_adjust_threshold);
1104 }
1105 }
1106 return active_cq_level;
1107 }
1108
1109 #define SMOOTH_PCT_MIN 0.1
1110 #define SMOOTH_PCT_DIV 0.05
get_active_cq_level_two_pass(const TWO_PASS * twopass,const RATE_CONTROL * rc,const VP9EncoderConfig * const oxcf)1111 static int get_active_cq_level_two_pass(const TWO_PASS *twopass,
1112 const RATE_CONTROL *rc,
1113 const VP9EncoderConfig *const oxcf) {
1114 static const double cq_adjust_threshold = 0.1;
1115 int active_cq_level = oxcf->cq_level;
1116 if (oxcf->rc_mode == VPX_CQ) {
1117 if (twopass->mb_smooth_pct > SMOOTH_PCT_MIN) {
1118 active_cq_level -=
1119 (int)((twopass->mb_smooth_pct - SMOOTH_PCT_MIN) / SMOOTH_PCT_DIV);
1120 active_cq_level = VPXMAX(active_cq_level, 0);
1121 }
1122 if (rc->total_target_bits > 0) {
1123 const double x = (double)rc->total_actual_bits / rc->total_target_bits;
1124 if (x < cq_adjust_threshold) {
1125 active_cq_level = (int)(active_cq_level * x / cq_adjust_threshold);
1126 }
1127 }
1128 }
1129 return active_cq_level;
1130 }
1131
rc_pick_q_and_bounds_one_pass_vbr(const VP9_COMP * cpi,int * bottom_index,int * top_index)1132 static int rc_pick_q_and_bounds_one_pass_vbr(const VP9_COMP *cpi,
1133 int *bottom_index,
1134 int *top_index) {
1135 const VP9_COMMON *const cm = &cpi->common;
1136 const RATE_CONTROL *const rc = &cpi->rc;
1137 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1138 const int cq_level = get_active_cq_level_one_pass(rc, oxcf);
1139 int active_best_quality;
1140 int active_worst_quality = calc_active_worst_quality_one_pass_vbr(cpi);
1141 int q;
1142 int *inter_minq;
1143 ASSIGN_MINQ_TABLE(cm->bit_depth, inter_minq);
1144
1145 if (frame_is_intra_only(cm)) {
1146 if (oxcf->rc_mode == VPX_Q) {
1147 int qindex = cq_level;
1148 double q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
1149 int delta_qindex = vp9_compute_qdelta(rc, q, q * 0.25, cm->bit_depth);
1150 active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
1151 } else if (rc->this_key_frame_forced) {
1152 // Handle the special case for key frames forced when we have reached
1153 // the maximum key frame interval. Here force the Q to a range
1154 // based on the ambient Q to reduce the risk of popping.
1155 int qindex = rc->last_boosted_qindex;
1156 double last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
1157 int delta_qindex = vp9_compute_qdelta(
1158 rc, last_boosted_q, last_boosted_q * 0.75, cm->bit_depth);
1159 active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
1160 } else {
1161 // not first frame of one pass and kf_boost is set
1162 double q_adj_factor = 1.0;
1163 double q_val;
1164
1165 active_best_quality = get_kf_active_quality(
1166 rc, rc->avg_frame_qindex[KEY_FRAME], cm->bit_depth);
1167
1168 // Allow somewhat lower kf minq with small image formats.
1169 if ((cm->width * cm->height) <= (352 * 288)) {
1170 q_adj_factor -= 0.25;
1171 }
1172
1173 // Convert the adjustment factor to a qindex delta
1174 // on active_best_quality.
1175 q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth);
1176 active_best_quality +=
1177 vp9_compute_qdelta(rc, q_val, q_val * q_adj_factor, cm->bit_depth);
1178 }
1179 } else if (!rc->is_src_frame_alt_ref &&
1180 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
1181 // Use the lower of active_worst_quality and recent
1182 // average Q as basis for GF/ARF best Q limit unless last frame was
1183 // a key frame.
1184 if (rc->frames_since_key > 1) {
1185 if (rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
1186 q = rc->avg_frame_qindex[INTER_FRAME];
1187 } else {
1188 q = active_worst_quality;
1189 }
1190 } else {
1191 q = rc->avg_frame_qindex[KEY_FRAME];
1192 }
1193 // For constrained quality dont allow Q less than the cq level
1194 if (oxcf->rc_mode == VPX_CQ) {
1195 if (q < cq_level) q = cq_level;
1196
1197 active_best_quality = get_gf_active_quality(cpi, q, cm->bit_depth);
1198
1199 // Constrained quality use slightly lower active best.
1200 active_best_quality = active_best_quality * 15 / 16;
1201
1202 } else if (oxcf->rc_mode == VPX_Q) {
1203 int qindex = cq_level;
1204 double q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
1205 int delta_qindex;
1206 if (cpi->refresh_alt_ref_frame)
1207 delta_qindex = vp9_compute_qdelta(rc, q, q * 0.40, cm->bit_depth);
1208 else
1209 delta_qindex = vp9_compute_qdelta(rc, q, q * 0.50, cm->bit_depth);
1210 active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
1211 } else {
1212 active_best_quality = get_gf_active_quality(cpi, q, cm->bit_depth);
1213 }
1214 } else {
1215 if (oxcf->rc_mode == VPX_Q) {
1216 int qindex = cq_level;
1217 double q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
1218 double delta_rate[FIXED_GF_INTERVAL] = { 0.50, 1.0, 0.85, 1.0,
1219 0.70, 1.0, 0.85, 1.0 };
1220 int delta_qindex = vp9_compute_qdelta(
1221 rc, q, q * delta_rate[cm->current_video_frame % FIXED_GF_INTERVAL],
1222 cm->bit_depth);
1223 active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
1224 } else {
1225 // Use the min of the average Q and active_worst_quality as basis for
1226 // active_best.
1227 if (cm->current_video_frame > 1) {
1228 q = VPXMIN(rc->avg_frame_qindex[INTER_FRAME], active_worst_quality);
1229 active_best_quality = inter_minq[q];
1230 } else {
1231 active_best_quality = inter_minq[rc->avg_frame_qindex[KEY_FRAME]];
1232 }
1233 // For the constrained quality mode we don't want
1234 // q to fall below the cq level.
1235 if ((oxcf->rc_mode == VPX_CQ) && (active_best_quality < cq_level)) {
1236 active_best_quality = cq_level;
1237 }
1238 }
1239 }
1240
1241 // Clip the active best and worst quality values to limits
1242 active_best_quality =
1243 clamp(active_best_quality, rc->best_quality, rc->worst_quality);
1244 active_worst_quality =
1245 clamp(active_worst_quality, active_best_quality, rc->worst_quality);
1246
1247 *top_index = active_worst_quality;
1248 *bottom_index = active_best_quality;
1249
1250 #if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
1251 {
1252 int qdelta = 0;
1253 vpx_clear_system_state();
1254
1255 // Limit Q range for the adaptive loop.
1256 if (cm->frame_type == KEY_FRAME && !rc->this_key_frame_forced &&
1257 !(cm->current_video_frame == 0)) {
1258 qdelta = vp9_compute_qdelta_by_rate(
1259 &cpi->rc, cm->frame_type, active_worst_quality, 2.0, cm->bit_depth);
1260 } else if (!rc->is_src_frame_alt_ref &&
1261 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
1262 qdelta = vp9_compute_qdelta_by_rate(
1263 &cpi->rc, cm->frame_type, active_worst_quality, 1.75, cm->bit_depth);
1264 }
1265 if (rc->high_source_sad && cpi->sf.use_altref_onepass) qdelta = 0;
1266 *top_index = active_worst_quality + qdelta;
1267 *top_index = (*top_index > *bottom_index) ? *top_index : *bottom_index;
1268 }
1269 #endif
1270
1271 if (oxcf->rc_mode == VPX_Q) {
1272 q = active_best_quality;
1273 // Special case code to try and match quality with forced key frames
1274 } else if ((cm->frame_type == KEY_FRAME) && rc->this_key_frame_forced) {
1275 q = rc->last_boosted_qindex;
1276 } else {
1277 q = vp9_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
1278 active_worst_quality);
1279 if (q > *top_index) {
1280 // Special case when we are targeting the max allowed rate
1281 if (rc->this_frame_target >= rc->max_frame_bandwidth)
1282 *top_index = q;
1283 else
1284 q = *top_index;
1285 }
1286 }
1287
1288 assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
1289 assert(*bottom_index <= rc->worst_quality &&
1290 *bottom_index >= rc->best_quality);
1291 assert(q <= rc->worst_quality && q >= rc->best_quality);
1292 return q;
1293 }
1294
vp9_frame_type_qdelta(const VP9_COMP * cpi,int rf_level,int q)1295 int vp9_frame_type_qdelta(const VP9_COMP *cpi, int rf_level, int q) {
1296 static const double rate_factor_deltas[RATE_FACTOR_LEVELS] = {
1297 1.00, // INTER_NORMAL
1298 1.00, // INTER_HIGH
1299 1.50, // GF_ARF_LOW
1300 1.75, // GF_ARF_STD
1301 2.00, // KF_STD
1302 };
1303 const VP9_COMMON *const cm = &cpi->common;
1304
1305 int qdelta = vp9_compute_qdelta_by_rate(
1306 &cpi->rc, cm->frame_type, q, rate_factor_deltas[rf_level], cm->bit_depth);
1307 return qdelta;
1308 }
1309
1310 #define STATIC_MOTION_THRESH 95
1311
pick_kf_q_bound_two_pass(const VP9_COMP * cpi,int * bottom_index,int * top_index)1312 static void pick_kf_q_bound_two_pass(const VP9_COMP *cpi, int *bottom_index,
1313 int *top_index) {
1314 const VP9_COMMON *const cm = &cpi->common;
1315 const RATE_CONTROL *const rc = &cpi->rc;
1316 int active_best_quality;
1317 int active_worst_quality = cpi->twopass.active_worst_quality;
1318
1319 if (rc->this_key_frame_forced) {
1320 // Handle the special case for key frames forced when we have reached
1321 // the maximum key frame interval. Here force the Q to a range
1322 // based on the ambient Q to reduce the risk of popping.
1323 double last_boosted_q;
1324 int delta_qindex;
1325 int qindex;
1326
1327 if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
1328 qindex = VPXMIN(rc->last_kf_qindex, rc->last_boosted_qindex);
1329 active_best_quality = qindex;
1330 last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
1331 delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
1332 last_boosted_q * 1.25, cm->bit_depth);
1333 active_worst_quality =
1334 VPXMIN(qindex + delta_qindex, active_worst_quality);
1335 } else {
1336 qindex = rc->last_boosted_qindex;
1337 last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
1338 delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
1339 last_boosted_q * 0.75, cm->bit_depth);
1340 active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
1341 }
1342 } else {
1343 // Not forced keyframe.
1344 double q_adj_factor = 1.0;
1345 double q_val;
1346 // Baseline value derived from cpi->active_worst_quality and kf boost.
1347 active_best_quality =
1348 get_kf_active_quality(rc, active_worst_quality, cm->bit_depth);
1349 if (cpi->twopass.kf_zeromotion_pct >= STATIC_KF_GROUP_THRESH) {
1350 active_best_quality /= 4;
1351 }
1352
1353 // Dont allow the active min to be lossless (q0) unlesss the max q
1354 // already indicates lossless.
1355 active_best_quality =
1356 VPXMIN(active_worst_quality, VPXMAX(1, active_best_quality));
1357
1358 // Allow somewhat lower kf minq with small image formats.
1359 if ((cm->width * cm->height) <= (352 * 288)) {
1360 q_adj_factor -= 0.25;
1361 }
1362
1363 // Make a further adjustment based on the kf zero motion measure.
1364 q_adj_factor += 0.05 - (0.001 * (double)cpi->twopass.kf_zeromotion_pct);
1365
1366 // Convert the adjustment factor to a qindex delta
1367 // on active_best_quality.
1368 q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth);
1369 active_best_quality +=
1370 vp9_compute_qdelta(rc, q_val, q_val * q_adj_factor, cm->bit_depth);
1371 }
1372 *top_index = active_worst_quality;
1373 *bottom_index = active_best_quality;
1374 }
1375
rc_constant_q(const VP9_COMP * cpi,int * bottom_index,int * top_index,int gf_group_index)1376 static int rc_constant_q(const VP9_COMP *cpi, int *bottom_index, int *top_index,
1377 int gf_group_index) {
1378 const VP9_COMMON *const cm = &cpi->common;
1379 const RATE_CONTROL *const rc = &cpi->rc;
1380 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1381 const GF_GROUP *gf_group = &cpi->twopass.gf_group;
1382 const int is_intra_frame = frame_is_intra_only(cm);
1383
1384 const int cq_level = get_active_cq_level_two_pass(&cpi->twopass, rc, oxcf);
1385
1386 int q = cq_level;
1387 int active_best_quality = cq_level;
1388 int active_worst_quality = cq_level;
1389
1390 // Key frame qp decision
1391 if (is_intra_frame && rc->frames_to_key > 1)
1392 pick_kf_q_bound_two_pass(cpi, &active_best_quality, &active_worst_quality);
1393
1394 // ARF / GF qp decision
1395 if (!is_intra_frame && !rc->is_src_frame_alt_ref &&
1396 cpi->refresh_alt_ref_frame) {
1397 active_best_quality = get_gf_active_quality(cpi, q, cm->bit_depth);
1398
1399 // Modify best quality for second level arfs. For mode VPX_Q this
1400 // becomes the baseline frame q.
1401 if (gf_group->rf_level[gf_group_index] == GF_ARF_LOW) {
1402 const int layer_depth = gf_group->layer_depth[gf_group_index];
1403 // linearly fit the frame q depending on the layer depth index from
1404 // the base layer ARF.
