1 /*
2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <assert.h>
12 #include <stdlib.h> // qsort()
13
14 #include "./vp9_rtcd.h"
15 #include "./vpx_dsp_rtcd.h"
16 #include "./vpx_scale_rtcd.h"
17
18 #include "vpx_dsp/bitreader_buffer.h"
19 #include "vpx_dsp/bitreader.h"
20 #include "vpx_dsp/vpx_dsp_common.h"
21 #include "vpx_mem/vpx_mem.h"
22 #include "vpx_ports/mem.h"
23 #include "vpx_ports/mem_ops.h"
24 #include "vpx_scale/vpx_scale.h"
25 #include "vpx_util/vpx_thread.h"
26 #if CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG
27 #include "vpx_util/vpx_debug_util.h"
28 #endif // CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG
29
30 #include "vp9/common/vp9_alloccommon.h"
31 #include "vp9/common/vp9_common.h"
32 #include "vp9/common/vp9_entropy.h"
33 #include "vp9/common/vp9_entropymode.h"
34 #include "vp9/common/vp9_idct.h"
35 #include "vp9/common/vp9_thread_common.h"
36 #include "vp9/common/vp9_pred_common.h"
37 #include "vp9/common/vp9_quant_common.h"
38 #include "vp9/common/vp9_reconintra.h"
39 #include "vp9/common/vp9_reconinter.h"
40 #include "vp9/common/vp9_seg_common.h"
41 #include "vp9/common/vp9_tile_common.h"
42
43 #include "vp9/decoder/vp9_decodeframe.h"
44 #include "vp9/decoder/vp9_detokenize.h"
45 #include "vp9/decoder/vp9_decodemv.h"
46 #include "vp9/decoder/vp9_decoder.h"
47 #include "vp9/decoder/vp9_dsubexp.h"
48 #include "vp9/decoder/vp9_job_queue.h"
49
50 #define MAX_VP9_HEADER_SIZE 80
51
52 typedef int (*predict_recon_func)(TileWorkerData *twd, MODE_INFO *const mi,
53 int plane, int row, int col, TX_SIZE tx_size);
54
55 typedef void (*intra_recon_func)(TileWorkerData *twd, MODE_INFO *const mi,
56 int plane, int row, int col, TX_SIZE tx_size);
57
read_is_valid(const uint8_t * start,size_t len,const uint8_t * end)58 static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) {
59 return len != 0 && len <= (size_t)(end - start);
60 }
61
decode_unsigned_max(struct vpx_read_bit_buffer * rb,int max)62 static int decode_unsigned_max(struct vpx_read_bit_buffer *rb, int max) {
63 const int data = vpx_rb_read_literal(rb, get_unsigned_bits(max));
64 return data > max ? max : data;
65 }
66
read_tx_mode(vpx_reader * r)67 static TX_MODE read_tx_mode(vpx_reader *r) {
68 TX_MODE tx_mode = vpx_read_literal(r, 2);
69 if (tx_mode == ALLOW_32X32) tx_mode += vpx_read_bit(r);
70 return tx_mode;
71 }
72
read_tx_mode_probs(struct tx_probs * tx_probs,vpx_reader * r)73 static void read_tx_mode_probs(struct tx_probs *tx_probs, vpx_reader *r) {
74 int i, j;
75
76 for (i = 0; i < TX_SIZE_CONTEXTS; ++i)
77 for (j = 0; j < TX_SIZES - 3; ++j)
78 vp9_diff_update_prob(r, &tx_probs->p8x8[i][j]);
79
80 for (i = 0; i < TX_SIZE_CONTEXTS; ++i)
81 for (j = 0; j < TX_SIZES - 2; ++j)
82 vp9_diff_update_prob(r, &tx_probs->p16x16[i][j]);
83
84 for (i = 0; i < TX_SIZE_CONTEXTS; ++i)
85 for (j = 0; j < TX_SIZES - 1; ++j)
86 vp9_diff_update_prob(r, &tx_probs->p32x32[i][j]);
87 }
88
read_switchable_interp_probs(FRAME_CONTEXT * fc,vpx_reader * r)89 static void read_switchable_interp_probs(FRAME_CONTEXT *fc, vpx_reader *r) {
90 int i, j;
91 for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
92 for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i)
93 vp9_diff_update_prob(r, &fc->switchable_interp_prob[j][i]);
94 }
95
read_inter_mode_probs(FRAME_CONTEXT * fc,vpx_reader * r)96 static void read_inter_mode_probs(FRAME_CONTEXT *fc, vpx_reader *r) {
97 int i, j;
98 for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
99 for (j = 0; j < INTER_MODES - 1; ++j)
100 vp9_diff_update_prob(r, &fc->inter_mode_probs[i][j]);
101 }
102
read_frame_reference_mode(const VP9_COMMON * cm,vpx_reader * r)103 static REFERENCE_MODE read_frame_reference_mode(const VP9_COMMON *cm,
104 vpx_reader *r) {
105 if (vp9_compound_reference_allowed(cm)) {
106 return vpx_read_bit(r)
107 ? (vpx_read_bit(r) ? REFERENCE_MODE_SELECT : COMPOUND_REFERENCE)
108 : SINGLE_REFERENCE;
109 } else {
110 return SINGLE_REFERENCE;
111 }
112 }
113
read_frame_reference_mode_probs(VP9_COMMON * cm,vpx_reader * r)114 static void read_frame_reference_mode_probs(VP9_COMMON *cm, vpx_reader *r) {
115 FRAME_CONTEXT *const fc = cm->fc;
116 int i;
117
118 if (cm->reference_mode == REFERENCE_MODE_SELECT)
119 for (i = 0; i < COMP_INTER_CONTEXTS; ++i)
120 vp9_diff_update_prob(r, &fc->comp_inter_prob[i]);
121
122 if (cm->reference_mode != COMPOUND_REFERENCE)
123 for (i = 0; i < REF_CONTEXTS; ++i) {
124 vp9_diff_update_prob(r, &fc->single_ref_prob[i][0]);
125 vp9_diff_update_prob(r, &fc->single_ref_prob[i][1]);
126 }
127
128 if (cm->reference_mode != SINGLE_REFERENCE)
129 for (i = 0; i < REF_CONTEXTS; ++i)
130 vp9_diff_update_prob(r, &fc->comp_ref_prob[i]);
131 }
132
update_mv_probs(vpx_prob * p,int n,vpx_reader * r)133 static void update_mv_probs(vpx_prob *p, int n, vpx_reader *r) {
134 int i;
135 for (i = 0; i < n; ++i)
136 if (vpx_read(r, MV_UPDATE_PROB)) p[i] = (vpx_read_literal(r, 7) << 1) | 1;
137 }
138
read_mv_probs(nmv_context * ctx,int allow_hp,vpx_reader * r)139 static void read_mv_probs(nmv_context *ctx, int allow_hp, vpx_reader *r) {
140 int i, j;
141
142 update_mv_probs(ctx->joints, MV_JOINTS - 1, r);
143
144 for (i = 0; i < 2; ++i) {
145 nmv_component *const comp_ctx = &ctx->comps[i];
146 update_mv_probs(&comp_ctx->sign, 1, r);
147 update_mv_probs(comp_ctx->classes, MV_CLASSES - 1, r);
148 update_mv_probs(comp_ctx->class0, CLASS0_SIZE - 1, r);
149 update_mv_probs(comp_ctx->bits, MV_OFFSET_BITS, r);
150 }
151
152 for (i = 0; i < 2; ++i) {
153 nmv_component *const comp_ctx = &ctx->comps[i];
154 for (j = 0; j < CLASS0_SIZE; ++j)
155 update_mv_probs(comp_ctx->class0_fp[j], MV_FP_SIZE - 1, r);
156 update_mv_probs(comp_ctx->fp, 3, r);
157 }
158
159 if (allow_hp) {
160 for (i = 0; i < 2; ++i) {
161 nmv_component *const comp_ctx = &ctx->comps[i];
162 update_mv_probs(&comp_ctx->class0_hp, 1, r);
163 update_mv_probs(&comp_ctx->hp, 1, r);
164 }
165 }
166 }
167
inverse_transform_block_inter(MACROBLOCKD * xd,int plane,const TX_SIZE tx_size,uint8_t * dst,int stride,int eob)168 static void inverse_transform_block_inter(MACROBLOCKD *xd, int plane,
169 const TX_SIZE tx_size, uint8_t *dst,
170 int stride, int eob) {
171 struct macroblockd_plane *const pd = &xd->plane[plane];
172 tran_low_t *const dqcoeff = pd->dqcoeff;
173 assert(eob > 0);
174 #if CONFIG_VP9_HIGHBITDEPTH
175 if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
176 uint16_t *const dst16 = CONVERT_TO_SHORTPTR(dst);
177 if (xd->lossless) {
178 vp9_highbd_iwht4x4_add(dqcoeff, dst16, stride, eob, xd->bd);
179 } else {
180 switch (tx_size) {
181 case TX_4X4:
182 vp9_highbd_idct4x4_add(dqcoeff, dst16, stride, eob, xd->bd);
183 break;
184 case TX_8X8:
185 vp9_highbd_idct8x8_add(dqcoeff, dst16, stride, eob, xd->bd);
186 break;
187 case TX_16X16:
188 vp9_highbd_idct16x16_add(dqcoeff, dst16, stride, eob, xd->bd);
189 break;
190 case TX_32X32:
191 vp9_highbd_idct32x32_add(dqcoeff, dst16, stride, eob, xd->bd);
192 break;
193 default: assert(0 && "Invalid transform size");
194 }
195 }
196 } else {
197 if (xd->lossless) {
198 vp9_iwht4x4_add(dqcoeff, dst, stride, eob);
199 } else {
200 switch (tx_size) {
201 case TX_4X4: vp9_idct4x4_add(dqcoeff, dst, stride, eob); break;
202 case TX_8X8: vp9_idct8x8_add(dqcoeff, dst, stride, eob); break;
203 case TX_16X16: vp9_idct16x16_add(dqcoeff, dst, stride, eob); break;
204 case TX_32X32: vp9_idct32x32_add(dqcoeff, dst, stride, eob); break;
205 default: assert(0 && "Invalid transform size"); return;
206 }
207 }
208 }
209 #else
210 if (xd->lossless) {
211 vp9_iwht4x4_add(dqcoeff, dst, stride, eob);
212 } else {
213 switch (tx_size) {
214 case TX_4X4: vp9_idct4x4_add(dqcoeff, dst, stride, eob); break;
215 case TX_8X8: vp9_idct8x8_add(dqcoeff, dst, stride, eob); break;
216 case TX_16X16: vp9_idct16x16_add(dqcoeff, dst, stride, eob); break;
217 case TX_32X32: vp9_idct32x32_add(dqcoeff, dst, stride, eob); break;
218 default: assert(0 && "Invalid transform size"); return;
219 }
220 }
221 #endif // CONFIG_VP9_HIGHBITDEPTH
222
223 if (eob == 1) {
224 dqcoeff[0] = 0;
225 } else {
226 if (tx_size <= TX_16X16 && eob <= 10)
227 memset(dqcoeff, 0, 4 * (4 << tx_size) * sizeof(dqcoeff[0]));
228 else if (tx_size == TX_32X32 && eob <= 34)
229 memset(dqcoeff, 0, 256 * sizeof(dqcoeff[0]));
230 else
231 memset(dqcoeff, 0, (16 << (tx_size << 1)) * sizeof(dqcoeff[0]));
232 }
233 }
234
inverse_transform_block_intra(MACROBLOCKD * xd,int plane,const TX_TYPE tx_type,const TX_SIZE tx_size,uint8_t * dst,int stride,int eob)235 static void inverse_transform_block_intra(MACROBLOCKD *xd, int plane,
236 const TX_TYPE tx_type,
237 const TX_SIZE tx_size, uint8_t *dst,
238 int stride, int eob) {
239 struct macroblockd_plane *const pd = &xd->plane[plane];
240 tran_low_t *const dqcoeff = pd->dqcoeff;
241 assert(eob > 0);
242 #if CONFIG_VP9_HIGHBITDEPTH
243 if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
244 uint16_t *const dst16 = CONVERT_TO_SHORTPTR(dst);
245 if (xd->lossless) {
246 vp9_highbd_iwht4x4_add(dqcoeff, dst16, stride, eob, xd->bd);
247 } else {
248 switch (tx_size) {
249 case TX_4X4:
250 vp9_highbd_iht4x4_add(tx_type, dqcoeff, dst16, stride, eob, xd->bd);
251 break;
252 case TX_8X8:
253 vp9_highbd_iht8x8_add(tx_type, dqcoeff, dst16, stride, eob, xd->bd);
254 break;
255 case TX_16X16:
256 vp9_highbd_iht16x16_add(tx_type, dqcoeff, dst16, stride, eob, xd->bd);
257 break;
258 case TX_32X32:
259 vp9_highbd_idct32x32_add(dqcoeff, dst16, stride, eob, xd->bd);
260 break;
261 default: assert(0 && "Invalid transform size");
262 }
263 }
264 } else {
265 if (xd->lossless) {
266 vp9_iwht4x4_add(dqcoeff, dst, stride, eob);
267 } else {
268 switch (tx_size) {
269 case TX_4X4: vp9_iht4x4_add(tx_type, dqcoeff, dst, stride, eob); break;
270 case TX_8X8: vp9_iht8x8_add(tx_type, dqcoeff, dst, stride, eob); break;
271 case TX_16X16:
272 vp9_iht16x16_add(tx_type, dqcoeff, dst, stride, eob);
273 break;
274 case TX_32X32: vp9_idct32x32_add(dqcoeff, dst, stride, eob); break;
275 default: assert(0 && "Invalid transform size"); return;
276 }
277 }
278 }
279 #else
280 if (xd->lossless) {
281 vp9_iwht4x4_add(dqcoeff, dst, stride, eob);
282 } else {
283 switch (tx_size) {
284 case TX_4X4: vp9_iht4x4_add(tx_type, dqcoeff, dst, stride, eob); break;
285 case TX_8X8: vp9_iht8x8_add(tx_type, dqcoeff, dst, stride, eob); break;
286 case TX_16X16:
287 vp9_iht16x16_add(tx_type, dqcoeff, dst, stride, eob);
288 break;
289 case TX_32X32: vp9_idct32x32_add(dqcoeff, dst, stride, eob); break;
290 default: assert(0 && "Invalid transform size"); return;
291 }
292 }
293 #endif // CONFIG_VP9_HIGHBITDEPTH
294
295 if (eob == 1) {
296 dqcoeff[0] = 0;
297 } else {
298 if (tx_type == DCT_DCT && tx_size <= TX_16X16 && eob <= 10)
299 memset(dqcoeff, 0, 4 * (4 << tx_size) * sizeof(dqcoeff[0]));
300 else if (tx_size == TX_32X32 && eob <= 34)
301 memset(dqcoeff, 0, 256 * sizeof(dqcoeff[0]));
302 else
303 memset(dqcoeff, 0, (16 << (tx_size << 1)) * sizeof(dqcoeff[0]));
304 }
305 }
306
predict_and_reconstruct_intra_block(TileWorkerData * twd,MODE_INFO * const mi,int plane,int row,int col,TX_SIZE tx_size)307 static void predict_and_reconstruct_intra_block(TileWorkerData *twd,
308 MODE_INFO *const mi, int plane,
309 int row, int col,
310 TX_SIZE tx_size) {
311 MACROBLOCKD *const xd = &twd->xd;
312 struct macroblockd_plane *const pd = &xd->plane[plane];
313 PREDICTION_MODE mode = (plane == 0) ? mi->mode : mi->uv_mode;
314 uint8_t *dst;
315 dst = &pd->dst.buf[4 * row * pd->dst.stride + 4 * col];
316
317 if (mi->sb_type < BLOCK_8X8)
318 if (plane == 0) mode = xd->mi[0]->bmi[(row << 1) + col].as_mode;
319
320 vp9_predict_intra_block(xd, pd->n4_wl, tx_size, mode, dst, pd->dst.stride,
321 dst, pd->dst.stride, col, row, plane);
322
323 if (!mi->skip) {
324 const TX_TYPE tx_type =
325 (plane || xd->lossless) ? DCT_DCT : intra_mode_to_tx_type_lookup[mode];
326 const scan_order *sc = (plane || xd->lossless)
327 ? &vp9_default_scan_orders[tx_size]
328 : &vp9_scan_orders[tx_size][tx_type];
329 const int eob = vp9_decode_block_tokens(twd, plane, sc, col, row, tx_size,
330 mi->segment_id);
331 if (eob > 0) {
332 inverse_transform_block_intra(xd, plane, tx_type, tx_size, dst,