1405 active_best_quality = ((layer_depth - 1) * cq_level +
1406 active_best_quality + layer_depth / 2) /
1407 layer_depth;
1408 }
1409 }
1410
1411 q = active_best_quality;
1412 *top_index = active_worst_quality;
1413 *bottom_index = active_best_quality;
1414 return q;
1415 }
1416
rc_pick_q_and_bounds_two_pass(const VP9_COMP * cpi,int * bottom_index,int * top_index,int gf_group_index)1417 static int rc_pick_q_and_bounds_two_pass(const VP9_COMP *cpi, int *bottom_index,
1418 int *top_index, int gf_group_index) {
1419 const VP9_COMMON *const cm = &cpi->common;
1420 const RATE_CONTROL *const rc = &cpi->rc;
1421 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1422 const GF_GROUP *gf_group = &cpi->twopass.gf_group;
1423 const int cq_level = get_active_cq_level_two_pass(&cpi->twopass, rc, oxcf);
1424 int active_best_quality;
1425 int active_worst_quality = cpi->twopass.active_worst_quality;
1426 int q;
1427 int *inter_minq;
1428 int arf_active_best_quality_hl;
1429 int *arfgf_high_motion_minq, *arfgf_low_motion_minq;
1430 const int boost_frame =
1431 !rc->is_src_frame_alt_ref &&
1432 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame);
1433
1434 ASSIGN_MINQ_TABLE(cm->bit_depth, inter_minq);
1435
1436 if (oxcf->rc_mode == VPX_Q)
1437 return rc_constant_q(cpi, bottom_index, top_index, gf_group_index);
1438
1439 if (frame_is_intra_only(cm)) {
1440 pick_kf_q_bound_two_pass(cpi, &active_best_quality, &active_worst_quality);
1441 } else if (boost_frame) {
1442 // Use the lower of active_worst_quality and recent
1443 // average Q as basis for GF/ARF best Q limit unless last frame was
1444 // a key frame.
1445 if (rc->frames_since_key > 1 &&
1446 rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
1447 q = rc->avg_frame_qindex[INTER_FRAME];
1448 } else {
1449 q = active_worst_quality;
1450 }
1451 // For constrained quality dont allow Q less than the cq level
1452 if (oxcf->rc_mode == VPX_CQ) {
1453 if (q < cq_level) q = cq_level;
1454 }
1455 active_best_quality = get_gf_active_quality(cpi, q, cm->bit_depth);
1456 arf_active_best_quality_hl = active_best_quality;
1457
1458 if (rc->arf_increase_active_best_quality == 1) {
1459 ASSIGN_MINQ_TABLE(cm->bit_depth, arfgf_high_motion_minq);
1460 arf_active_best_quality_hl = arfgf_high_motion_minq[q];
1461 } else if (rc->arf_increase_active_best_quality == -1) {
1462 ASSIGN_MINQ_TABLE(cm->bit_depth, arfgf_low_motion_minq);
1463 arf_active_best_quality_hl = arfgf_low_motion_minq[q];
1464 }
1465 active_best_quality =
1466 (int)((double)active_best_quality *
1467 rc->arf_active_best_quality_adjustment_factor +
1468 (double)arf_active_best_quality_hl *
1469 (1.0 - rc->arf_active_best_quality_adjustment_factor));
1470
1471 // Modify best quality for second level arfs. For mode VPX_Q this
1472 // becomes the baseline frame q.
1473 if (gf_group->rf_level[gf_group_index] == GF_ARF_LOW) {
1474 const int layer_depth = gf_group->layer_depth[gf_group_index];
1475 // linearly fit the frame q depending on the layer depth index from
1476 // the base layer ARF.
1477 active_best_quality =
1478 ((layer_depth - 1) * q + active_best_quality + layer_depth / 2) /
1479 layer_depth;
1480 }
1481 } else {
1482 active_best_quality = inter_minq[active_worst_quality];
1483
1484 // For the constrained quality mode we don't want
1485 // q to fall below the cq level.
1486 if ((oxcf->rc_mode == VPX_CQ) && (active_best_quality < cq_level)) {
1487 active_best_quality = cq_level;
1488 }
1489 }
1490
1491 // Extension to max or min Q if undershoot or overshoot is outside
1492 // the permitted range.
1493 if (frame_is_intra_only(cm) || boost_frame) {
1494 const int layer_depth = gf_group->layer_depth[gf_group_index];
1495 active_best_quality -=
1496 (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast);
1497 active_worst_quality += (cpi->twopass.extend_maxq / 2);
1498
1499 if (gf_group->rf_level[gf_group_index] == GF_ARF_LOW) {
1500 assert(layer_depth > 1);
1501 active_best_quality =
1502 VPXMAX(active_best_quality,
1503 cpi->twopass.last_qindex_of_arf_layer[layer_depth - 1]);
1504 }
1505 } else {
1506 const int max_layer_depth = gf_group->max_layer_depth;
1507 assert(max_layer_depth > 0);
1508
1509 active_best_quality -=
1510 (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast) / 2;
1511 active_worst_quality += cpi->twopass.extend_maxq;
1512
1513 // For normal frames do not allow an active minq lower than the q used for
1514 // the last boosted frame.
1515 active_best_quality =
1516 VPXMAX(active_best_quality,
1517 cpi->twopass.last_qindex_of_arf_layer[max_layer_depth - 1]);
1518 }
1519
1520 #if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
1521 vpx_clear_system_state();
1522 // Static forced key frames Q restrictions dealt with elsewhere.
1523 if (!frame_is_intra_only(cm) || !rc->this_key_frame_forced ||
1524 cpi->twopass.last_kfgroup_zeromotion_pct < STATIC_MOTION_THRESH) {
1525 int qdelta = vp9_frame_type_qdelta(cpi, gf_group->rf_level[gf_group_index],
1526 active_worst_quality);
1527 active_worst_quality =
1528 VPXMAX(active_worst_quality + qdelta, active_best_quality);
1529 }
1530 #endif
1531
1532 // Modify active_best_quality for downscaled normal frames.
1533 if (rc->frame_size_selector != UNSCALED && !frame_is_kf_gf_arf(cpi)) {
1534 int qdelta = vp9_compute_qdelta_by_rate(
1535 rc, cm->frame_type, active_best_quality, 2.0, cm->bit_depth);
1536 active_best_quality =
1537 VPXMAX(active_best_quality + qdelta, rc->best_quality);
1538 }
1539
1540 active_best_quality =
1541 clamp(active_best_quality, rc->best_quality, rc->worst_quality);
1542 active_worst_quality =
1543 clamp(active_worst_quality, active_best_quality, rc->worst_quality);
1544
1545 if (frame_is_intra_only(cm) && rc->this_key_frame_forced) {
1546 // If static since last kf use better of last boosted and last kf q.
1547 if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
1548 q = VPXMIN(rc->last_kf_qindex, rc->last_boosted_qindex);
1549 } else {
1550 q = rc->last_boosted_qindex;
1551 }
1552 } else if (frame_is_intra_only(cm) && !rc->this_key_frame_forced) {
1553 q = active_best_quality;
1554 } else {
1555 q = vp9_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
1556 active_worst_quality);
1557 if (q > active_worst_quality) {
1558 // Special case when we are targeting the max allowed rate.
1559 if (rc->this_frame_target >= rc->max_frame_bandwidth)
1560 active_worst_quality = q;
1561 else
1562 q = active_worst_quality;
1563 }
1564 }
1565 clamp(q, active_best_quality, active_worst_quality);
1566
1567 *top_index = active_worst_quality;
1568 *bottom_index = active_best_quality;
1569
1570 assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
1571 assert(*bottom_index <= rc->worst_quality &&
1572 *bottom_index >= rc->best_quality);
1573 assert(q <= rc->worst_quality && q >= rc->best_quality);
1574 return q;
1575 }
1576
vp9_rc_pick_q_and_bounds(const VP9_COMP * cpi,int * bottom_index,int * top_index)1577 int vp9_rc_pick_q_and_bounds(const VP9_COMP *cpi, int *bottom_index,
1578 int *top_index) {
1579 int q;
1580 const int gf_group_index = cpi->twopass.gf_group.index;
1581 if (cpi->oxcf.pass == 0) {
1582 if (cpi->oxcf.rc_mode == VPX_CBR)
1583 q = rc_pick_q_and_bounds_one_pass_cbr(cpi, bottom_index, top_index);
1584 else
1585 q = rc_pick_q_and_bounds_one_pass_vbr(cpi, bottom_index, top_index);
1586 } else {
1587 q = rc_pick_q_and_bounds_two_pass(cpi, bottom_index, top_index,
1588 gf_group_index);
1589 }
1590 if (cpi->sf.use_nonrd_pick_mode) {
1591 if (cpi->sf.force_frame_boost == 1) q -= cpi->sf.max_delta_qindex;
1592
1593 if (q < *bottom_index)
1594 *bottom_index = q;
1595 else if (q > *top_index)
1596 *top_index = q;
1597 }
1598 return q;
1599 }
1600
vp9_configure_buffer_updates(VP9_COMP * cpi,int gf_group_index)1601 void vp9_configure_buffer_updates(VP9_COMP *cpi, int gf_group_index) {
1602 VP9_COMMON *cm = &cpi->common;
1603 TWO_PASS *const twopass = &cpi->twopass;
1604
1605 cpi->rc.is_src_frame_alt_ref = 0;
1606 cm->show_existing_frame = 0;
1607 cpi->rc.show_arf_as_gld = 0;
1608 switch (twopass->gf_group.update_type[gf_group_index]) {
1609 case KF_UPDATE:
1610 cpi->refresh_last_frame = 1;
1611 cpi->refresh_golden_frame = 1;
1612 cpi->refresh_alt_ref_frame = 1;
1613 break;
1614 case LF_UPDATE:
1615 cpi->refresh_last_frame = 1;
1616 cpi->refresh_golden_frame = 0;
1617 cpi->refresh_alt_ref_frame = 0;
1618 break;
1619 case GF_UPDATE:
1620 cpi->refresh_last_frame = 1;
1621 cpi->refresh_golden_frame = 1;
1622 cpi->refresh_alt_ref_frame = 0;
1623 break;
1624 case OVERLAY_UPDATE:
1625 cpi->refresh_last_frame = 0;
1626 cpi->refresh_golden_frame = 1;
1627 cpi->refresh_alt_ref_frame = 0;
1628 cpi->rc.is_src_frame_alt_ref = 1;
1629 if (cpi->rc.preserve_arf_as_gld) {
1630 cpi->rc.show_arf_as_gld = 1;
1631 cpi->refresh_golden_frame = 0;
1632 cm->show_existing_frame = 1;
1633 cm->refresh_frame_context = 0;
1634 }
1635 break;
1636 case MID_OVERLAY_UPDATE:
1637 cpi->refresh_last_frame = 1;
1638 cpi->refresh_golden_frame = 0;
1639 cpi->refresh_alt_ref_frame = 0;
1640 cpi->rc.is_src_frame_alt_ref = 1;
1641 break;
1642 case USE_BUF_FRAME:
1643 cpi->refresh_last_frame = 0;
1644 cpi->refresh_golden_frame = 0;
1645 cpi->refresh_alt_ref_frame = 0;
1646 cpi->rc.is_src_frame_alt_ref = 1;
1647 cm->show_existing_frame = 1;
1648 cm->refresh_frame_context = 0;
1649 break;
1650 default:
1651 assert(twopass->gf_group.update_type[gf_group_index] == ARF_UPDATE);
1652 cpi->refresh_last_frame = 0;
1653 cpi->refresh_golden_frame = 0;
1654 cpi->refresh_alt_ref_frame = 1;
1655 break;
1656 }
1657 }
1658
vp9_estimate_qp_gop(VP9_COMP * cpi)1659 void vp9_estimate_qp_gop(VP9_COMP *cpi) {
1660 int gop_length = cpi->twopass.gf_group.gf_group_size;
1661 int bottom_index, top_index;
1662 int idx;
1663 const int gf_index = cpi->twopass.gf_group.index;
1664 const int is_src_frame_alt_ref = cpi->rc.is_src_frame_alt_ref;
1665 const int refresh_frame_context = cpi->common.refresh_frame_context;
1666
1667 for (idx = 1; idx <= gop_length; ++idx) {
1668 TplDepFrame *tpl_frame = &cpi->tpl_stats[idx];
1669 int target_rate = cpi->twopass.gf_group.bit_allocation[idx];
1670 cpi->twopass.gf_group.index = idx;
1671 vp9_rc_set_frame_target(cpi, target_rate);
1672 vp9_configure_buffer_updates(cpi, idx);
1673 tpl_frame->base_qindex =
1674 rc_pick_q_and_bounds_two_pass(cpi, &bottom_index, &top_index, idx);
1675 tpl_frame->base_qindex = VPXMAX(tpl_frame->base_qindex, 1);
1676 }
1677 // Reset the actual index and frame update
1678 cpi->twopass.gf_group.index = gf_index;
1679 cpi->rc.is_src_frame_alt_ref = is_src_frame_alt_ref;
1680 cpi->common.refresh_frame_context = refresh_frame_context;
1681 vp9_configure_buffer_updates(cpi, gf_index);
1682 }
1683
vp9_rc_compute_frame_size_bounds(const VP9_COMP * cpi,int frame_target,int * frame_under_shoot_limit,int * frame_over_shoot_limit)1684 void vp9_rc_compute_frame_size_bounds(const VP9_COMP *cpi, int frame_target,
1685 int *frame_under_shoot_limit,
1686 int *frame_over_shoot_limit) {
1687 if (cpi->oxcf.rc_mode == VPX_Q) {
1688 *frame_under_shoot_limit = 0;
1689 *frame_over_shoot_limit = INT_MAX;
1690 } else {
1691 // For very small rate targets where the fractional adjustment
1692 // may be tiny make sure there is at least a minimum range.