333 pd->dst.stride, eob);
334 }
335 }
336 }
337
parse_intra_block_row_mt(TileWorkerData * twd,MODE_INFO * const mi,int plane,int row,int col,TX_SIZE tx_size)338 static void parse_intra_block_row_mt(TileWorkerData *twd, MODE_INFO *const mi,
339 int plane, int row, int col,
340 TX_SIZE tx_size) {
341 MACROBLOCKD *const xd = &twd->xd;
342 PREDICTION_MODE mode = (plane == 0) ? mi->mode : mi->uv_mode;
343
344 if (mi->sb_type < BLOCK_8X8)
345 if (plane == 0) mode = xd->mi[0]->bmi[(row << 1) + col].as_mode;
346
347 if (!mi->skip) {
348 struct macroblockd_plane *const pd = &xd->plane[plane];
349 const TX_TYPE tx_type =
350 (plane || xd->lossless) ? DCT_DCT : intra_mode_to_tx_type_lookup[mode];
351 const scan_order *sc = (plane || xd->lossless)
352 ? &vp9_default_scan_orders[tx_size]
353 : &vp9_scan_orders[tx_size][tx_type];
354 *pd->eob = vp9_decode_block_tokens(twd, plane, sc, col, row, tx_size,
355 mi->segment_id);
356 /* Keep the alignment to 16 */
357 pd->dqcoeff += (16 << (tx_size << 1));
358 pd->eob++;
359 }
360 }
361
predict_and_reconstruct_intra_block_row_mt(TileWorkerData * twd,MODE_INFO * const mi,int plane,int row,int col,TX_SIZE tx_size)362 static void predict_and_reconstruct_intra_block_row_mt(TileWorkerData *twd,
363 MODE_INFO *const mi,
364 int plane, int row,
365 int col,
366 TX_SIZE tx_size) {
367 MACROBLOCKD *const xd = &twd->xd;
368 struct macroblockd_plane *const pd = &xd->plane[plane];
369 PREDICTION_MODE mode = (plane == 0) ? mi->mode : mi->uv_mode;
370 uint8_t *dst = &pd->dst.buf[4 * row * pd->dst.stride + 4 * col];
371
372 if (mi->sb_type < BLOCK_8X8)
373 if (plane == 0) mode = xd->mi[0]->bmi[(row << 1) + col].as_mode;
374
375 vp9_predict_intra_block(xd, pd->n4_wl, tx_size, mode, dst, pd->dst.stride,
376 dst, pd->dst.stride, col, row, plane);
377
378 if (!mi->skip) {
379 const TX_TYPE tx_type =
380 (plane || xd->lossless) ? DCT_DCT : intra_mode_to_tx_type_lookup[mode];
381 if (*pd->eob > 0) {
382 inverse_transform_block_intra(xd, plane, tx_type, tx_size, dst,
383 pd->dst.stride, *pd->eob);
384 }
385 /* Keep the alignment to 16 */
386 pd->dqcoeff += (16 << (tx_size << 1));
387 pd->eob++;
388 }
389 }
390
reconstruct_inter_block(TileWorkerData * twd,MODE_INFO * const mi,int plane,int row,int col,TX_SIZE tx_size,int mi_row,int mi_col)391 static int reconstruct_inter_block(TileWorkerData *twd, MODE_INFO *const mi,
392 int plane, int row, int col, TX_SIZE tx_size,
393 int mi_row, int mi_col) {
394 MACROBLOCKD *const xd = &twd->xd;
395 struct macroblockd_plane *const pd = &xd->plane[plane];
396 const scan_order *sc = &vp9_default_scan_orders[tx_size];
397 const int eob = vp9_decode_block_tokens(twd, plane, sc, col, row, tx_size,
398 mi->segment_id);
399 uint8_t *dst = &pd->dst.buf[4 * row * pd->dst.stride + 4 * col];
400
401 if (eob > 0) {
402 inverse_transform_block_inter(xd, plane, tx_size, dst, pd->dst.stride, eob);
403 }
404 #if CONFIG_MISMATCH_DEBUG
405 {
406 int pixel_c, pixel_r;
407 int blk_w = 1 << (tx_size + TX_UNIT_SIZE_LOG2);
408 int blk_h = 1 << (tx_size + TX_UNIT_SIZE_LOG2);
409 mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, col, row,
410 pd->subsampling_x, pd->subsampling_y);
411 mismatch_check_block_tx(dst, pd->dst.stride, plane, pixel_c, pixel_r, blk_w,
412 blk_h, xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH);
413 }
414 #else
415 (void)mi_row;
416 (void)mi_col;
417 #endif
418 return eob;
419 }
420
parse_inter_block_row_mt(TileWorkerData * twd,MODE_INFO * const mi,int plane,int row,int col,TX_SIZE tx_size)421 static int parse_inter_block_row_mt(TileWorkerData *twd, MODE_INFO *const mi,
422 int plane, int row, int col,
423 TX_SIZE tx_size) {
424 MACROBLOCKD *const xd = &twd->xd;
425 struct macroblockd_plane *const pd = &xd->plane[plane];
426 const scan_order *sc = &vp9_default_scan_orders[tx_size];
427 const int eob = vp9_decode_block_tokens(twd, plane, sc, col, row, tx_size,
428 mi->segment_id);
429
430 *pd->eob = eob;
431 pd->dqcoeff += (16 << (tx_size << 1));
432 pd->eob++;
433
434 return eob;
435 }
436
reconstruct_inter_block_row_mt(TileWorkerData * twd,MODE_INFO * const mi,int plane,int row,int col,TX_SIZE tx_size)437 static int reconstruct_inter_block_row_mt(TileWorkerData *twd,
438 MODE_INFO *const mi, int plane,
439 int row, int col, TX_SIZE tx_size) {
440 MACROBLOCKD *const xd = &twd->xd;
441 struct macroblockd_plane *const pd = &xd->plane[plane];
442 const int eob = *pd->eob;
443
444 (void)mi;
445 if (eob > 0) {
446 inverse_transform_block_inter(
447 xd, plane, tx_size, &pd->dst.buf[4 * row * pd->dst.stride + 4 * col],
448 pd->dst.stride, eob);
449 }
450 pd->dqcoeff += (16 << (tx_size << 1));
451 pd->eob++;
452
453 return eob;
454 }
455
build_mc_border(const uint8_t * src,int src_stride,uint8_t * dst,int dst_stride,int x,int y,int b_w,int b_h,int w,int h)456 static void build_mc_border(const uint8_t *src, int src_stride, uint8_t *dst,
457 int dst_stride, int x, int y, int b_w, int b_h,
458 int w, int h) {
459 // Get a pointer to the start of the real data for this row.
460 const uint8_t *ref_row = src - x - y * src_stride;
461
462 if (y >= h)
463 ref_row += (h - 1) * src_stride;
464 else if (y > 0)
465 ref_row += y * src_stride;
466
467 do {
468 int right = 0, copy;
469 int left = x < 0 ? -x : 0;
470
471 if (left > b_w) left = b_w;
472
473 if (x + b_w > w) right = x + b_w - w;
474
475 if (right > b_w) right = b_w;
476
477 copy = b_w - left - right;
478
479 if (left) memset(dst, ref_row[0], left);
480
481 if (copy) memcpy(dst + left, ref_row + x + left, copy);
482
483 if (right) memset(dst + left + copy, ref_row[w - 1], right);
484
485 dst += dst_stride;
486 ++y;
487
488 if (y > 0 && y < h) ref_row += src_stride;
489 } while (--b_h);
490 }
491
492 #if CONFIG_VP9_HIGHBITDEPTH
high_build_mc_border(const uint8_t * src8,int src_stride,uint16_t * dst,int dst_stride,int x,int y,int b_w,int b_h,int w,int h)493 static void high_build_mc_border(const uint8_t *src8, int src_stride,
494 uint16_t *dst, int dst_stride, int x, int y,
495 int b_w, int b_h, int w, int h) {
496 // Get a pointer to the start of the real data for this row.