1693 const int tol_low =
1694 (int)(((int64_t)cpi->sf.recode_tolerance_low * frame_target) / 100);
1695 const int tol_high =
1696 (int)(((int64_t)cpi->sf.recode_tolerance_high * frame_target) / 100);
1697 *frame_under_shoot_limit = VPXMAX(frame_target - tol_low - 100, 0);
1698 *frame_over_shoot_limit =
1699 VPXMIN(frame_target + tol_high + 100, cpi->rc.max_frame_bandwidth);
1700 }
1701 }
1702
vp9_rc_set_frame_target(VP9_COMP * cpi,int target)1703 void vp9_rc_set_frame_target(VP9_COMP *cpi, int target) {
1704 const VP9_COMMON *const cm = &cpi->common;
1705 RATE_CONTROL *const rc = &cpi->rc;
1706
1707 rc->this_frame_target = target;
1708
1709 // Modify frame size target when down-scaling.
1710 if (cpi->oxcf.resize_mode == RESIZE_DYNAMIC &&
1711 rc->frame_size_selector != UNSCALED)
1712 rc->this_frame_target = (int)(rc->this_frame_target *
1713 rate_thresh_mult[rc->frame_size_selector]);
1714
1715 // Target rate per SB64 (including partial SB64s.
1716 rc->sb64_target_rate = (int)(((int64_t)rc->this_frame_target * 64 * 64) /
1717 (cm->width * cm->height));
1718 }
1719
update_alt_ref_frame_stats(VP9_COMP * cpi)1720 static void update_alt_ref_frame_stats(VP9_COMP *cpi) {
1721 // this frame refreshes means next frames don't unless specified by user
1722 RATE_CONTROL *const rc = &cpi->rc;
1723 rc->frames_since_golden = 0;
1724
1725 // Mark the alt ref as done (setting to 0 means no further alt refs pending).
1726 rc->source_alt_ref_pending = 0;
1727
1728 // Set the alternate reference frame active flag
1729 rc->source_alt_ref_active = 1;
1730 }
1731
update_golden_frame_stats(VP9_COMP * cpi)1732 static void update_golden_frame_stats(VP9_COMP *cpi) {
1733 RATE_CONTROL *const rc = &cpi->rc;
1734
1735 // Update the Golden frame usage counts.
1736 if (cpi->refresh_golden_frame) {
1737 // this frame refreshes means next frames don't unless specified by user
1738 rc->frames_since_golden = 0;
1739
1740 // If we are not using alt ref in the up and coming group clear the arf
1741 // active flag. In multi arf group case, if the index is not 0 then
1742 // we are overlaying a mid group arf so should not reset the flag.
1743 if (cpi->oxcf.pass == 2) {
1744 if (!rc->source_alt_ref_pending && (cpi->twopass.gf_group.index == 0))
1745 rc->source_alt_ref_active = 0;
1746 } else if (!rc->source_alt_ref_pending) {
1747 rc->source_alt_ref_active = 0;
1748 }
1749
1750 // Decrement count down till next gf
1751 if (rc->frames_till_gf_update_due > 0) rc->frames_till_gf_update_due--;
1752
1753 } else if (!cpi->refresh_alt_ref_frame) {
1754 // Decrement count down till next gf
1755 if (rc->frames_till_gf_update_due > 0) rc->frames_till_gf_update_due--;
1756
1757 rc->frames_since_golden++;
1758
1759 if (rc->show_arf_as_gld) {
1760 rc->frames_since_golden = 0;
1761 // If we are not using alt ref in the up and coming group clear the arf
1762 // active flag. In multi arf group case, if the index is not 0 then
1763 // we are overlaying a mid group arf so should not reset the flag.
1764 if (!rc->source_alt_ref_pending && (cpi->twopass.gf_group.index == 0))
1765 rc->source_alt_ref_active = 0;
1766 }
1767 }
1768 }
1769
update_altref_usage(VP9_COMP * const cpi)1770 static void update_altref_usage(VP9_COMP *const cpi) {
1771 VP9_COMMON *const cm = &cpi->common;
1772 int sum_ref_frame_usage = 0;
1773 int arf_frame_usage = 0;
1774 int mi_row, mi_col;
1775 if (cpi->rc.alt_ref_gf_group && !cpi->rc.is_src_frame_alt_ref &&
1776 !cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame)
1777 for (mi_row = 0; mi_row < cm->mi_rows; mi_row += 8) {
1778 for (mi_col = 0; mi_col < cm->mi_cols; mi_col += 8) {
1779 int sboffset = ((cm->mi_cols + 7) >> 3) * (mi_row >> 3) + (mi_col >> 3);
1780 sum_ref_frame_usage += cpi->count_arf_frame_usage[sboffset] +
1781 cpi->count_lastgolden_frame_usage[sboffset];
1782 arf_frame_usage += cpi->count_arf_frame_usage[sboffset];
1783 }
1784 }
1785 if (sum_ref_frame_usage > 0) {
1786 double altref_count = 100.0 * arf_frame_usage / sum_ref_frame_usage;
1787 cpi->rc.perc_arf_usage =
1788 0.75 * cpi->rc.perc_arf_usage + 0.25 * altref_count;
1789 }
1790 }
1791
compute_frame_low_motion(VP9_COMP * const cpi)1792 static void compute_frame_low_motion(VP9_COMP *const cpi) {
1793 VP9_COMMON *const cm = &cpi->common;
1794 int mi_row, mi_col;
1795 MODE_INFO **mi = cm->mi_grid_visible;
1796 RATE_CONTROL *const rc = &cpi->rc;
1797 const int rows = cm->mi_rows, cols = cm->mi_cols;
1798 int cnt_zeromv = 0;
1799 for (mi_row = 0; mi_row < rows; mi_row++) {
1800 for (mi_col = 0; mi_col < cols; mi_col++) {
1801 if (mi[0]->ref_frame[0] == LAST_FRAME &&
1802 abs(mi[0]->mv[0].as_mv.row) < 16 && abs(mi[0]->mv[0].as_mv.col) < 16)
1803 cnt_zeromv++;
1804 mi++;
1805 }
1806 mi += 8;
1807 }
1808 cnt_zeromv = 100 * cnt_zeromv / (rows * cols);
1809 rc->avg_frame_low_motion = (3 * rc->avg_frame_low_motion + cnt_zeromv) >> 2;
1810 }
1811
vp9_rc_postencode_update(VP9_COMP * cpi,uint64_t bytes_used)1812 void vp9_rc_postencode_update(VP9_COMP *cpi, uint64_t bytes_used) {
1813 const VP9_COMMON *const cm = &cpi->common;
1814 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1815 RATE_CONTROL *const rc = &cpi->rc;
1816 SVC *const svc = &cpi->svc;
1817 const int qindex = cm->base_qindex;
1818 const GF_GROUP *gf_group = &cpi->twopass.gf_group;
1819 const int gf_group_index = cpi->twopass.gf_group.index;
1820 const int layer_depth = gf_group->layer_depth[gf_group_index];
1821
1822 // Update rate control heuristics
1823 rc->projected_frame_size = (int)(bytes_used << 3);
1824
1825 // Post encode loop adjustment of Q prediction.
1826 vp9_rc_update_rate_correction_factors(cpi);
1827
1828 // Keep a record of last Q and ambient average Q.
1829 if (frame_is_intra_only(cm)) {
1830 rc->last_q[KEY_FRAME] = qindex;
1831 rc->avg_frame_qindex[KEY_FRAME] =
1832 ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[KEY_FRAME] + qindex, 2);
1833 if (cpi->use_svc) {
1834 int i = 0;
1835 SVC *svc = &cpi->svc;
1836 for (i = 0; i < svc->number_temporal_layers; ++i) {
1837 const int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, i,
1838 svc->number_temporal_layers);
1839 LAYER_CONTEXT *lc = &svc->layer_context[layer];
1840 RATE_CONTROL *lrc = &lc->rc;
1841 lrc->last_q[KEY_FRAME] = rc->last_q[KEY_FRAME];
1842 lrc->avg_frame_qindex[KEY_FRAME] = rc->avg_frame_qindex[KEY_FRAME];
1843 }
1844 }
1845 } else {
1846 if ((cpi->use_svc && oxcf->rc_mode == VPX_CBR) ||
1847 (!rc->is_src_frame_alt_ref &&
1848 !(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))) {
1849 rc->last_q[INTER_FRAME] = qindex;
1850 rc->avg_frame_qindex[INTER_FRAME] =
1851 ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[INTER_FRAME] + qindex, 2);
1852 rc->ni_frames++;
1853 rc->tot_q += vp9_convert_qindex_to_q(qindex, cm->bit_depth);
1854 rc->avg_q = rc->tot_q / rc->ni_frames;
1855 // Calculate the average Q for normal inter frames (not key or GFU
1856 // frames).
1857 rc->ni_tot_qi += qindex;
1858 rc->ni_av_qi = rc->ni_tot_qi / rc->ni_frames;
1859 }
1860 }
1861
1862 if (cpi->use_svc) vp9_svc_adjust_avg_frame_qindex(cpi);
1863
1864 // Keep record of last boosted (KF/KF/ARF) Q value.
1865 // If the current frame is coded at a lower Q then we also update it.
1866 // If all mbs in this group are skipped only update if the Q value is
1867 // better than that already stored.
1868 // This is used to help set quality in forced key frames to reduce popping
1869 if ((qindex < rc->last_boosted_qindex) || (cm->frame_type == KEY_FRAME) ||
1870 (!rc->constrained_gf_group &&
1871 (cpi->refresh_alt_ref_frame ||
1872 (cpi->refresh_golden_frame && !rc->is_src_frame_alt_ref)))) {
1873 rc->last_boosted_qindex = qindex;
1874 }
1875
1876 if ((qindex < cpi->twopass.last_qindex_of_arf_layer[layer_depth]) ||
1877 (cm->frame_type == KEY_FRAME) ||
1878 (!rc->constrained_gf_group &&
1879 (cpi->refresh_alt_ref_frame ||
1880 (cpi->refresh_golden_frame && !rc->is_src_frame_alt_ref)))) {
1881 cpi->twopass.last_qindex_of_arf_layer[layer_depth] = qindex;
1882 }
1883
1884 if (frame_is_intra_only(cm)) rc->last_kf_qindex = qindex;
1885
1886 update_buffer_level_postencode(cpi, rc->projected_frame_size);
1887
1888 // Rolling monitors of whether we are over or underspending used to help
1889 // regulate min and Max Q in two pass.
1890 if (!frame_is_intra_only(cm)) {
1891 rc->rolling_target_bits = (int)ROUND64_POWER_OF_TWO(
1892 (int64_t)rc->rolling_target_bits * 3 + rc->this_frame_target, 2);
1893 rc->rolling_actual_bits = (int)ROUND64_POWER_OF_TWO(
1894 (int64_t)rc->rolling_actual_bits * 3 + rc->projected_frame_size, 2);
1895 rc->long_rolling_target_bits = (int)ROUND64_POWER_OF_TWO(
1896 (int64_t)rc->long_rolling_target_bits * 31 + rc->this_frame_target, 5);
1897 rc->long_rolling_actual_bits = (int)ROUND64_POWER_OF_TWO(
1898 (int64_t)rc->long_rolling_actual_bits * 31 + rc->projected_frame_size,
1899 5);
1900 }
1901
1902 // Actual bits spent
1903 rc->total_actual_bits += rc->projected_frame_size;
1904 rc->total_target_bits += cm->show_frame ? rc->avg_frame_bandwidth : 0;
1905
1906 rc->total_target_vs_actual = rc->total_actual_bits - rc->total_target_bits;
1907
1908 if (!cpi->use_svc) {
1909 if (is_altref_enabled(cpi) && cpi->refresh_alt_ref_frame &&
1910 (!frame_is_intra_only(cm)))
1911 // Update the alternate reference frame stats as appropriate.
1912 update_alt_ref_frame_stats(cpi);
1913 else
1914 // Update the Golden frame stats as appropriate.
1915 update_golden_frame_stats(cpi);
1916 }
1917
1918 // If second (long term) temporal reference is used for SVC,
1919 // update the golden frame counter, only for base temporal layer.
1920 if (cpi->use_svc && svc->use_gf_temporal_ref_current_layer &&
1921 svc->temporal_layer_id == 0) {
1922 int i = 0;
1923 if (cpi->refresh_golden_frame)
1924 rc->frames_since_golden = 0;
1925 else
1926 rc->frames_since_golden++;
1927 // Decrement count down till next gf
1928 if (rc->frames_till_gf_update_due > 0) rc->frames_till_gf_update_due--;
1929 // Update the frames_since_golden for all upper temporal layers.
1930 for (i = 1; i < svc->number_temporal_layers; ++i) {
1931 const int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, i,
1932 svc->number_temporal_layers);
1933 LAYER_CONTEXT *const lc = &svc->layer_context[layer];
1934 RATE_CONTROL *const lrc = &lc->rc;
1935 lrc->frames_since_golden = rc->frames_since_golden;
1936 }
1937 }
1938
1939 if (frame_is_intra_only(cm)) rc->frames_since_key = 0;
1940 if (cm->show_frame) {
1941 rc->frames_since_key++;
1942 rc->frames_to_key--;
1943 }
1944
1945 // Trigger the resizing of the next frame if it is scaled.
1946 if (oxcf->pass != 0) {
1947 cpi->resize_pending =
1948 rc->next_frame_size_selector != rc->frame_size_selector;
1949 rc->frame_size_selector = rc->next_frame_size_selector;
1950 }
1951
1952 if (oxcf->pass == 0) {
1953 if (!frame_is_intra_only(cm) &&
1954 (!cpi->use_svc ||
1955 (cpi->use_svc &&
1956 !svc->layer_context[svc->temporal_layer_id].is_key_frame &&
1957 svc->spatial_layer_id == svc->number_spatial_layers - 1))) {
1958 compute_frame_low_motion(cpi);
1959 if (cpi->sf.use_altref_onepass) update_altref_usage(cpi);
1960 }
1961 // For SVC: set avg_frame_low_motion (only computed on top spatial layer)
1962 // to all lower spatial layers.