497 const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
498 const uint16_t *ref_row = src - x - y * src_stride;
499
500 if (y >= h)
501 ref_row += (h - 1) * src_stride;
502 else if (y > 0)
503 ref_row += y * src_stride;
504
505 do {
506 int right = 0, copy;
507 int left = x < 0 ? -x : 0;
508
509 if (left > b_w) left = b_w;
510
511 if (x + b_w > w) right = x + b_w - w;
512
513 if (right > b_w) right = b_w;
514
515 copy = b_w - left - right;
516
517 if (left) vpx_memset16(dst, ref_row[0], left);
518
519 if (copy) memcpy(dst + left, ref_row + x + left, copy * sizeof(uint16_t));
520
521 if (right) vpx_memset16(dst + left + copy, ref_row[w - 1], right);
522
523 dst += dst_stride;
524 ++y;
525
526 if (y > 0 && y < h) ref_row += src_stride;
527 } while (--b_h);
528 }
529 #endif // CONFIG_VP9_HIGHBITDEPTH
530
531 #if CONFIG_VP9_HIGHBITDEPTH
extend_and_predict(TileWorkerData * twd,const uint8_t * buf_ptr1,int pre_buf_stride,int x0,int y0,int b_w,int b_h,int frame_width,int frame_height,int border_offset,uint8_t * const dst,int dst_buf_stride,int subpel_x,int subpel_y,const InterpKernel * kernel,const struct scale_factors * sf,MACROBLOCKD * xd,int w,int h,int ref,int xs,int ys)532 static void extend_and_predict(TileWorkerData *twd, const uint8_t *buf_ptr1,
533 int pre_buf_stride, int x0, int y0, int b_w,
534 int b_h, int frame_width, int frame_height,
535 int border_offset, uint8_t *const dst,
536 int dst_buf_stride, int subpel_x, int subpel_y,
537 const InterpKernel *kernel,
538 const struct scale_factors *sf, MACROBLOCKD *xd,
539 int w, int h, int ref, int xs, int ys) {
540 uint16_t *mc_buf_high = twd->extend_and_predict_buf;
541 if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
542 high_build_mc_border(buf_ptr1, pre_buf_stride, mc_buf_high, b_w, x0, y0,
543 b_w, b_h, frame_width, frame_height);
544 highbd_inter_predictor(mc_buf_high + border_offset, b_w,
545 CONVERT_TO_SHORTPTR(dst), dst_buf_stride, subpel_x,
546 subpel_y, sf, w, h, ref, kernel, xs, ys, xd->bd);
547 } else {
548 build_mc_border(buf_ptr1, pre_buf_stride, (uint8_t *)mc_buf_high, b_w, x0,
549 y0, b_w, b_h, frame_width, frame_height);
550 inter_predictor(((uint8_t *)mc_buf_high) + border_offset, b_w, dst,
551 dst_buf_stride, subpel_x, subpel_y, sf, w, h, ref, kernel,
552 xs, ys);
553 }
554 }
555 #else
extend_and_predict(TileWorkerData * twd,const uint8_t * buf_ptr1,int pre_buf_stride,int x0,int y0,int b_w,int b_h,int frame_width,int frame_height,int border_offset,uint8_t * const dst,int dst_buf_stride,int subpel_x,int subpel_y,const InterpKernel * kernel,const struct scale_factors * sf,int w,int h,int ref,int xs,int ys)556 static void extend_and_predict(TileWorkerData *twd, const uint8_t *buf_ptr1,
557 int pre_buf_stride, int x0, int y0, int b_w,
558 int b_h, int frame_width, int frame_height,
559 int border_offset, uint8_t *const dst,
560 int dst_buf_stride, int subpel_x, int subpel_y,
561 const InterpKernel *kernel,
562 const struct scale_factors *sf, int w, int h,
563 int ref, int xs, int ys) {
564 uint8_t *mc_buf = (uint8_t *)twd->extend_and_predict_buf;
565 const uint8_t *buf_ptr;
566
567 build_mc_border(buf_ptr1, pre_buf_stride, mc_buf, b_w, x0, y0, b_w, b_h,
568 frame_width, frame_height);
569 buf_ptr = mc_buf + border_offset;
570
571 inter_predictor(buf_ptr, b_w, dst, dst_buf_stride, subpel_x, subpel_y, sf, w,
572 h, ref, kernel, xs, ys);
573 }
574 #endif // CONFIG_VP9_HIGHBITDEPTH
575
dec_build_inter_predictors(TileWorkerData * twd,MACROBLOCKD * xd,int plane,int bw,int bh,int x,int y,int w,int h,int mi_x,int mi_y,const InterpKernel * kernel,const struct scale_factors * sf,struct buf_2d * pre_buf,struct buf_2d * dst_buf,const MV * mv,RefCntBuffer * ref_frame_buf,int is_scaled,int ref)576 static void dec_build_inter_predictors(
577 TileWorkerData *twd, MACROBLOCKD *xd, int plane, int bw, int bh, int x,
578 int y, int w, int h, int mi_x, int mi_y, const InterpKernel *kernel,
579 const struct scale_factors *sf, struct buf_2d *pre_buf,
580 struct buf_2d *dst_buf, const MV *mv, RefCntBuffer *ref_frame_buf,
581 int is_scaled, int ref) {
582 struct macroblockd_plane *const pd = &xd->plane[plane];
583 uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x;
584 MV32 scaled_mv;
585 int xs, ys, x0, y0, x0_16, y0_16, frame_width, frame_height, buf_stride,
586 subpel_x, subpel_y;
587 uint8_t *ref_frame, *buf_ptr;
588
589 // Get reference frame pointer, width and height.
590 if (plane == 0) {
591 frame_width = ref_frame_buf->buf.y_crop_width;
592 frame_height = ref_frame_buf->buf.y_crop_height;
593 ref_frame = ref_frame_buf->buf.y_buffer;
594 } else {
595 frame_width = ref_frame_buf->buf.uv_crop_width;
596 frame_height = ref_frame_buf->buf.uv_crop_height;
597 ref_frame =
598 plane == 1 ? ref_frame_buf->buf.u_buffer : ref_frame_buf->buf.v_buffer;
599 }
600
601 if (is_scaled) {
602 const MV mv_q4 = clamp_mv_to_umv_border_sb(
603 xd, mv, bw, bh, pd->subsampling_x, pd->subsampling_y);
604 // Co-ordinate of containing block to pixel precision.
605 int x_start = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x));
606 int y_start = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y));
607 #if 0 // CONFIG_BETTER_HW_COMPATIBILITY
608 assert(xd->mi[0]->sb_type != BLOCK_4X8 &&
609 xd->mi[0]->sb_type != BLOCK_8X4);
610 assert(mv_q4.row == mv->row * (1 << (1 - pd->subsampling_y)) &&
611 mv_q4.col == mv->col * (1 << (1 - pd->subsampling_x)));
612 #endif
613 // Co-ordinate of the block to 1/16th pixel precision.
614 x0_16 = (x_start + x) << SUBPEL_BITS;
615 y0_16 = (y_start + y) << SUBPEL_BITS;
616
617 // Co-ordinate of current block in reference frame
618 // to 1/16th pixel precision.
619 x0_16 = sf->scale_value_x(x0_16, sf);
620 y0_16 = sf->scale_value_y(y0_16, sf);
621
622 // Map the top left corner of the block into the reference frame.
623 x0 = sf->scale_value_x(x_start + x, sf);
624 y0 = sf->scale_value_y(y_start + y, sf);
625
626 // Scale the MV and incorporate the sub-pixel offset of the block
627 // in the reference frame.
628 scaled_mv = vp9_scale_mv(&mv_q4, mi_x + x, mi_y + y, sf);
629 xs = sf->x_step_q4;
630 ys = sf->y_step_q4;
631 } else {
632 // Co-ordinate of containing block to pixel precision.
633 x0 = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)) + x;
634 y0 = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)) + y;
635
636 // Co-ordinate of the block to 1/16th pixel precision.
637 x0_16 = x0 << SUBPEL_BITS;
638 y0_16 = y0 << SUBPEL_BITS;
639
640 scaled_mv.row = mv->row * (1 << (1 - pd->subsampling_y));
641 scaled_mv.col = mv->col * (1 << (1 - pd->subsampling_x));
642 xs = ys = 16;
643 }
644 subpel_x = scaled_mv.col & SUBPEL_MASK;
645 subpel_y = scaled_mv.row & SUBPEL_MASK;
646
647 // Calculate the top left corner of the best matching block in the
648 // reference frame.
649 x0 += scaled_mv.col >> SUBPEL_BITS;
650 y0 += scaled_mv.row >> SUBPEL_BITS;
651 x0_16 += scaled_mv.col;
652 y0_16 += scaled_mv.row;
653
654 // Get reference block pointer.
655 buf_ptr = ref_frame + y0 * pre_buf->stride + x0;
656 buf_stride = pre_buf->stride;
657
658 // Do border extension if there is motion or the
659 // width/height is not a multiple of 8 pixels.
660 if (is_scaled || scaled_mv.col || scaled_mv.row || (frame_width & 0x7) ||
661 (frame_height & 0x7)) {
662 int y1 = ((y0_16 + (h - 1) * ys) >> SUBPEL_BITS) + 1;
663
664 // Get reference block bottom right horizontal coordinate.
665 int x1 = ((x0_16 + (w - 1) * xs) >> SUBPEL_BITS) + 1;
666 int x_pad = 0, y_pad = 0;
667
668 if (subpel_x || (sf->x_step_q4 != SUBPEL_SHIFTS)) {
669 x0 -= VP9_INTERP_EXTEND - 1;
670 x1 += VP9_INTERP_EXTEND;
671 x_pad = 1;
672 }
673
674 if (subpel_y || (sf->y_step_q4 != SUBPEL_SHIFTS)) {
675 y0 -= VP9_INTERP_EXTEND - 1;
676 y1 += VP9_INTERP_EXTEND;
677 y_pad = 1;
678 }
679
680 // Skip border extension if block is inside the frame.
681 if (x0 < 0 || x0 > frame_width - 1 || x1 < 0 || x1 > frame_width - 1 ||
682 y0 < 0 || y0 > frame_height - 1 || y1 < 0 || y1 > frame_height - 1) {
683 // Extend the border.
684 const uint8_t *const buf_ptr1 = ref_frame + y0 * buf_stride + x0;
685 const int b_w = x1 - x0 + 1;
686 const int b_h = y1 - y0 + 1;
687 const int border_offset = y_pad * 3 * b_w + x_pad * 3;
688
689 extend_and_predict(twd, buf_ptr1, buf_stride, x0, y0, b_w, b_h,
690 frame_width, frame_height, border_offset, dst,
691 dst_buf->stride, subpel_x, subpel_y, kernel, sf,
692 #if CONFIG_VP9_HIGHBITDEPTH
693 xd,
694 #endif
695 w, h, ref, xs, ys);
696 return;
697 }
698 }
699 #if CONFIG_VP9_HIGHBITDEPTH
700 if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
701 highbd_inter_predictor(CONVERT_TO_SHORTPTR(buf_ptr), buf_stride,
702 CONVERT_TO_SHORTPTR(dst), dst_buf->stride, subpel_x,
703 subpel_y, sf, w, h, ref, kernel, xs, ys, xd->bd);
704 } else {
705 inter_predictor(buf_ptr, buf_stride, dst, dst_buf->stride, subpel_x,
706 subpel_y, sf, w, h, ref, kernel, xs, ys);
707 }
708 #else
709 inter_predictor(buf_ptr, buf_stride, dst, dst_buf->stride, subpel_x, subpel_y,
710 sf, w, h, ref, kernel, xs, ys);
711 #endif // CONFIG_VP9_HIGHBITDEPTH
712 }
713
dec_build_inter_predictors_sb(TileWorkerData * twd,VP9Decoder * const pbi,MACROBLOCKD * xd,int mi_row,int mi_col)714 static void dec_build_inter_predictors_sb(TileWorkerData *twd,
715 VP9Decoder *const pbi,
716 MACROBLOCKD *xd, int mi_row,
717 int mi_col) {
718 int plane;
719 const int mi_x = mi_col * MI_SIZE;
720 const int mi_y = mi_row * MI_SIZE;
721 const MODE_INFO *mi = xd->mi[0];
722 const InterpKernel *kernel = vp9_filter_kernels[mi->interp_filter];
723 const BLOCK_SIZE sb_type = mi->sb_type;
724 const int is_compound = has_second_ref(mi);
725 int ref;
726 int is_scaled;
727
728 for (ref = 0; ref < 1 + is_compound; ++ref) {
729 const MV_REFERENCE_FRAME frame = mi->ref_frame[ref];
730 RefBuffer *ref_buf = &pbi->common.frame_refs[frame - LAST_FRAME];
731 const struct scale_factors *const sf = &ref_buf->sf;
732 const int idx = ref_buf->idx;
733 BufferPool *const pool = pbi->common.buffer_pool;
734 RefCntBuffer *const ref_frame_buf = &pool->frame_bufs[idx];
735
736 if (!vp9_is_valid_scale(sf))
737 vpx_internal_error(xd->error_info, VPX_CODEC_UNSUP_BITSTREAM,
738 "Reference frame has invalid dimensions");
739
740 is_scaled = vp9_is_scaled(sf);
741 vp9_setup_pre_planes(xd, ref, ref_buf->buf, mi_row, mi_col,
742 is_scaled ? sf : NULL);
743 xd->block_refs[ref] = ref_buf;
744
745 if (sb_type < BLOCK_8X8) {
746 for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
747 struct macroblockd_plane *const pd = &xd->plane[plane];
748 struct buf_2d *const dst_buf = &pd->dst;
749 const int num_4x4_w = pd->n4_w;
750 const int num_4x4_h = pd->n4_h;
751 const int n4w_x4 = 4 * num_4x4_w;
752 const int n4h_x4 = 4 * num_4x4_h;
753 struct buf_2d *const pre_buf = &pd->pre[ref];
754 int i = 0, x, y;
755 for (y = 0; y < num_4x4_h; ++y) {
756 for (x = 0; x < num_4x4_w; ++x) {
757 const MV mv = average_split_mvs(pd, mi, ref, i++);
758 dec_build_inter_predictors(twd, xd, plane, n4w_x4, n4h_x4, 4 * x,
759 4 * y, 4, 4, mi_x, mi_y, kernel, sf,
760 pre_buf, dst_buf, &mv, ref_frame_buf,
761 is_scaled, ref);
762 }
763 }
764 }
765 } else {
766 const MV mv = mi->mv[ref].as_mv;
767 for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
768 struct macroblockd_plane *const pd = &xd->plane[plane];
769 struct buf_2d *const dst_buf = &pd->dst;
770 const int num_4x4_w = pd->n4_w;
771 const int num_4x4_h = pd->n4_h;
772 const int n4w_x4 = 4 * num_4x4_w;
773 const int n4h_x4 = 4 * num_4x4_h;
774 struct buf_2d *const pre_buf = &pd->pre[ref];
775 dec_build_inter_predictors(twd, xd, plane, n4w_x4, n4h_x4, 0, 0, n4w_x4,
776 n4h_x4, mi_x, mi_y, kernel, sf, pre_buf,
777 dst_buf, &mv, ref_frame_buf, is_scaled, ref);
778 }
779 }
780 }
781 }
782
dec_reset_skip_context(MACROBLOCKD * xd)783 static INLINE void dec_reset_skip_context(MACROBLOCKD *xd) {
784 int i;
785 for (i = 0; i < MAX_MB_PLANE; i++) {
786 struct macroblockd_plane *const pd = &xd->plane[i];
787 memset(pd->above_context, 0, sizeof(ENTROPY_CONTEXT) * pd->n4_w);
788 memset(pd->left_context, 0, sizeof(ENTROPY_CONTEXT) * pd->n4_h);
789 }
790 }
791
set_plane_n4(MACROBLOCKD * const xd,int bw,int bh,int bwl,int bhl)792 static void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh, int bwl,
793 int bhl) {
794 int i;
795 for (i = 0; i < MAX_MB_PLANE; i++) {
796 xd->plane[i].n4_w = (bw << 1) >> xd->plane[i].subsampling_x;
797 xd->plane[i].n4_h = (bh << 1) >> xd->plane[i].subsampling_y;
798 xd->plane[i].n4_wl = bwl - xd->plane[i].subsampling_x;
799 xd->plane[i].n4_hl = bhl - xd->plane[i].subsampling_y;
800 }
801 }
802
set_offsets_recon(VP9_COMMON * const cm,MACROBLOCKD * const xd,int mi_row,int mi_col,int bw,int bh,int bwl,int bhl)803 static MODE_INFO *set_offsets_recon(VP9_COMMON *const cm, MACROBLOCKD *const xd,
804 int mi_row, int mi_col, int bw, int bh,
805 int bwl, int bhl) {
806 const int offset = mi_row * cm->mi_stride + mi_col;
807 const TileInfo *const tile = &xd->tile;
808 xd->mi = cm->mi_grid_visible + offset;
809
810 set_plane_n4(xd, bw, bh, bwl, bhl);
811
812 set_skip_context(xd, mi_row, mi_col);
813
814 // Distance of Mb to the various image edges. These are specified to 8th pel
815 // as they are always compared to values that are in 1/8th pel units
816 set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols);
817
818 vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
819 return xd->mi[0];
820 }
821
set_offsets(VP9_COMMON * const cm,MACROBLOCKD * const xd,BLOCK_SIZE bsize,int mi_row,int mi_col,int bw,int bh,int x_mis,int y_mis,int bwl,int bhl)822 static MODE_INFO *set_offsets(VP9_COMMON *const cm, MACROBLOCKD *const xd,
823 BLOCK_SIZE bsize, int mi_row, int mi_col, int bw,
824 int bh, int x_mis, int y_mis, int bwl, int bhl) {
825 const int offset = mi_row * cm->mi_stride + mi_col;
826 int x, y;
827 const TileInfo *const tile = &xd->tile;
828
829 xd->mi = cm->mi_grid_visible + offset;
830 xd->mi[0] = &cm->mi[offset];
831 // TODO(slavarnway): Generate sb_type based on bwl and bhl, instead of
832 // passing bsize from decode_partition().