1963 if (cpi->use_svc &&
1964 svc->spatial_layer_id == svc->number_spatial_layers - 1) {
1965 int i;
1966 for (i = 0; i < svc->number_spatial_layers - 1; ++i) {
1967 const int layer = LAYER_IDS_TO_IDX(i, svc->temporal_layer_id,
1968 svc->number_temporal_layers);
1969 LAYER_CONTEXT *const lc = &svc->layer_context[layer];
1970 RATE_CONTROL *const lrc = &lc->rc;
1971 lrc->avg_frame_low_motion = rc->avg_frame_low_motion;
1972 }
1973 }
1974 cpi->rc.last_frame_is_src_altref = cpi->rc.is_src_frame_alt_ref;
1975 }
1976 if (!frame_is_intra_only(cm)) rc->reset_high_source_sad = 0;
1977
1978 rc->last_avg_frame_bandwidth = rc->avg_frame_bandwidth;
1979 if (cpi->use_svc && svc->spatial_layer_id < svc->number_spatial_layers - 1)
1980 svc->lower_layer_qindex = cm->base_qindex;
1981 }
1982
vp9_rc_postencode_update_drop_frame(VP9_COMP * cpi)1983 void vp9_rc_postencode_update_drop_frame(VP9_COMP *cpi) {
1984 cpi->common.current_video_frame++;
1985 cpi->rc.frames_since_key++;
1986 cpi->rc.frames_to_key--;
1987 cpi->rc.rc_2_frame = 0;
1988 cpi->rc.rc_1_frame = 0;
1989 cpi->rc.last_avg_frame_bandwidth = cpi->rc.avg_frame_bandwidth;
1990 // For SVC on dropped frame when framedrop_mode != LAYER_DROP:
1991 // in this mode the whole superframe may be dropped if only a single layer
1992 // has buffer underflow (below threshold). Since this can then lead to
1993 // increasing buffer levels/overflow for certain layers even though whole
1994 // superframe is dropped, we cap buffer level if its already stable.
1995 if (cpi->use_svc && cpi->svc.framedrop_mode != LAYER_DROP &&
1996 cpi->rc.buffer_level > cpi->rc.optimal_buffer_level) {
1997 cpi->rc.buffer_level = cpi->rc.optimal_buffer_level;
1998 cpi->rc.bits_off_target = cpi->rc.optimal_buffer_level;
1999 }
2000 }
2001
calc_pframe_target_size_one_pass_vbr(const VP9_COMP * const cpi)2002 static int calc_pframe_target_size_one_pass_vbr(const VP9_COMP *const cpi) {
2003 const RATE_CONTROL *const rc = &cpi->rc;
2004 const int af_ratio = rc->af_ratio_onepass_vbr;
2005 int64_t target =
2006 (!rc->is_src_frame_alt_ref &&
2007 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))
2008 ? ((int64_t)rc->avg_frame_bandwidth * rc->baseline_gf_interval *
2009 af_ratio) /
2010 (rc->baseline_gf_interval + af_ratio - 1)
2011 : ((int64_t)rc->avg_frame_bandwidth * rc->baseline_gf_interval) /
2012 (rc->baseline_gf_interval + af_ratio - 1);
2013 if (target > INT_MAX) target = INT_MAX;
2014 return vp9_rc_clamp_pframe_target_size(cpi, (int)target);
2015 }
2016
calc_iframe_target_size_one_pass_vbr(const VP9_COMP * const cpi)2017 static int calc_iframe_target_size_one_pass_vbr(const VP9_COMP *const cpi) {
2018 static const int kf_ratio = 25;
2019 const RATE_CONTROL *rc = &cpi->rc;
2020 const int target = rc->avg_frame_bandwidth * kf_ratio;
2021 return vp9_rc_clamp_iframe_target_size(cpi, target);
2022 }
2023
adjust_gfint_frame_constraint(VP9_COMP * cpi,int frame_constraint)2024 static void adjust_gfint_frame_constraint(VP9_COMP *cpi, int frame_constraint) {
2025 RATE_CONTROL *const rc = &cpi->rc;
2026 rc->constrained_gf_group = 0;
2027 // Reset gf interval to make more equal spacing for frame_constraint.
2028 if ((frame_constraint <= 7 * rc->baseline_gf_interval >> 2) &&
2029 (frame_constraint > rc->baseline_gf_interval)) {
2030 rc->baseline_gf_interval = frame_constraint >> 1;
2031 if (rc->baseline_gf_interval < 5)
2032 rc->baseline_gf_interval = frame_constraint;
2033 rc->constrained_gf_group = 1;
2034 } else {
2035 // Reset to keep gf_interval <= frame_constraint.
2036 if (rc->baseline_gf_interval > frame_constraint) {
2037 rc->baseline_gf_interval = frame_constraint;
2038 rc->constrained_gf_group = 1;
2039 }
2040 }
2041 }
2042
vp9_rc_get_one_pass_vbr_params(VP9_COMP * cpi)2043 void vp9_rc_get_one_pass_vbr_params(VP9_COMP *cpi) {
2044 VP9_COMMON *const cm = &cpi->common;
2045 RATE_CONTROL *const rc = &cpi->rc;
2046 int target;
2047 if (!cpi->refresh_alt_ref_frame &&
2048 (cm->current_video_frame == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY) ||
2049 rc->frames_to_key == 0)) {
2050 cm->frame_type = KEY_FRAME;
2051 rc->this_key_frame_forced =
2052 cm->current_video_frame != 0 && rc->frames_to_key == 0;
2053 rc->frames_to_key = cpi->oxcf.key_freq;
2054 rc->kf_boost = DEFAULT_KF_BOOST;
2055 rc->source_alt_ref_active = 0;
2056 } else {
2057 cm->frame_type = INTER_FRAME;
2058 }
2059 if (rc->frames_till_gf_update_due == 0) {
2060 double rate_err = 1.0;
2061 rc->gfu_boost = DEFAULT_GF_BOOST;
2062 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->oxcf.pass == 0) {
2063 vp9_cyclic_refresh_set_golden_update(cpi);
2064 } else {
2065 rc->baseline_gf_interval = VPXMIN(
2066 20, VPXMAX(10, (rc->min_gf_interval + rc->max_gf_interval) / 2));
2067 }
2068 rc->af_ratio_onepass_vbr = 10;
2069 if (rc->rolling_target_bits > 0)
2070 rate_err =
2071 (double)rc->rolling_actual_bits / (double)rc->rolling_target_bits;
2072 if (cm->current_video_frame > 30) {
2073 if (rc->avg_frame_qindex[INTER_FRAME] > (7 * rc->worst_quality) >> 3 &&
2074 rate_err > 3.5) {
2075 rc->baseline_gf_interval =
2076 VPXMIN(15, (3 * rc->baseline_gf_interval) >> 1);
2077 } else if (rc->avg_frame_low_motion < 20) {
2078 // Decrease gf interval for high motion case.
2079 rc->baseline_gf_interval = VPXMAX(6, rc->baseline_gf_interval >> 1);
2080 }
2081 // Adjust boost and af_ratio based on avg_frame_low_motion, which varies
2082 // between 0 and 100 (stationary, 100% zero/small motion).
2083 rc->gfu_boost =
2084 VPXMAX(500, DEFAULT_GF_BOOST * (rc->avg_frame_low_motion << 1) /
2085 (rc->avg_frame_low_motion + 100));
2086 rc->af_ratio_onepass_vbr = VPXMIN(15, VPXMAX(5, 3 * rc->gfu_boost / 400));
2087 }
2088 adjust_gfint_frame_constraint(cpi, rc->frames_to_key);
2089 rc->frames_till_gf_update_due = rc->baseline_gf_interval;
2090 cpi->refresh_golden_frame = 1;
2091 rc->source_alt_ref_pending = 0;
2092 rc->alt_ref_gf_group = 0;
2093 if (cpi->sf.use_altref_onepass && cpi->oxcf.enable_auto_arf) {
2094 rc->source_alt_ref_pending = 1;
2095 rc->alt_ref_gf_group = 1;
2096 }
2097 }
2098 if (cm->frame_type == KEY_FRAME)
2099 target = calc_iframe_target_size_one_pass_vbr(cpi);
2100 else
2101 target = calc_pframe_target_size_one_pass_vbr(cpi);
2102 vp9_rc_set_frame_target(cpi, target);
2103 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->oxcf.pass == 0)
2104 vp9_cyclic_refresh_update_parameters(cpi);
2105 }
2106
calc_pframe_target_size_one_pass_cbr(const VP9_COMP * cpi)2107 static int calc_pframe_target_size_one_pass_cbr(const VP9_COMP *cpi) {
2108 const VP9EncoderConfig *oxcf = &cpi->oxcf;
2109 const RATE_CONTROL *rc = &cpi->rc;
2110 const SVC *const svc = &cpi->svc;
2111 const int64_t diff = rc->optimal_buffer_level - rc->buffer_level;
2112 const int64_t one_pct_bits = 1 + rc->optimal_buffer_level / 100;
2113 int min_frame_target =
2114 VPXMAX(rc->avg_frame_bandwidth >> 4, FRAME_OVERHEAD_BITS);
2115 int target;
2116
2117 if (oxcf->gf_cbr_boost_pct) {
2118 const int af_ratio_pct = oxcf->gf_cbr_boost_pct + 100;
2119 target = cpi->refresh_golden_frame
2120 ? (rc->avg_frame_bandwidth * rc->baseline_gf_interval *
2121 af_ratio_pct) /
2122 (rc->baseline_gf_interval * 100 + af_ratio_pct - 100)
2123 : (rc->avg_frame_bandwidth * rc->baseline_gf_interval * 100) /
2124 (rc->baseline_gf_interval * 100 + af_ratio_pct - 100);
2125 } else {
2126 target = rc->avg_frame_bandwidth;
2127 }
2128 if (is_one_pass_cbr_svc(cpi)) {
2129 // Note that for layers, avg_frame_bandwidth is the cumulative
2130 // per-frame-bandwidth. For the target size of this frame, use the
2131 // layer average frame size (i.e., non-cumulative per-frame-bw).
2132 int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, svc->temporal_layer_id,
2133 svc->number_temporal_layers);
2134 const LAYER_CONTEXT *lc = &svc->layer_context[layer];
2135 target = lc->avg_frame_size;
2136 min_frame_target = VPXMAX(lc->avg_frame_size >> 4, FRAME_OVERHEAD_BITS);
2137 }
2138 if (diff > 0) {
2139 // Lower the target bandwidth for this frame.
2140 const int pct_low = (int)VPXMIN(diff / one_pct_bits, oxcf->under_shoot_pct);
2141 target -= (target * pct_low) / 200;
2142 } else if (diff < 0) {
2143 // Increase the target bandwidth for this frame.
2144 const int pct_high =
2145 (int)VPXMIN(-diff / one_pct_bits, oxcf->over_shoot_pct);
2146 target += (target * pct_high) / 200;
2147 }
2148 if (oxcf->rc_max_inter_bitrate_pct) {
2149 const int max_rate =
2150 rc->avg_frame_bandwidth * oxcf->rc_max_inter_bitrate_pct / 100;
2151 target = VPXMIN(target, max_rate);
2152 }
2153 return VPXMAX(min_frame_target, target);
2154 }
2155
calc_iframe_target_size_one_pass_cbr(const VP9_COMP * cpi)2156 static int calc_iframe_target_size_one_pass_cbr(const VP9_COMP *cpi) {
2157 const RATE_CONTROL *rc = &cpi->rc;
2158 const VP9EncoderConfig *oxcf = &cpi->oxcf;
2159 const SVC *const svc = &cpi->svc;
2160 int target;
2161 if (cpi->common.current_video_frame == 0) {
2162 target = ((rc->starting_buffer_level / 2) > INT_MAX)
2163 ? INT_MAX
2164 : (int)(rc->starting_buffer_level / 2);
2165 } else {
2166 int kf_boost = 32;
2167 double framerate = cpi->framerate;
2168 if (svc->number_temporal_layers > 1 && oxcf->rc_mode == VPX_CBR) {
2169 // Use the layer framerate for temporal layers CBR mode.
2170 const int layer =
2171 LAYER_IDS_TO_IDX(svc->spatial_layer_id, svc->temporal_layer_id,
2172 svc->number_temporal_layers);
2173 const LAYER_CONTEXT *lc = &svc->layer_context[layer];
2174 framerate = lc->framerate;
2175 }
2176 kf_boost = VPXMAX(kf_boost, (int)(2 * framerate - 16));
2177 if (rc->frames_since_key < framerate / 2) {
2178 kf_boost = (int)(kf_boost * rc->frames_since_key / (framerate / 2));
2179 }
2180 target = ((16 + kf_boost) * rc->avg_frame_bandwidth) >> 4;
2181 }
2182 return vp9_rc_clamp_iframe_target_size(cpi, target);
2183 }
2184
set_intra_only_frame(VP9_COMP * cpi)2185 static void set_intra_only_frame(VP9_COMP *cpi) {
2186 VP9_COMMON *const cm = &cpi->common;
2187 SVC *const svc = &cpi->svc;
2188 // Don't allow intra_only frame for bypass/flexible SVC mode, or if number
2189 // of spatial layers is 1 or if number of spatial or temporal layers > 3.
2190 // Also if intra-only is inserted on very first frame, don't allow if
2191 // if number of temporal layers > 1. This is because on intra-only frame
2192 // only 3 reference buffers can be updated, but for temporal layers > 1
2193 // we generally need to use buffer slots 4 and 5.
2194 if ((cm->current_video_frame == 0 && svc->number_temporal_layers > 1) ||
2195 svc->temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_BYPASS ||
2196 svc->number_spatial_layers > 3 || svc->number_temporal_layers > 3 ||
2197 svc->number_spatial_layers == 1)
2198 return;
2199 cm->show_frame = 0;
2200 cm->intra_only = 1;
2201 cm->frame_type = INTER_FRAME;
2202 cpi->ext_refresh_frame_flags_pending = 1;
2203 cpi->ext_refresh_last_frame = 1;
2204 cpi->ext_refresh_golden_frame = 1;
2205 cpi->ext_refresh_alt_ref_frame = 1;
2206 if (cm->current_video_frame == 0) {
2207 cpi->lst_fb_idx = 0;
2208 cpi->gld_fb_idx = 1;
2209 cpi->alt_fb_idx = 2;
2210 } else {
2211 int i;
2212 int count = 0;
2213 cpi->lst_fb_idx = -1;
2214 cpi->gld_fb_idx = -1;
2215 cpi->alt_fb_idx = -1;
2216 // For intra-only frame we need to refresh all slots that were
2217 // being used for the base layer (fb_idx_base[i] == 1).
2218 // Start with assigning last first, then golden and then alt.
2219 for (i = 0; i < REF_FRAMES; ++i) {
2220 if (svc->fb_idx_base[i] == 1) count++;
2221 if (count == 1 && cpi->lst_fb_idx == -1) cpi->lst_fb_idx = i;
2222 if (count == 2 && cpi->gld_fb_idx == -1) cpi->gld_fb_idx = i;
2223 if (count == 3 && cpi->alt_fb_idx == -1) cpi->alt_fb_idx = i;
2224 }
2225 // If golden or alt is not being used for base layer, then set them
2226 // to the lst_fb_idx.
2227 if (cpi->gld_fb_idx == -1) cpi->gld_fb_idx = cpi->lst_fb_idx;
2228 if (cpi->alt_fb_idx == -1) cpi->alt_fb_idx = cpi->lst_fb_idx;
2229 }
2230 }
2231
vp9_rc_get_svc_params(VP9_COMP * cpi)2232 void vp9_rc_get_svc_params(VP9_COMP *cpi) {
2233 VP9_COMMON *const cm = &cpi->common;
2234 RATE_CONTROL *const rc = &cpi->rc;
2235 SVC *const svc = &cpi->svc;
2236 int target = rc->avg_frame_bandwidth;
2237 int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, svc->temporal_layer_id,
2238 svc->number_temporal_layers);
2239 if (svc->first_spatial_layer_to_encode)
2240 svc->layer_context[svc->temporal_layer_id].is_key_frame = 0;
2241 // Periodic key frames is based on the super-frame counter
2242 // (svc.current_superframe), also only base spatial layer is key frame.
2243 // Key frame is set for any of the following: very first frame, frame flags
2244 // indicates key, superframe counter hits key frequencey, or (non-intra) sync
2245 // flag is set for spatial layer 0.
2246 if ((cm->current_video_frame == 0 && !svc->previous_frame_is_intra_only) ||
2247 (cpi->frame_flags & FRAMEFLAGS_KEY) ||
2248 (cpi->oxcf.auto_key &&
2249 (svc->current_superframe % cpi->oxcf.key_freq == 0) &&
2250 !svc->previous_frame_is_intra_only && svc->spatial_layer_id == 0) ||
2251 (svc->spatial_layer_sync[0] == 1 && svc->spatial_layer_id == 0)) {
2252 cm->frame_type = KEY_FRAME;
2253 rc->source_alt_ref_active = 0;
2254 if (is_one_pass_cbr_svc(cpi)) {
2255 if (cm->current_video_frame > 0) vp9_svc_reset_temporal_layers(cpi, 1);
2256 layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, svc->temporal_layer_id,
2257 svc->number_temporal_layers);
2258 svc->layer_context[layer].is_key_frame = 1;
2259 cpi->ref_frame_flags &= (~VP9_LAST_FLAG & ~VP9_GOLD_FLAG & ~VP9_ALT_FLAG);
2260 // Assumption here is that LAST_FRAME is being updated for a keyframe.
2261 // Thus no change in update flags.
2262 target = calc_iframe_target_size_one_pass_cbr(cpi);
2263 }
2264 } else {
2265 cm->frame_type = INTER_FRAME;
2266 if (is_one_pass_cbr_svc(cpi)) {
2267 LAYER_CONTEXT *lc = &svc->layer_context[layer];
2268 // Add condition current_video_frame > 0 for the case where first frame
2269 // is intra only followed by overlay/copy frame. In this case we don't
2270 // want to reset is_key_frame to 0 on overlay/copy frame.
2271 lc->is_key_frame =
2272 (svc->spatial_layer_id == 0 && cm->current_video_frame > 0)
2273 ? 0
2274 : svc->layer_context[svc->temporal_layer_id].is_key_frame;
2275 target = calc_pframe_target_size_one_pass_cbr(cpi);
2276 }
2277 }
2278
2279 if (svc->simulcast_mode) {
2280 if (svc->spatial_layer_id > 0 &&
2281 svc->layer_context[layer].is_key_frame == 1) {
2282 cm->frame_type = KEY_FRAME;
2283 cpi->ref_frame_flags &= (~VP9_LAST_FLAG & ~VP9_GOLD_FLAG & ~VP9_ALT_FLAG);
2284 target = calc_iframe_target_size_one_pass_cbr(cpi);
2285 }
2286 // Set the buffer idx and refresh flags for key frames in simulcast mode.
2287 // Note the buffer slot for long-term reference is set below (line 2255),
2288 // and alt_ref is used for that on key frame. So use last and golden for
2289 // the other two normal slots.
2290 if (cm->frame_type == KEY_FRAME) {
2291 if (svc->number_spatial_layers == 2) {
2292 if (svc->spatial_layer_id == 0) {
2293 cpi->lst_fb_idx = 0;
2294 cpi->gld_fb_idx = 2;
2295 cpi->alt_fb_idx = 6;
2296 } else if (svc->spatial_layer_id == 1) {
2297 cpi->lst_fb_idx = 1;
2298 cpi->gld_fb_idx = 3;
2299 cpi->alt_fb_idx = 6;
2300 }
2301 } else if (svc->number_spatial_layers == 3) {
2302 if (svc->spatial_layer_id == 0) {
2303 cpi->lst_fb_idx = 0;
2304 cpi->gld_fb_idx = 3;
2305 cpi->alt_fb_idx = 6;
2306 } else if (svc->spatial_layer_id == 1) {
2307 cpi->lst_fb_idx = 1;
2308 cpi->gld_fb_idx = 4;
2309 cpi->alt_fb_idx = 6;
2310 } else if (svc->spatial_layer_id == 2) {
2311 cpi->lst_fb_idx = 2;
2312 cpi->gld_fb_idx = 5;
2313 cpi->alt_fb_idx = 7;
2314 }
2315 }
2316 cpi->ext_refresh_last_frame = 1;
2317 cpi->ext_refresh_golden_frame = 1;
2318 cpi->ext_refresh_alt_ref_frame = 1;
2319 }
2320 }
2321
2322 // Check if superframe contains a sync layer request.
2323 vp9_svc_check_spatial_layer_sync(cpi);
2324
2325 // If long term termporal feature is enabled, set the period of the update.
2326 // The update/refresh of this reference frame is always on base temporal
2327 // layer frame.
2328 if (svc->use_gf_temporal_ref_current_layer) {
2329 // Only use gf long-term prediction on non-key superframes.
2330 if (!svc->layer_context[svc->temporal_layer_id].is_key_frame) {
2331 // Use golden for this reference, which will be used for prediction.
2332 int index = svc->spatial_layer_id;
2333 if (svc->number_spatial_layers == 3) index = svc->spatial_layer_id - 1;
2334 assert(index >= 0);
2335 cpi->gld_fb_idx = svc->buffer_gf_temporal_ref[index].idx;
2336 // Enable prediction off LAST (last reference) and golden (which will
2337 // generally be further behind/long-term reference).
2338 cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
2339 }
2340 // Check for update/refresh of reference: only refresh on base temporal
2341 // layer.
2342 if (svc->temporal_layer_id == 0) {
2343 if (svc->layer_context[svc->temporal_layer_id].is_key_frame) {
2344 // On key frame we update the buffer index used for long term reference.
2345 // Use the alt_ref since it is not used or updated on key frames.
2346 int index = svc->spatial_layer_id;
2347 if (svc->number_spatial_layers == 3) index = svc->spatial_layer_id - 1;
2348 assert(index >= 0);
2349 cpi->alt_fb_idx = svc->buffer_gf_temporal_ref[index].idx;
2350 cpi->ext_refresh_alt_ref_frame = 1;
2351 } else if (rc->frames_till_gf_update_due == 0) {
2352 // Set perdiod of next update. Make it a multiple of 10, as the cyclic
2353 // refresh is typically ~10%, and we'd like the update to happen after
2354 // a few cylces of the refresh (so it better quality frame). Note the
2355 // cyclic refresh for SVC only operates on base temporal layer frames.
2356 // Choose 20 as perdiod for now (2 cycles).
2357 rc->baseline_gf_interval = 20;
2358 rc->frames_till_gf_update_due = rc->baseline_gf_interval;
2359 cpi->ext_refresh_golden_frame = 1;
2360 rc->gfu_boost = DEFAULT_GF_BOOST;
2361 }
2362 }
2363 } else if (!svc->use_gf_temporal_ref) {
2364 rc->frames_till_gf_update_due = INT_MAX;
2365 rc->baseline_gf_interval = INT_MAX;
2366 }
2367 if (svc->set_intra_only_frame) {
2368 set_intra_only_frame(cpi);
2369 target = calc_iframe_target_size_one_pass_cbr(cpi);
2370 }
2371 // Any update/change of global cyclic refresh parameters (amount/delta-qp)
2372 // should be done here, before the frame qp is selected.
2373 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
2374 vp9_cyclic_refresh_update_parameters(cpi);
2375
2376 vp9_rc_set_frame_target(cpi, target);
2377 if (cm->show_frame) update_buffer_level_svc_preencode(cpi);
2378 }
2379
vp9_rc_get_one_pass_cbr_params(VP9_COMP * cpi)2380 void vp9_rc_get_one_pass_cbr_params(VP9_COMP *cpi) {
2381 VP9_COMMON *const cm = &cpi->common;
2382 RATE_CONTROL *const rc = &cpi->rc;
2383 int target;
2384 if ((cm->current_video_frame == 0) || (cpi->frame_flags & FRAMEFLAGS_KEY) ||
2385 (cpi->oxcf.auto_key && rc->frames_to_key == 0)) {
2386 cm->frame_type = KEY_FRAME;
2387 rc->frames_to_key = cpi->oxcf.key_freq;
2388 rc->kf_boost = DEFAULT_KF_BOOST;
2389 rc->source_alt_ref_active = 0;
2390 } else {
2391 cm->frame_type = INTER_FRAME;
2392 }
2393 if (rc->frames_till_gf_update_due == 0) {
2394 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
2395 vp9_cyclic_refresh_set_golden_update(cpi);
2396 else
2397 rc->baseline_gf_interval =
2398 (rc->min_gf_interval + rc->max_gf_interval) / 2;
2399 rc->frames_till_gf_update_due = rc->baseline_gf_interval;
2400 // NOTE: frames_till_gf_update_due must be <= frames_to_key.
2401 if (rc->frames_till_gf_update_due > rc->frames_to_key)
2402 rc->frames_till_gf_update_due = rc->frames_to_key;
2403 cpi->refresh_golden_frame = 1;
2404 rc->gfu_boost = DEFAULT_GF_BOOST;
2405 }
2406
2407 // Any update/change of global cyclic refresh parameters (amount/delta-qp)
2408 // should be done here, before the frame qp is selected.
2409 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
2410 vp9_cyclic_refresh_update_parameters(cpi);
2411
2412 if (frame_is_intra_only(cm))
2413 target = calc_iframe_target_size_one_pass_cbr(cpi);
2414 else
2415 target = calc_pframe_target_size_one_pass_cbr(cpi);
2416
2417 vp9_rc_set_frame_target(cpi, target);
2418
2419 if (cm->show_frame) update_buffer_level_preencode(cpi);
2420
2421 if (cpi->oxcf.resize_mode == RESIZE_DYNAMIC)
2422 cpi->resize_pending = vp9_resize_one_pass_cbr(cpi);
2423 else
2424 cpi->resize_pending = 0;
2425 }
2426
vp9_compute_qdelta(const RATE_CONTROL * rc,double qstart,double qtarget,vpx_bit_depth_t bit_depth)2427 int vp9_compute_qdelta(const RATE_CONTROL *rc, double qstart, double qtarget,
2428 vpx_bit_depth_t bit_depth) {
2429 int start_index = rc->worst_quality;
2430 int target_index = rc->worst_quality;
2431 int i;
2432
2433 // Convert the average q value to an index.
2434 for (i = rc->best_quality; i < rc->worst_quality; ++i) {
2435 start_index = i;
2436 if (vp9_convert_qindex_to_q(i, bit_depth) >= qstart) break;
2437 }
2438
2439 // Convert the q target to an index
2440 for (i = rc->best_quality; i < rc->worst_quality; ++i) {
2441 target_index = i;
2442 if (vp9_convert_qindex_to_q(i, bit_depth) >= qtarget) break;
2443 }
2444
2445 return target_index - start_index;
2446 }
2447
vp9_compute_qdelta_by_rate(const RATE_CONTROL * rc,FRAME_TYPE frame_type,int qindex,double rate_target_ratio,vpx_bit_depth_t bit_depth)2448 int vp9_compute_qdelta_by_rate(const RATE_CONTROL *rc, FRAME_TYPE frame_type,
2449 int qindex, double rate_target_ratio,
2450 vpx_bit_depth_t bit_depth) {
2451 int target_index = rc->worst_quality;
2452 int i;
2453
2454 // Look up the current projected bits per block for the base index
2455 const int base_bits_per_mb =
2456 vp9_rc_bits_per_mb(frame_type, qindex, 1.0, bit_depth);
2457
2458 // Find the target bits per mb based on the base value and given ratio.