833 xd->mi[0]->sb_type = bsize;
834 for (y = 0; y < y_mis; ++y)
835 for (x = !y; x < x_mis; ++x) {
836 xd->mi[y * cm->mi_stride + x] = xd->mi[0];
837 }
838
839 set_plane_n4(xd, bw, bh, bwl, bhl);
840
841 set_skip_context(xd, mi_row, mi_col);
842
843 // Distance of Mb to the various image edges. These are specified to 8th pel
844 // as they are always compared to values that are in 1/8th pel units
845 set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols);
846
847 vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
848 return xd->mi[0];
849 }
850
predict_recon_inter(MACROBLOCKD * xd,MODE_INFO * mi,TileWorkerData * twd,predict_recon_func func)851 static INLINE int predict_recon_inter(MACROBLOCKD *xd, MODE_INFO *mi,
852 TileWorkerData *twd,
853 predict_recon_func func) {
854 int eobtotal = 0;
855 int plane;
856 for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
857 const struct macroblockd_plane *const pd = &xd->plane[plane];
858 const TX_SIZE tx_size = plane ? get_uv_tx_size(mi, pd) : mi->tx_size;
859 const int num_4x4_w = pd->n4_w;
860 const int num_4x4_h = pd->n4_h;
861 const int step = (1 << tx_size);
862 int row, col;
863 const int max_blocks_wide =
864 num_4x4_w + (xd->mb_to_right_edge >= 0
865 ? 0
866 : xd->mb_to_right_edge >> (5 + pd->subsampling_x));
867 const int max_blocks_high =
868 num_4x4_h + (xd->mb_to_bottom_edge >= 0
869 ? 0
870 : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y));
871
872 xd->max_blocks_wide = xd->mb_to_right_edge >= 0 ? 0 : max_blocks_wide;
873 xd->max_blocks_high = xd->mb_to_bottom_edge >= 0 ? 0 : max_blocks_high;
874
875 for (row = 0; row < max_blocks_high; row += step)
876 for (col = 0; col < max_blocks_wide; col += step)
877 eobtotal += func(twd, mi, plane, row, col, tx_size);
878 }
879 return eobtotal;
880 }
881
predict_recon_intra(MACROBLOCKD * xd,MODE_INFO * mi,TileWorkerData * twd,intra_recon_func func)882 static INLINE void predict_recon_intra(MACROBLOCKD *xd, MODE_INFO *mi,
883 TileWorkerData *twd,
884 intra_recon_func func) {
885 int plane;
886 for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
887 const struct macroblockd_plane *const pd = &xd->plane[plane];
888 const TX_SIZE tx_size = plane ? get_uv_tx_size(mi, pd) : mi->tx_size;
889 const int num_4x4_w = pd->n4_w;
890 const int num_4x4_h = pd->n4_h;
891 const int step = (1 << tx_size);
892 int row, col;
893 const int max_blocks_wide =
894 num_4x4_w + (xd->mb_to_right_edge >= 0
895 ? 0
896 : xd->mb_to_right_edge >> (5 + pd->subsampling_x));
897 const int max_blocks_high =
898 num_4x4_h + (xd->mb_to_bottom_edge >= 0
899 ? 0
900 : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y));
901
902 xd->max_blocks_wide = xd->mb_to_right_edge >= 0 ? 0 : max_blocks_wide;
903 xd->max_blocks_high = xd->mb_to_bottom_edge >= 0 ? 0 : max_blocks_high;
904
905 for (row = 0; row < max_blocks_high; row += step)
906 for (col = 0; col < max_blocks_wide; col += step)
907 func(twd, mi, plane, row, col, tx_size);
908 }
909 }
910
decode_block(TileWorkerData * twd,VP9Decoder * const pbi,int mi_row,int mi_col,BLOCK_SIZE bsize,int bwl,int bhl)911 static void decode_block(TileWorkerData *twd, VP9Decoder *const pbi, int mi_row,
912 int mi_col, BLOCK_SIZE bsize, int bwl, int bhl) {
913 VP9_COMMON *const cm = &pbi->common;
914 const int less8x8 = bsize < BLOCK_8X8;
915 const int bw = 1 << (bwl - 1);
916 const int bh = 1 << (bhl - 1);
917 const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col);
918 const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row);
919 vpx_reader *r = &twd->bit_reader;
920 MACROBLOCKD *const xd = &twd->xd;
921
922 MODE_INFO *mi = set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis,
923 y_mis, bwl, bhl);
924
925 if (bsize >= BLOCK_8X8 && (cm->subsampling_x || cm->subsampling_y)) {
926 const BLOCK_SIZE uv_subsize =
927 ss_size_lookup[bsize][cm->subsampling_x][cm->subsampling_y];
928 if (uv_subsize == BLOCK_INVALID)
929 vpx_internal_error(xd->error_info, VPX_CODEC_CORRUPT_FRAME,
930 "Invalid block size.");
931 }
932
933 vp9_read_mode_info(twd, pbi, mi_row, mi_col, x_mis, y_mis);
934
935 if (mi->skip) {
936 dec_reset_skip_context(xd);
937 }
938
939 if (!is_inter_block(mi)) {
940 int plane;
941 for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
942 const struct macroblockd_plane *const pd = &xd->plane[plane];
943 const TX_SIZE tx_size = plane ? get_uv_tx_size(mi, pd) : mi->tx_size;
944 const int num_4x4_w = pd->n4_w;
945 const int num_4x4_h = pd->n4_h;
946 const int step = (1 << tx_size);
947 int row, col;
948 const int max_blocks_wide =
949 num_4x4_w + (xd->mb_to_right_edge >= 0
950 ? 0
951 : xd->mb_to_right_edge >> (5 + pd->subsampling_x));
952 const int max_blocks_high =
953 num_4x4_h + (xd->mb_to_bottom_edge >= 0
954 ? 0
955 : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y));
956
957 xd->max_blocks_wide = xd->mb_to_right_edge >= 0 ? 0 : max_blocks_wide;
958 xd->max_blocks_high = xd->mb_to_bottom_edge >= 0 ? 0 : max_blocks_high;
959
960 for (row = 0; row < max_blocks_high; row += step)
961 for (col = 0; col < max_blocks_wide; col += step)
962 predict_and_reconstruct_intra_block(twd, mi, plane, row, col,
963 tx_size);
964 }
965 } else {
966 // Prediction
967 dec_build_inter_predictors_sb(twd, pbi, xd, mi_row, mi_col);
968 #if CONFIG_MISMATCH_DEBUG
969 {
970 int plane;
971 for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
972 const struct macroblockd_plane *pd = &xd->plane[plane];
973 int pixel_c, pixel_r;
974 const BLOCK_SIZE plane_bsize =
975 get_plane_block_size(VPXMAX(bsize, BLOCK_8X8), &xd->plane[plane]);
976 const int bw = get_block_width(plane_bsize);
977 const int bh = get_block_height(plane_bsize);
978 mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, 0, 0,
979 pd->subsampling_x, pd->subsampling_y);
980 mismatch_check_block_pre(pd->dst.buf, pd->dst.stride, plane, pixel_c,
981 pixel_r, bw, bh,
982 xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH);
983 }
984 }
985 #endif
986
987 // Reconstruction
988 if (!mi->skip) {
989 int eobtotal = 0;
990 int plane;
991
992 for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
993 const struct macroblockd_plane *const pd = &xd->plane[plane];
994 const TX_SIZE tx_size = plane ? get_uv_tx_size(mi, pd) : mi->tx_size;
995 const int num_4x4_w = pd->n4_w;
996 const int num_4x4_h = pd->n4_h;
997 const int step = (1 << tx_size);
998 int row, col;
999 const int max_blocks_wide =
1000 num_4x4_w + (xd->mb_to_right_edge >= 0
1001 ? 0
1002 : xd->mb_to_right_edge >> (5 + pd->subsampling_x));
1003 const int max_blocks_high =
1004 num_4x4_h +
1005 (xd->mb_to_bottom_edge >= 0
1006 ? 0
1007 : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y));
1008
1009 xd->max_blocks_wide = xd->mb_to_right_edge >= 0 ? 0 : max_blocks_wide;
1010 xd->max_blocks_high = xd->mb_to_bottom_edge >= 0 ? 0 : max_blocks_high;
1011
1012 for (row = 0; row < max_blocks_high; row += step)
1013 for (col = 0; col < max_blocks_wide; col += step)
1014 eobtotal += reconstruct_inter_block(twd, mi, plane, row, col,
1015 tx_size, mi_row, mi_col);
1016 }
1017
1018 if (!less8x8 && eobtotal == 0) mi->skip = 1; // skip loopfilter
1019 }
1020 }
1021
1022 xd->corrupted |= vpx_reader_has_error(r);
1023
1024 if (cm->lf.filter_level) {
1025 vp9_build_mask(cm, mi, mi_row, mi_col, bw, bh);
1026 }
1027 }
1028
recon_block(TileWorkerData * twd,VP9Decoder * const pbi,int mi_row,int mi_col,BLOCK_SIZE bsize,int bwl,int bhl)1029 static void recon_block(TileWorkerData *twd, VP9Decoder *const pbi, int mi_row,
1030 int mi_col, BLOCK_SIZE bsize, int bwl, int bhl) {
1031 VP9_COMMON *const cm = &pbi->common;
1032 const int bw = 1 << (bwl - 1);
1033 const int bh = 1 << (bhl - 1);
1034 MACROBLOCKD *const xd = &twd->xd;
1035
1036 MODE_INFO *mi = set_offsets_recon(cm, xd, mi_row, mi_col, bw, bh, bwl, bhl);
1037
1038 if (bsize >= BLOCK_8X8 && (cm->subsampling_x || cm->subsampling_y)) {
1039 const BLOCK_SIZE uv_subsize =
1040 ss_size_lookup[bsize][cm->subsampling_x][cm->subsampling_y];
1041 if (uv_subsize == BLOCK_INVALID)
1042 vpx_internal_error(xd->error_info, VPX_CODEC_CORRUPT_FRAME,
1043 "Invalid block size.");
1044 }
1045
1046 if (!is_inter_block(mi)) {
1047 predict_recon_intra(xd, mi, twd,
1048 predict_and_reconstruct_intra_block_row_mt);
1049 } else {
1050 // Prediction
1051 dec_build_inter_predictors_sb(twd, pbi, xd, mi_row, mi_col);
1052
1053 // Reconstruction
1054 if (!mi->skip) {
1055 predict_recon_inter(xd, mi, twd, reconstruct_inter_block_row_mt);
1056 }
1057 }
1058
1059 vp9_build_mask(cm, mi, mi_row, mi_col, bw, bh);
1060 }
1061
parse_block(TileWorkerData * twd,VP9Decoder * const pbi,int mi_row,int mi_col,BLOCK_SIZE bsize,int bwl,int bhl)1062 static void parse_block(TileWorkerData *twd, VP9Decoder *const pbi, int mi_row,
1063 int mi_col, BLOCK_SIZE bsize, int bwl, int bhl) {
1064 VP9_COMMON *const cm = &pbi->common;
1065 const int bw = 1 << (bwl - 1);
1066 const int bh = 1 << (bhl - 1);
1067 const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col);
1068 const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row);
1069 vpx_reader *r = &twd->bit_reader;
1070 MACROBLOCKD *const xd = &twd->xd;
1071
1072 MODE_INFO *mi = set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis,
1073 y_mis, bwl, bhl);
1074
1075 if (bsize >= BLOCK_8X8 && (cm->subsampling_x || cm->subsampling_y)) {
1076 const BLOCK_SIZE uv_subsize =
1077 ss_size_lookup[bsize][cm->subsampling_x][cm->subsampling_y];
1078 if (uv_subsize == BLOCK_INVALID)
1079 vpx_internal_error(xd->error_info, VPX_CODEC_CORRUPT_FRAME,
1080 "Invalid block size.");
1081 }
1082
1083 vp9_read_mode_info(twd, pbi, mi_row, mi_col, x_mis, y_mis);
1084
1085 if (mi->skip) {
1086 dec_reset_skip_context(xd);
1087 }
1088
1089 if (!is_inter_block(mi)) {
1090 predict_recon_intra(xd, mi, twd, parse_intra_block_row_mt);
1091 } else {
1092 if (!mi->skip) {
1093 tran_low_t *dqcoeff[MAX_MB_PLANE];
1094 int *eob[MAX_MB_PLANE];
1095 int plane;
1096 int eobtotal;
1097 // Based on eobtotal and bsize, this may be mi->skip may be set to true
1098 // In that case dqcoeff and eob need to be backed up and restored as
1099 // recon_block will not increment these pointers for skip cases
1100 for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
1101 const struct macroblockd_plane *const pd = &xd->plane[plane];
1102 dqcoeff[plane] = pd->dqcoeff;
1103 eob[plane] = pd->eob;
1104 }
1105 eobtotal = predict_recon_inter(xd, mi, twd, parse_inter_block_row_mt);
1106
1107 if (bsize >= BLOCK_8X8 && eobtotal == 0) {
1108 mi->skip = 1; // skip loopfilter
1109 for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
1110 struct macroblockd_plane *pd = &xd->plane[plane];
1111 pd->dqcoeff = dqcoeff[plane];
1112 pd->eob = eob[plane];
1113 }
1114 }
1115 }
1116 }
1117
1118 xd->corrupted |= vpx_reader_has_error(r);
1119 }
1120
dec_partition_plane_context(TileWorkerData * twd,int mi_row,int mi_col,int bsl)1121 static INLINE int dec_partition_plane_context(TileWorkerData *twd, int mi_row,
1122 int mi_col, int bsl) {
1123 const PARTITION_CONTEXT *above_ctx = twd->xd.above_seg_context + mi_col;
1124 const PARTITION_CONTEXT *left_ctx =
1125 twd->xd.left_seg_context + (mi_row & MI_MASK);
1126 int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1;
1127
1128 // assert(bsl >= 0);
1129
1130 return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
1131 }
1132
dec_update_partition_context(TileWorkerData * twd,int mi_row,int mi_col,BLOCK_SIZE subsize,int bw)1133 static INLINE void dec_update_partition_context(TileWorkerData *twd, int mi_row,
1134 int mi_col, BLOCK_SIZE subsize,
1135 int bw) {
1136 PARTITION_CONTEXT *const above_ctx = twd->xd.above_seg_context + mi_col;
1137 PARTITION_CONTEXT *const left_ctx =
1138 twd->xd.left_seg_context + (mi_row & MI_MASK);
1139
1140 // update the partition context at the end notes. set partition bits
1141 // of block sizes larger than the current one to be one, and partition
1142 // bits of smaller block sizes to be zero.