2459 const int target_bits_per_mb = (int)(rate_target_ratio * base_bits_per_mb);
2460
2461 // Convert the q target to an index
2462 for (i = rc->best_quality; i < rc->worst_quality; ++i) {
2463 if (vp9_rc_bits_per_mb(frame_type, i, 1.0, bit_depth) <=
2464 target_bits_per_mb) {
2465 target_index = i;
2466 break;
2467 }
2468 }
2469 return target_index - qindex;
2470 }
2471
vp9_rc_set_gf_interval_range(const VP9_COMP * const cpi,RATE_CONTROL * const rc)2472 void vp9_rc_set_gf_interval_range(const VP9_COMP *const cpi,
2473 RATE_CONTROL *const rc) {
2474 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
2475
2476 // Special case code for 1 pass fixed Q mode tests
2477 if ((oxcf->pass == 0) && (oxcf->rc_mode == VPX_Q)) {
2478 rc->max_gf_interval = FIXED_GF_INTERVAL;
2479 rc->min_gf_interval = FIXED_GF_INTERVAL;
2480 rc->static_scene_max_gf_interval = FIXED_GF_INTERVAL;
2481 } else {
2482 // Set Maximum gf/arf interval
2483 rc->max_gf_interval = oxcf->max_gf_interval;
2484 rc->min_gf_interval = oxcf->min_gf_interval;
2485 #if CONFIG_RATE_CTRL
2486 if (rc->min_gf_interval == 0) {
2487 rc->min_gf_interval = vp9_rc_get_default_min_gf_interval(
2488 oxcf->width, oxcf->height, oxcf->init_framerate);
2489 }
2490 if (rc->max_gf_interval == 0) {
2491 rc->max_gf_interval = vp9_rc_get_default_max_gf_interval(
2492 oxcf->init_framerate, rc->min_gf_interval);
2493 }
2494 #else
2495 if (rc->min_gf_interval == 0)
2496 rc->min_gf_interval = vp9_rc_get_default_min_gf_interval(
2497 oxcf->width, oxcf->height, cpi->framerate);
2498 if (rc->max_gf_interval == 0)
2499 rc->max_gf_interval = vp9_rc_get_default_max_gf_interval(
2500 cpi->framerate, rc->min_gf_interval);
2501 #endif
2502
2503 // Extended max interval for genuinely static scenes like slide shows.
2504 rc->static_scene_max_gf_interval = MAX_STATIC_GF_GROUP_LENGTH;
2505
2506 if (rc->max_gf_interval > rc->static_scene_max_gf_interval)
2507 rc->max_gf_interval = rc->static_scene_max_gf_interval;
2508
2509 // Clamp min to max
2510 rc->min_gf_interval = VPXMIN(rc->min_gf_interval, rc->max_gf_interval);
2511
2512 if (oxcf->target_level == LEVEL_AUTO) {
2513 const uint32_t pic_size = cpi->common.width * cpi->common.height;
2514 const uint32_t pic_breadth =
2515 VPXMAX(cpi->common.width, cpi->common.height);
2516 int i;
2517 for (i = LEVEL_1; i < LEVEL_MAX; ++i) {
2518 if (vp9_level_defs[i].max_luma_picture_size >= pic_size &&
2519 vp9_level_defs[i].max_luma_picture_breadth >= pic_breadth) {
2520 if (rc->min_gf_interval <=
2521 (int)vp9_level_defs[i].min_altref_distance) {
2522 rc->min_gf_interval =
2523 (int)vp9_level_defs[i].min_altref_distance + 1;
2524 rc->max_gf_interval =
2525 VPXMAX(rc->max_gf_interval, rc->min_gf_interval);
2526 }
2527 break;
2528 }
2529 }
2530 }
2531 }
2532 }
2533
vp9_rc_update_framerate(VP9_COMP * cpi)2534 void vp9_rc_update_framerate(VP9_COMP *cpi) {
2535 const VP9_COMMON *const cm = &cpi->common;
2536 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
2537 RATE_CONTROL *const rc = &cpi->rc;
2538 int vbr_max_bits;
2539
2540 rc->avg_frame_bandwidth = (int)(oxcf->target_bandwidth / cpi->framerate);
2541 rc->min_frame_bandwidth =
2542 (int)(rc->avg_frame_bandwidth * oxcf->two_pass_vbrmin_section / 100);
2543
2544 rc->min_frame_bandwidth =
2545 VPXMAX(rc->min_frame_bandwidth, FRAME_OVERHEAD_BITS);
2546
2547 // A maximum bitrate for a frame is defined.
2548 // However this limit is extended if a very high rate is given on the command
2549 // line or the the rate cannnot be acheived because of a user specificed max q
2550 // (e.g. when the user specifies lossless encode).
2551 //
2552 // If a level is specified that requires a lower maximum rate then the level
2553 // value take precedence.
2554 vbr_max_bits =
2555 (int)(((int64_t)rc->avg_frame_bandwidth * oxcf->two_pass_vbrmax_section) /
2556 100);
2557 rc->max_frame_bandwidth =
2558 VPXMAX(VPXMAX((cm->MBs * MAX_MB_RATE), MAXRATE_1080P), vbr_max_bits);
2559
2560 vp9_rc_set_gf_interval_range(cpi, rc);
2561 }
2562
2563 #define VBR_PCT_ADJUSTMENT_LIMIT 50
2564 // For VBR...adjustment to the frame target based on error from previous frames
vbr_rate_correction(VP9_COMP * cpi,int * this_frame_target)2565 static void vbr_rate_correction(VP9_COMP *cpi, int *this_frame_target) {
2566 RATE_CONTROL *const rc = &cpi->rc;
2567 int64_t vbr_bits_off_target = rc->vbr_bits_off_target;
2568 int max_delta;
2569 int frame_window = VPXMIN(16, ((int)cpi->twopass.total_stats.count -
2570 cpi->common.current_video_frame));
2571
2572 // Calcluate the adjustment to rate for this frame.
2573 if (frame_window > 0) {
2574 max_delta = (vbr_bits_off_target > 0)
2575 ? (int)(vbr_bits_off_target / frame_window)
2576 : (int)(-vbr_bits_off_target / frame_window);
2577
2578 max_delta = VPXMIN(max_delta,
2579 ((*this_frame_target * VBR_PCT_ADJUSTMENT_LIMIT) / 100));
2580
2581 // vbr_bits_off_target > 0 means we have extra bits to spend
2582 if (vbr_bits_off_target > 0) {
2583 *this_frame_target += (vbr_bits_off_target > max_delta)
2584 ? max_delta
2585 : (int)vbr_bits_off_target;
2586 } else {
2587 *this_frame_target -= (vbr_bits_off_target < -max_delta)
2588 ? max_delta
2589 : (int)-vbr_bits_off_target;
2590 }
2591 }
2592
2593 // Fast redistribution of bits arising from massive local undershoot.
2594 // Dont do it for kf,arf,gf or overlay frames.
2595 if (!frame_is_kf_gf_arf(cpi) && !rc->is_src_frame_alt_ref &&
2596 rc->vbr_bits_off_target_fast) {
2597 int one_frame_bits = VPXMAX(rc->avg_frame_bandwidth, *this_frame_target);
2598 int fast_extra_bits;
2599 fast_extra_bits = (int)VPXMIN(rc->vbr_bits_off_target_fast, one_frame_bits);
2600 fast_extra_bits = (int)VPXMIN(
2601 fast_extra_bits,
2602 VPXMAX(one_frame_bits / 8, rc->vbr_bits_off_target_fast / 8));
2603 *this_frame_target += (int)fast_extra_bits;
2604 rc->vbr_bits_off_target_fast -= fast_extra_bits;
2605 }
2606 }
2607
vp9_set_target_rate(VP9_COMP * cpi)2608 void vp9_set_target_rate(VP9_COMP *cpi) {
2609 RATE_CONTROL *const rc = &cpi->rc;
2610 int target_rate = rc->base_frame_target;
2611
2612 if (cpi->common.frame_type == KEY_FRAME)
2613 target_rate = vp9_rc_clamp_iframe_target_size(cpi, target_rate);
2614 else
2615 target_rate = vp9_rc_clamp_pframe_target_size(cpi, target_rate);
2616
2617 if (!cpi->oxcf.vbr_corpus_complexity) {
2618 // Correction to rate target based on prior over or under shoot.
2619 if (cpi->oxcf.rc_mode == VPX_VBR || cpi->oxcf.rc_mode == VPX_CQ)
2620 vbr_rate_correction(cpi, &target_rate);
2621 }
2622 vp9_rc_set_frame_target(cpi, target_rate);
2623 }
2624
2625 // Check if we should resize, based on average QP from past x frames.
2626 // Only allow for resize at most one scale down for now, scaling factor is 2.
vp9_resize_one_pass_cbr(VP9_COMP * cpi)2627 int vp9_resize_one_pass_cbr(VP9_COMP *cpi) {
2628 const VP9_COMMON *const cm = &cpi->common;
2629 RATE_CONTROL *const rc = &cpi->rc;
2630 RESIZE_ACTION resize_action = NO_RESIZE;
2631 int avg_qp_thr1 = 70;
2632 int avg_qp_thr2 = 50;
2633 int min_width = 180;
2634 int min_height = 180;
2635 int down_size_on = 1;
2636 cpi->resize_scale_num = 1;
2637 cpi->resize_scale_den = 1;
2638 // Don't resize on key frame; reset the counters on key frame.
2639 if (cm->frame_type == KEY_FRAME) {
2640 cpi->resize_avg_qp = 0;
2641 cpi->resize_count = 0;
2642 return 0;
2643 }
2644 // Check current frame reslution to avoid generating frames smaller than
2645 // the minimum resolution.
2646 if (ONEHALFONLY_RESIZE) {
2647 if ((cm->width >> 1) < min_width || (cm->height >> 1) < min_height)
2648 down_size_on = 0;
2649 } else {
2650 if (cpi->resize_state == ORIG &&
2651 (cm->width * 3 / 4 < min_width || cm->height * 3 / 4 < min_height))
2652 return 0;
2653 else if (cpi->resize_state == THREE_QUARTER &&
2654 ((cpi->oxcf.width >> 1) < min_width ||
2655 (cpi->oxcf.height >> 1) < min_height))
2656 down_size_on = 0;
2657 }
2658
2659 #if CONFIG_VP9_TEMPORAL_DENOISING
2660 // If denoiser is on, apply a smaller qp threshold.
2661 if (cpi->oxcf.noise_sensitivity > 0) {
2662 avg_qp_thr1 = 60;
2663 avg_qp_thr2 = 40;
2664 }
2665 #endif
2666
2667 // Resize based on average buffer underflow and QP over some window.
2668 // Ignore samples close to key frame, since QP is usually high after key.
2669 if (cpi->rc.frames_since_key > 2 * cpi->framerate) {
2670 const int window = (int)(4 * cpi->framerate);
2671 cpi->resize_avg_qp += cm->base_qindex;
2672 if (cpi->rc.buffer_level < (int)(30 * rc->optimal_buffer_level / 100))
2673 ++cpi->resize_buffer_underflow;
2674 ++cpi->resize_count;
2675 // Check for resize action every "window" frames.
2676 if (cpi->resize_count >= window) {
2677 int avg_qp = cpi->resize_avg_qp / cpi->resize_count;
2678 // Resize down if buffer level has underflowed sufficient amount in past
2679 // window, and we are at original or 3/4 of original resolution.
2680 // Resize back up if average QP is low, and we are currently in a resized
2681 // down state, i.e. 1/2 or 3/4 of original resolution.
2682 // Currently, use a flag to turn 3/4 resizing feature on/off.
2683 if (cpi->resize_buffer_underflow > (cpi->resize_count >> 2)) {
2684 if (cpi->resize_state == THREE_QUARTER && down_size_on) {
2685 resize_action = DOWN_ONEHALF;
2686 cpi->resize_state = ONE_HALF;
2687 } else if (cpi->resize_state == ORIG) {
2688 resize_action = ONEHALFONLY_RESIZE ? DOWN_ONEHALF : DOWN_THREEFOUR;
2689 cpi->resize_state = ONEHALFONLY_RESIZE ? ONE_HALF : THREE_QUARTER;
2690 }
2691 } else if (cpi->resize_state != ORIG &&
2692 avg_qp < avg_qp_thr1 * cpi->rc.worst_quality / 100) {
2693 if (cpi->resize_state == THREE_QUARTER ||
2694 avg_qp < avg_qp_thr2 * cpi->rc.worst_quality / 100 ||
2695 ONEHALFONLY_RESIZE) {
2696 resize_action = UP_ORIG;
2697 cpi->resize_state = ORIG;
2698 } else if (cpi->resize_state == ONE_HALF) {
2699 resize_action = UP_THREEFOUR;
2700 cpi->resize_state = THREE_QUARTER;
2701 }
2702 }
2703 // Reset for next window measurement.
2704 cpi->resize_avg_qp = 0;
2705 cpi->resize_count = 0;
2706 cpi->resize_buffer_underflow = 0;
2707 }
2708 }
2709 // If decision is to resize, reset some quantities, and check is we should
2710 // reduce rate correction factor,
2711 if (resize_action != NO_RESIZE) {
2712 int target_bits_per_frame;
2713 int active_worst_quality;
2714 int qindex;
2715 int tot_scale_change;
2716 if (resize_action == DOWN_THREEFOUR || resize_action == UP_THREEFOUR) {
2717 cpi->resize_scale_num = 3;
2718 cpi->resize_scale_den = 4;
2719 } else if (resize_action == DOWN_ONEHALF) {
2720 cpi->resize_scale_num = 1;
2721 cpi->resize_scale_den = 2;
2722 } else { // UP_ORIG or anything else
2723 cpi->resize_scale_num = 1;
2724 cpi->resize_scale_den = 1;
2725 }
2726 tot_scale_change = (cpi->resize_scale_den * cpi->resize_scale_den) /
2727 (cpi->resize_scale_num * cpi->resize_scale_num);
2728 // Reset buffer level to optimal, update target size.
2729 rc->buffer_level = rc->optimal_buffer_level;
2730 rc->bits_off_target = rc->optimal_buffer_level;
2731 rc->this_frame_target = calc_pframe_target_size_one_pass_cbr(cpi);
2732 // Get the projected qindex, based on the scaled target frame size (scaled
2733 // so target_bits_per_mb in vp9_rc_regulate_q will be correct target).
2734 target_bits_per_frame = (resize_action >= 0)
2735 ? rc->this_frame_target * tot_scale_change
2736 : rc->this_frame_target / tot_scale_change;
2737 active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi);
2738 qindex = vp9_rc_regulate_q(cpi, target_bits_per_frame, rc->best_quality,
2739 active_worst_quality);
2740 // If resize is down, check if projected q index is close to worst_quality,
2741 // and if so, reduce the rate correction factor (since likely can afford
2742 // lower q for resized frame).
2743 if (resize_action > 0 && qindex > 90 * cpi->rc.worst_quality / 100) {
2744 rc->rate_correction_factors[INTER_NORMAL] *= 0.85;
2745 }
2746 // If resize is back up, check if projected q index is too much above the
2747 // current base_qindex, and if so, reduce the rate correction factor
2748 // (since prefer to keep q for resized frame at least close to previous q).
2749 if (resize_action < 0 && qindex > 130 * cm->base_qindex / 100) {
2750 rc->rate_correction_factors[INTER_NORMAL] *= 0.9;
2751 }
2752 }
2753 return resize_action;
2754 }
2755
adjust_gf_boost_lag_one_pass_vbr(VP9_COMP * cpi,uint64_t avg_sad_current)2756 static void adjust_gf_boost_lag_one_pass_vbr(VP9_COMP *cpi,
2757 uint64_t avg_sad_current) {
2758 VP9_COMMON *const cm = &cpi->common;
2759 RATE_CONTROL *const rc = &cpi->rc;
2760 int target;
2761 int found = 0;
2762 int found2 = 0;
2763 int frame;
2764 int i;
2765 uint64_t avg_source_sad_lag = avg_sad_current;
2766 int high_source_sad_lagindex = -1;
2767 int steady_sad_lagindex = -1;
2768 uint32_t sad_thresh1 = 70000;
2769 uint32_t sad_thresh2 = 120000;
2770 int low_content = 0;
2771 int high_content = 0;
2772 double rate_err = 1.0;
2773 // Get measure of complexity over the future frames, and get the first
2774 // future frame with high_source_sad/scene-change.
2775 int tot_frames = (int)vp9_lookahead_depth(cpi->lookahead) - 1;
2776 for (frame = tot_frames; frame >= 1; --frame) {
2777 const int lagframe_idx = tot_frames - frame + 1;
2778 uint64_t reference_sad = rc->avg_source_sad[0];
2779 for (i = 1; i < lagframe_idx; ++i) {
2780 if (rc->avg_source_sad[i] > 0)
2781 reference_sad = (3 * reference_sad + rc->avg_source_sad[i]) >> 2;
2782 }
2783 // Detect up-coming scene change.
2784 if (!found &&
2785 (rc->avg_source_sad[lagframe_idx] >
2786 VPXMAX(sad_thresh1, (unsigned int)(reference_sad << 1)) ||
2787 rc->avg_source_sad[lagframe_idx] >
2788 VPXMAX(3 * sad_thresh1 >> 2,
2789 (unsigned int)(reference_sad << 2)))) {
2790 high_source_sad_lagindex = lagframe_idx;
2791 found = 1;
2792 }
2793 // Detect change from motion to steady.
2794 if (!found2 && lagframe_idx > 1 && lagframe_idx < tot_frames &&
2795 rc->avg_source_sad[lagframe_idx - 1] > (sad_thresh1 >> 2)) {
2796 found2 = 1;
2797 for (i = lagframe_idx; i < tot_frames; ++i) {
2798 if (!(rc->avg_source_sad[i] > 0 &&
2799 rc->avg_source_sad[i] < (sad_thresh1 >> 2) &&
2800 rc->avg_source_sad[i] <
2801 (rc->avg_source_sad[lagframe_idx - 1] >> 1))) {
2802 found2 = 0;
2803 i = tot_frames;
2804 }
2805 }
2806 if (found2) steady_sad_lagindex = lagframe_idx;
2807 }
2808 avg_source_sad_lag += rc->avg_source_sad[lagframe_idx];
2809 }
2810 if (tot_frames > 0) avg_source_sad_lag = avg_source_sad_lag / tot_frames;
2811 // Constrain distance between detected scene cuts.
2812 if (high_source_sad_lagindex != -1 &&
2813 high_source_sad_lagindex != rc->high_source_sad_lagindex - 1 &&
2814 abs(high_source_sad_lagindex - rc->high_source_sad_lagindex) < 4)
2815 rc->high_source_sad_lagindex = -1;
2816 else
2817 rc->high_source_sad_lagindex = high_source_sad_lagindex;
2818 // Adjust some factors for the next GF group, ignore initial key frame,
2819 // and only for lag_in_frames not too small.
2820 if (cpi->refresh_golden_frame == 1 && cm->current_video_frame > 30 &&
2821 cpi->oxcf.lag_in_frames > 8) {
2822 int frame_constraint;
2823 if (rc->rolling_target_bits > 0)
2824 rate_err =
2825 (double)rc->rolling_actual_bits / (double)rc->rolling_target_bits;
2826 high_content = high_source_sad_lagindex != -1 ||
2827 avg_source_sad_lag > (rc->prev_avg_source_sad_lag << 1) ||
2828 avg_source_sad_lag > sad_thresh2;
2829 low_content = high_source_sad_lagindex == -1 &&
2830 ((avg_source_sad_lag < (rc->prev_avg_source_sad_lag >> 1)) ||
2831 (avg_source_sad_lag < sad_thresh1));
2832 if (low_content) {
2833 rc->gfu_boost = DEFAULT_GF_BOOST;
2834 rc->baseline_gf_interval =
2835 VPXMIN(15, (3 * rc->baseline_gf_interval) >> 1);
2836 } else if (high_content) {
2837 rc->gfu_boost = DEFAULT_GF_BOOST >> 1;
2838 rc->baseline_gf_interval = (rate_err > 3.0)
2839 ? VPXMAX(10, rc->baseline_gf_interval >> 1)
2840 : VPXMAX(6, rc->baseline_gf_interval >> 1);
2841 }
2842 if (rc->baseline_gf_interval > cpi->oxcf.lag_in_frames - 1)
2843 rc->baseline_gf_interval = cpi->oxcf.lag_in_frames - 1;
2844 // Check for constraining gf_interval for up-coming scene/content changes,
2845 // or for up-coming key frame, whichever is closer.
2846 frame_constraint = rc->frames_to_key;
2847 if (rc->high_source_sad_lagindex > 0 &&
2848 frame_constraint > rc->high_source_sad_lagindex)
2849 frame_constraint = rc->high_source_sad_lagindex;
2850 if (steady_sad_lagindex > 3 && frame_constraint > steady_sad_lagindex)
2851 frame_constraint = steady_sad_lagindex;
2852 adjust_gfint_frame_constraint(cpi, frame_constraint);
2853 rc->frames_till_gf_update_due = rc->baseline_gf_interval;
2854 // Adjust factors for active_worst setting & af_ratio for next gf interval.
2855 rc->fac_active_worst_inter = 150; // corresponds to 3/2 (= 150 /100).
2856 rc->fac_active_worst_gf = 100;
2857 if (rate_err < 2.0 && !high_content) {
2858 rc->fac_active_worst_inter = 120;
2859 rc->fac_active_worst_gf = 90;
2860 } else if (rate_err > 8.0 && rc->avg_frame_qindex[INTER_FRAME] < 16) {
2861 // Increase active_worst faster at low Q if rate fluctuation is high.
2862 rc->fac_active_worst_inter = 200;
2863 if (rc->avg_frame_qindex[INTER_FRAME] < 8)
2864 rc->fac_active_worst_inter = 400;
2865 }
2866 if (low_content && rc->avg_frame_low_motion > 80) {
2867 rc->af_ratio_onepass_vbr = 15;
2868 } else if (high_content || rc->avg_frame_low_motion < 30) {
2869 rc->af_ratio_onepass_vbr = 5;
2870 rc->gfu_boost = DEFAULT_GF_BOOST >> 2;
2871 }
2872 if (cpi->sf.use_altref_onepass && cpi->oxcf.enable_auto_arf) {
2873 // Flag to disable usage of ARF based on past usage, only allow this
2874 // disabling if current frame/group does not start with key frame or
2875 // scene cut. Note perc_arf_usage is only computed for speed >= 5.
2876 int arf_usage_low =
2877 (cm->frame_type != KEY_FRAME && !rc->high_source_sad &&
2878 cpi->rc.perc_arf_usage < 15 && cpi->oxcf.speed >= 5);
2879 // Don't use alt-ref for this group under certain conditions.
2880 if (arf_usage_low ||
2881 (rc->high_source_sad_lagindex > 0 &&
2882 rc->high_source_sad_lagindex <= rc->frames_till_gf_update_due) ||
2883 (avg_source_sad_lag > 3 * sad_thresh1 >> 3)) {
2884 rc->source_alt_ref_pending = 0;
2885 rc->alt_ref_gf_group = 0;
2886 } else {
2887 rc->source_alt_ref_pending = 1;
2888 rc->alt_ref_gf_group = 1;
2889 // If alt-ref is used for this gf group, limit the interval.
2890 if (rc->baseline_gf_interval > 12) {
2891 rc->baseline_gf_interval = 12;
2892 rc->frames_till_gf_update_due = rc->baseline_gf_interval;
2893 }
2894 }
2895 }
2896 target = calc_pframe_target_size_one_pass_vbr(cpi);
2897 vp9_rc_set_frame_target(cpi, target);
2898 }
2899 rc->prev_avg_source_sad_lag = avg_source_sad_lag;
2900 }
2901
2902 // Compute average source sad (temporal sad: between current source and
2903 // previous source) over a subset of superblocks. Use this is detect big changes
2904 // in content and allow rate control to react.
2905 // This function also handles special case of lag_in_frames, to measure content
2906 // level in #future frames set by the lag_in_frames.
vp9_scene_detection_onepass(VP9_COMP * cpi)2907 void vp9_scene_detection_onepass(VP9_COMP *cpi) {
2908 VP9_COMMON *const cm = &cpi->common;
2909 RATE_CONTROL *const rc = &cpi->rc;
2910 YV12_BUFFER_CONFIG const *unscaled_src = cpi->un_scaled_source;
2911 YV12_BUFFER_CONFIG const *unscaled_last_src = cpi->unscaled_last_source;
2912 uint8_t *src_y;
2913 int src_ystride;
2914 int src_width;
2915 int src_height;
2916 uint8_t *last_src_y;
2917 int last_src_ystride;
2918 int last_src_width;
2919 int last_src_height;
2920 if (cpi->un_scaled_source == NULL || cpi->unscaled_last_source == NULL ||
2921 (cpi->use_svc && cpi->svc.current_superframe == 0))
2922 return;
2923 src_y = unscaled_src->y_buffer;
2924 src_ystride = unscaled_src->y_stride;
2925 src_width = unscaled_src->y_width;
2926 src_height = unscaled_src->y_height;
2927 last_src_y = unscaled_last_src->y_buffer;
2928 last_src_ystride = unscaled_last_src->y_stride;
2929 last_src_width = unscaled_last_src->y_width;
2930 last_src_height = unscaled_last_src->y_height;
2931 #if CONFIG_VP9_HIGHBITDEPTH
2932 if (cm->use_highbitdepth) return;
2933 #endif
2934 rc->high_source_sad = 0;
2935 rc->high_num_blocks_with_motion = 0;
2936 // For SVC: scene detection is only checked on first spatial layer of
2937 // the superframe using the original/unscaled resolutions.
2938 if (cpi->svc.spatial_layer_id == cpi->svc.first_spatial_layer_to_encode &&
2939 src_width == last_src_width && src_height == last_src_height) {
2940 YV12_BUFFER_CONFIG *frames[MAX_LAG_BUFFERS] = { NULL };
2941 int num_mi_cols = cm->mi_cols;
2942 int num_mi_rows = cm->mi_rows;
2943 int start_frame = 0;
2944 int frames_to_buffer = 1;
2945 int frame = 0;
2946 int scene_cut_force_key_frame = 0;
2947 int num_zero_temp_sad = 0;
2948 uint64_t avg_sad_current = 0;
2949 uint32_t min_thresh = 10000;
2950 float thresh = 8.0f;
2951 uint32_t thresh_key = 140000;
2952 if (cpi->oxcf.speed <= 5) thresh_key = 240000;
2953 if (cpi->oxcf.content != VP9E_CONTENT_SCREEN) min_thresh = 65000;
2954 if (cpi->oxcf.rc_mode == VPX_VBR) thresh = 2.1f;
2955 if (cpi->use_svc && cpi->svc.number_spatial_layers > 1) {
2956 const int aligned_width = ALIGN_POWER_OF_TWO(src_width, MI_SIZE_LOG2);
2957 const int aligned_height = ALIGN_POWER_OF_TWO(src_height, MI_SIZE_LOG2);
2958 num_mi_cols = aligned_width >> MI_SIZE_LOG2;
2959 num_mi_rows = aligned_height >> MI_SIZE_LOG2;
2960 }
2961 if (cpi->oxcf.lag_in_frames > 0) {
2962 frames_to_buffer = (cm->current_video_frame == 1)
2963 ? (int)vp9_lookahead_depth(cpi->lookahead) - 1
2964 : 2;
2965 start_frame = (int)vp9_lookahead_depth(cpi->lookahead) - 1;
2966 for (frame = 0; frame < frames_to_buffer; ++frame) {
2967 const int lagframe_idx = start_frame - frame;
2968 if (lagframe_idx >= 0) {
2969 struct lookahead_entry *buf =
2970 vp9_lookahead_peek(cpi->lookahead, lagframe_idx);
2971 frames[frame] = &buf->img;
2972 }
2973 }
2974 // The avg_sad for this current frame is the value of frame#1
2975 // (first future frame) from previous frame.
2976 avg_sad_current = rc->avg_source_sad[1];
2977 if (avg_sad_current >
2978 VPXMAX(min_thresh,
2979 (unsigned int)(rc->avg_source_sad[0] * thresh)) &&
2980 cm->current_video_frame > (unsigned int)cpi->oxcf.lag_in_frames)
2981 rc->high_source_sad = 1;
2982 else
2983 rc->high_source_sad = 0;
2984 if (rc->high_source_sad && avg_sad_current > thresh_key)
2985 scene_cut_force_key_frame = 1;
2986 // Update recursive average for current frame.
2987 if (avg_sad_current > 0)
2988 rc->avg_source_sad[0] =
2989 (3 * rc->avg_source_sad[0] + avg_sad_current) >> 2;
2990 // Shift back data, starting at frame#1.
2991 for (frame = 1; frame < cpi->oxcf.lag_in_frames - 1; ++frame)
2992 rc->avg_source_sad[frame] = rc->avg_source_sad[frame + 1];
2993 }
2994 for (frame = 0; frame < frames_to_buffer; ++frame) {
2995 if (cpi->oxcf.lag_in_frames == 0 ||
2996 (frames[frame] != NULL && frames[frame + 1] != NULL &&
2997 frames[frame]->y_width == frames[frame + 1]->y_width &&
2998 frames[frame]->y_height == frames[frame + 1]->y_height)) {
2999 int sbi_row, sbi_col;
3000 const int lagframe_idx =
3001 (cpi->oxcf.lag_in_frames == 0) ? 0 : start_frame - frame + 1;
3002 const BLOCK_SIZE bsize = BLOCK_64X64;
3003 // Loop over sub-sample of frame, compute average sad over 64x64 blocks.
3004 uint64_t avg_sad = 0;
3005 uint64_t tmp_sad = 0;
3006 int num_samples = 0;
3007 int sb_cols = (num_mi_cols + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE;
3008 int sb_rows = (num_mi_rows + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE;
3009 if (cpi->oxcf.lag_in_frames > 0) {
3010 src_y = frames[frame]->y_buffer;
3011 src_ystride = frames[frame]->y_stride;
3012 last_src_y = frames[frame + 1]->y_buffer;
3013 last_src_ystride = frames[frame + 1]->y_stride;
3014 }
3015 num_zero_temp_sad = 0;
3016 for (sbi_row = 0; sbi_row < sb_rows; ++sbi_row) {
3017 for (sbi_col = 0; sbi_col < sb_cols; ++sbi_col) {
3018 // Checker-board pattern, ignore boundary.
3019 if (((sbi_row > 0 && sbi_col > 0) &&
3020 (sbi_row < sb_rows - 1 && sbi_col < sb_cols - 1) &&
3021 ((sbi_row % 2 == 0 && sbi_col % 2 == 0) ||
3022 (sbi_row % 2 != 0 && sbi_col % 2 != 0)))) {
3023 tmp_sad = cpi->fn_ptr[bsize].sdf(src_y, src_ystride, last_src_y,
3024 last_src_ystride);
3025 avg_sad += tmp_sad;
3026 num_samples++;
3027 if (tmp_sad == 0) num_zero_temp_sad++;
3028 }
3029 src_y += 64;
3030 last_src_y += 64;
3031 }
3032 src_y += (src_ystride << 6) - (sb_cols << 6);
3033 last_src_y += (last_src_ystride << 6) - (sb_cols << 6);
3034 }
3035 if (num_samples > 0) avg_sad = avg_sad / num_samples;
3036 // Set high_source_sad flag if we detect very high increase in avg_sad
3037 // between current and previous frame value(s). Use minimum threshold
3038 // for cases where there is small change from content that is completely
3039 // static.
3040 if (lagframe_idx == 0) {
3041 if (avg_sad >
3042 VPXMAX(min_thresh,
3043 (unsigned int)(rc->avg_source_sad[0] * thresh)) &&
3044 rc->frames_since_key > 1 + cpi->svc.number_spatial_layers &&
3045 num_zero_temp_sad < 3 * (num_samples >> 2))
3046 rc->high_source_sad = 1;
3047 else
3048 rc->high_source_sad = 0;
3049 if (rc->high_source_sad && avg_sad > thresh_key)
3050 scene_cut_force_key_frame = 1;
3051 if (avg_sad > 0 || cpi->oxcf.rc_mode == VPX_CBR)
3052 rc->avg_source_sad[0] = (3 * rc->avg_source_sad[0] + avg_sad) >> 2;
3053 } else {
3054 rc->avg_source_sad[lagframe_idx] = avg_sad;
3055 }
3056 if (num_zero_temp_sad < (3 * num_samples >> 2))
3057 rc->high_num_blocks_with_motion = 1;
3058 }
3059 }
3060 // For CBR non-screen content mode, check if we should reset the rate
3061 // control. Reset is done if high_source_sad is detected and the rate
3062 // control is at very low QP with rate correction factor at min level.
3063 if (cpi->oxcf.rc_mode == VPX_CBR &&
3064 cpi->oxcf.content != VP9E_CONTENT_SCREEN && !cpi->use_svc) {
3065 if (rc->high_source_sad && rc->last_q[INTER_FRAME] == rc->best_quality &&
3066 rc->avg_frame_qindex[INTER_FRAME] < (rc->best_quality << 1) &&
3067 rc->rate_correction_factors[INTER_NORMAL] == MIN_BPB_FACTOR) {
3068 rc->rate_correction_factors[INTER_NORMAL] = 0.5;
3069 rc->avg_frame_qindex[INTER_FRAME] = rc->worst_quality;
3070 rc->buffer_level = rc->optimal_buffer_level;
3071 rc->bits_off_target = rc->optimal_buffer_level;
3072 rc->reset_high_source_sad = 1;
3073 }
3074 if (cm->frame_type != KEY_FRAME && rc->reset_high_source_sad)
3075 rc->this_frame_target = rc->avg_frame_bandwidth;
3076 }
3077 // For SVC the new (updated) avg_source_sad[0] for the current superframe
3078 // updates the setting for all layers.
3079 if (cpi->use_svc) {
3080 int sl, tl;
3081 SVC *const svc = &cpi->svc;
3082 for (sl = 0; sl < svc->number_spatial_layers; ++sl)
3083 for (tl = 0; tl < svc->number_temporal_layers; ++tl) {
3084 int layer = LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers);
3085 LAYER_CONTEXT *const lc = &svc->layer_context[layer];
3086 RATE_CONTROL *const lrc = &lc->rc;
3087 lrc->avg_source_sad[0] = rc->avg_source_sad[0];
3088 }
3089 }
3090 // For VBR, under scene change/high content change, force golden refresh.
3091 if (cpi->oxcf.rc_mode == VPX_VBR && cm->frame_type != KEY_FRAME &&
3092 rc->high_source_sad && rc->frames_to_key > 3 &&
3093 rc->count_last_scene_change > 4 &&
3094 cpi->ext_refresh_frame_flags_pending == 0) {
3095 int target;
3096 cpi->refresh_golden_frame = 1;
3097 if (scene_cut_force_key_frame) cm->frame_type = KEY_FRAME;
3098 rc->source_alt_ref_pending = 0;
3099 if (cpi->sf.use_altref_onepass && cpi->oxcf.enable_auto_arf)
3100 rc->source_alt_ref_pending = 1;
3101 rc->gfu_boost = DEFAULT_GF_BOOST >> 1;
3102 rc->baseline_gf_interval =
3103 VPXMIN(20, VPXMAX(10, rc->baseline_gf_interval));
3104 adjust_gfint_frame_constraint(cpi, rc->frames_to_key);
3105 rc->frames_till_gf_update_due = rc->baseline_gf_interval;
3106 target = calc_pframe_target_size_one_pass_vbr(cpi);
3107 vp9_rc_set_frame_target(cpi, target);
3108 rc->count_last_scene_change = 0;
3109 } else {
3110 rc->count_last_scene_change++;
3111 }
3112 // If lag_in_frame is used, set the gf boost and interval.
3113 if (cpi->oxcf.lag_in_frames > 0)
3114 adjust_gf_boost_lag_one_pass_vbr(cpi, avg_sad_current);
3115 }
3116 }
3117
3118 // Test if encoded frame will significantly overshoot the target bitrate, and
3119 // if so, set the QP, reset/adjust some rate control parameters, and return 1.
3120 // frame_size = -1 means frame has not been encoded.
vp9_encodedframe_overshoot(VP9_COMP * cpi,int frame_size,int * q)3121 int vp9_encodedframe_overshoot(VP9_COMP *cpi, int frame_size, int *q) {
3122 VP9_COMMON *const cm = &cpi->common;
3123 RATE_CONTROL *const rc = &cpi->rc;
3124 SPEED_FEATURES *const sf = &cpi->sf;
3125 int thresh_qp = 7 * (rc->worst_quality >> 3);
3126 int thresh_rate = rc->avg_frame_bandwidth << 3;
3127 // Lower thresh_qp for video (more overshoot at lower Q) to be
3128 // more conservative for video.
3129 if (cpi->oxcf.content != VP9E_CONTENT_SCREEN)
3130 thresh_qp = 3 * (rc->worst_quality >> 2);
3131 // If this decision is not based on an encoded frame size but just on
3132 // scene/slide change detection (i.e., re_encode_overshoot_cbr_rt ==
3133 // FAST_DETECTION_MAXQ), for now skip the (frame_size > thresh_rate)
3134 // condition in this case.
3135 // TODO(marpan): Use a better size/rate condition for this case and
3136 // adjust thresholds.
3137 if ((sf->overshoot_detection_cbr_rt == FAST_DETECTION_MAXQ ||
3138 frame_size > thresh_rate) &&
3139 cm->base_qindex < thresh_qp) {
3140 double rate_correction_factor =
3141 cpi->rc.rate_correction_factors[INTER_NORMAL];
3142 const int target_size = cpi->rc.avg_frame_bandwidth;
3143 double new_correction_factor;
3144 int target_bits_per_mb;
3145 double q2;
3146 int enumerator;
3147 // Force a re-encode, and for now use max-QP.
3148 *q = cpi->rc.worst_quality;
3149 cpi->cyclic_refresh->counter_encode_maxq_scene_change = 0;
3150 cpi->rc.re_encode_maxq_scene_change = 1;
3151 // If the frame_size is much larger than the threshold (big content change)
3152 // and the encoded frame used alot of Intra modes, then force hybrid_intra
3153 // encoding for the re-encode on this scene change. hybrid_intra will
3154 // use rd-based intra mode selection for small blocks.
3155 if (sf->overshoot_detection_cbr_rt == RE_ENCODE_MAXQ &&
3156 frame_size > (thresh_rate << 1) && cpi->svc.spatial_layer_id == 0) {
3157 MODE_INFO **mi = cm->mi_grid_visible;
3158 int sum_intra_usage = 0;
3159 int mi_row, mi_col;
3160 int tot = 0;
3161 for (mi_row = 0; mi_row < cm->mi_rows; mi_row++) {
3162 for (mi_col = 0; mi_col < cm->mi_cols; mi_col++) {
3163 if (mi[0]->ref_frame[0] == INTRA_FRAME) sum_intra_usage++;
3164 tot++;
3165 mi++;
3166 }
3167 mi += 8;
3168 }
3169 sum_intra_usage = 100 * sum_intra_usage / (cm->mi_rows * cm->mi_cols);
3170 if (sum_intra_usage > 60) cpi->rc.hybrid_intra_scene_change = 1;
3171 }
3172 // Adjust avg_frame_qindex, buffer_level, and rate correction factors, as
3173 // these parameters will affect QP selection for subsequent frames. If they
3174 // have settled down to a very different (low QP) state, then not adjusting
3175 // them may cause next frame to select low QP and overshoot again.
3176 cpi->rc.avg_frame_qindex[INTER_FRAME] = *q;
3177 rc->buffer_level = rc->optimal_buffer_level;
3178 rc->bits_off_target = rc->optimal_buffer_level;
3179 // Reset rate under/over-shoot flags.
3180 cpi->rc.rc_1_frame = 0;
3181 cpi->rc.rc_2_frame = 0;
3182 // Adjust rate correction factor.
3183 target_bits_per_mb =
3184 (int)(((uint64_t)target_size << BPER_MB_NORMBITS) / cm->MBs);
3185 // Rate correction factor based on target_bits_per_mb and qp (==max_QP).
3186 // This comes from the inverse computation of vp9_rc_bits_per_mb().
3187 q2 = vp9_convert_qindex_to_q(*q, cm->bit_depth);
3188 enumerator = 1800000; // Factor for inter frame.
3189 enumerator += (int)(enumerator * q2) >> 12;
3190 new_correction_factor = (double)target_bits_per_mb * q2 / enumerator;
3191 if (new_correction_factor > rate_correction_factor) {
3192 rate_correction_factor =
3193 VPXMIN(2.0 * rate_correction_factor, new_correction_factor);
3194 if (rate_correction_factor > MAX_BPB_FACTOR)
3195 rate_correction_factor = MAX_BPB_FACTOR;
3196 cpi->rc.rate_correction_factors[INTER_NORMAL] = rate_correction_factor;
3197 }
3198 // For temporal layers, reset the rate control parametes across all
3199 // temporal layers. If the first_spatial_layer_to_encode > 0, then this
3200 // superframe has skipped lower base layers. So in this case we should also
3201 // reset and force max-q for spatial layers < first_spatial_layer_to_encode.
3202 if (cpi->use_svc) {
3203 int tl = 0;
3204 int sl = 0;
3205 SVC *svc = &cpi->svc;
3206 for (sl = 0; sl < svc->first_spatial_layer_to_encode; ++sl) {
3207 for (tl = 0; tl < svc->number_temporal_layers; ++tl) {
3208 const int layer =
3209 LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers);
3210 LAYER_CONTEXT *lc = &svc->layer_context[layer];
3211 RATE_CONTROL *lrc = &lc->rc;
3212 lrc->avg_frame_qindex[INTER_FRAME] = *q;
3213 lrc->buffer_level = lrc->optimal_buffer_level;
3214 lrc->bits_off_target = lrc->optimal_buffer_level;
3215 lrc->rc_1_frame = 0;
3216 lrc->rc_2_frame = 0;
3217 lrc->rate_correction_factors[INTER_NORMAL] = rate_correction_factor;
3218 lrc->force_max_q = 1;
3219 }
3220 }
3221 }
3222 return 1;
3223 } else {
3224 return 0;
3225 }
3226 }
3227