1143 memset(above_ctx, partition_context_lookup[subsize].above, bw);
1144 memset(left_ctx, partition_context_lookup[subsize].left, bw);
1145 }
1146
read_partition(TileWorkerData * twd,int mi_row,int mi_col,int has_rows,int has_cols,int bsl)1147 static PARTITION_TYPE read_partition(TileWorkerData *twd, int mi_row,
1148 int mi_col, int has_rows, int has_cols,
1149 int bsl) {
1150 const int ctx = dec_partition_plane_context(twd, mi_row, mi_col, bsl);
1151 const vpx_prob *const probs = twd->xd.partition_probs[ctx];
1152 FRAME_COUNTS *counts = twd->xd.counts;
1153 PARTITION_TYPE p;
1154 vpx_reader *r = &twd->bit_reader;
1155
1156 if (has_rows && has_cols)
1157 p = (PARTITION_TYPE)vpx_read_tree(r, vp9_partition_tree, probs);
1158 else if (!has_rows && has_cols)
1159 p = vpx_read(r, probs[1]) ? PARTITION_SPLIT : PARTITION_HORZ;
1160 else if (has_rows && !has_cols)
1161 p = vpx_read(r, probs[2]) ? PARTITION_SPLIT : PARTITION_VERT;
1162 else
1163 p = PARTITION_SPLIT;
1164
1165 if (counts) ++counts->partition[ctx][p];
1166
1167 return p;
1168 }
1169
1170 // TODO(slavarnway): eliminate bsize and subsize in future commits
decode_partition(TileWorkerData * twd,VP9Decoder * const pbi,int mi_row,int mi_col,BLOCK_SIZE bsize,int n4x4_l2)1171 static void decode_partition(TileWorkerData *twd, VP9Decoder *const pbi,
1172 int mi_row, int mi_col, BLOCK_SIZE bsize,
1173 int n4x4_l2) {
1174 VP9_COMMON *const cm = &pbi->common;
1175 const int n8x8_l2 = n4x4_l2 - 1;
1176 const int num_8x8_wh = 1 << n8x8_l2;
1177 const int hbs = num_8x8_wh >> 1;
1178 PARTITION_TYPE partition;
1179 BLOCK_SIZE subsize;
1180 const int has_rows = (mi_row + hbs) < cm->mi_rows;
1181 const int has_cols = (mi_col + hbs) < cm->mi_cols;
1182 MACROBLOCKD *const xd = &twd->xd;
1183
1184 if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
1185
1186 partition = read_partition(twd, mi_row, mi_col, has_rows, has_cols, n8x8_l2);
1187 subsize = subsize_lookup[partition][bsize]; // get_subsize(bsize, partition);
1188 if (!hbs) {
1189 // calculate bmode block dimensions (log 2)
1190 xd->bmode_blocks_wl = 1 >> !!(partition & PARTITION_VERT);
1191 xd->bmode_blocks_hl = 1 >> !!(partition & PARTITION_HORZ);
1192 decode_block(twd, pbi, mi_row, mi_col, subsize, 1, 1);
1193 } else {
1194 switch (partition) {
1195 case PARTITION_NONE:
1196 decode_block(twd, pbi, mi_row, mi_col, subsize, n4x4_l2, n4x4_l2);
1197 break;
1198 case PARTITION_HORZ:
1199 decode_block(twd, pbi, mi_row, mi_col, subsize, n4x4_l2, n8x8_l2);
1200 if (has_rows)
1201 decode_block(twd, pbi, mi_row + hbs, mi_col, subsize, n4x4_l2,
1202 n8x8_l2);
1203 break;
1204 case PARTITION_VERT:
1205 decode_block(twd, pbi, mi_row, mi_col, subsize, n8x8_l2, n4x4_l2);
1206 if (has_cols)
1207 decode_block(twd, pbi, mi_row, mi_col + hbs, subsize, n8x8_l2,
1208 n4x4_l2);
1209 break;
1210 case PARTITION_SPLIT:
1211 decode_partition(twd, pbi, mi_row, mi_col, subsize, n8x8_l2);
1212 decode_partition(twd, pbi, mi_row, mi_col + hbs, subsize, n8x8_l2);
1213 decode_partition(twd, pbi, mi_row + hbs, mi_col, subsize, n8x8_l2);
1214 decode_partition(twd, pbi, mi_row + hbs, mi_col + hbs, subsize,
1215 n8x8_l2);
1216 break;
1217 default: assert(0 && "Invalid partition type");
1218 }
1219 }
1220
1221 // update partition context
1222 if (bsize >= BLOCK_8X8 &&
1223 (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
1224 dec_update_partition_context(twd, mi_row, mi_col, subsize, num_8x8_wh);
1225 }
1226
process_partition(TileWorkerData * twd,VP9Decoder * const pbi,int mi_row,int mi_col,BLOCK_SIZE bsize,int n4x4_l2,int parse_recon_flag,process_block_fn_t process_block)1227 static void process_partition(TileWorkerData *twd, VP9Decoder *const pbi,
1228 int mi_row, int mi_col, BLOCK_SIZE bsize,
1229 int n4x4_l2, int parse_recon_flag,
1230 process_block_fn_t process_block) {
1231 VP9_COMMON *const cm = &pbi->common;
1232 const int n8x8_l2 = n4x4_l2 - 1;
1233 const int num_8x8_wh = 1 << n8x8_l2;
1234 const int hbs = num_8x8_wh >> 1;
1235 PARTITION_TYPE partition;
1236 BLOCK_SIZE subsize;
1237 const int has_rows = (mi_row + hbs) < cm->mi_rows;
1238 const int has_cols = (mi_col + hbs) < cm->mi_cols;
1239 MACROBLOCKD *const xd = &twd->xd;
1240
1241 if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
1242
1243 if (parse_recon_flag & PARSE) {
1244 *xd->partition =
1245 read_partition(twd, mi_row, mi_col, has_rows, has_cols, n8x8_l2);
1246 }
1247
1248 partition = *xd->partition;
1249 xd->partition++;
1250
1251 subsize = get_subsize(bsize, partition);
1252 if (!hbs) {
1253 // calculate bmode block dimensions (log 2)
1254 xd->bmode_blocks_wl = 1 >> !!(partition & PARTITION_VERT);
1255 xd->bmode_blocks_hl = 1 >> !!(partition & PARTITION_HORZ);
1256 process_block(twd, pbi, mi_row, mi_col, subsize, 1, 1);
1257 } else {
1258 switch (partition) {
1259 case PARTITION_NONE:
1260 process_block(twd, pbi, mi_row, mi_col, subsize, n4x4_l2, n4x4_l2);
1261 break;
1262 case PARTITION_HORZ:
1263 process_block(twd, pbi, mi_row, mi_col, subsize, n4x4_l2, n8x8_l2);
1264 if (has_rows)
1265 process_block(twd, pbi, mi_row + hbs, mi_col, subsize, n4x4_l2,
1266 n8x8_l2);
1267 break;
1268 case PARTITION_VERT:
1269 process_block(twd, pbi, mi_row, mi_col, subsize, n8x8_l2, n4x4_l2);
1270 if (has_cols)
1271 process_block(twd, pbi, mi_row, mi_col + hbs, subsize, n8x8_l2,
1272 n4x4_l2);
1273 break;
1274 case PARTITION_SPLIT:
1275 process_partition(twd, pbi, mi_row, mi_col, subsize, n8x8_l2,
1276 parse_recon_flag, process_block);
1277 process_partition(twd, pbi, mi_row, mi_col + hbs, subsize, n8x8_l2,
1278 parse_recon_flag, process_block);
1279 process_partition(twd, pbi, mi_row + hbs, mi_col, subsize, n8x8_l2,
1280 parse_recon_flag, process_block);
1281 process_partition(twd, pbi, mi_row + hbs, mi_col + hbs, subsize,
1282 n8x8_l2, parse_recon_flag, process_block);
1283 break;
1284 default: assert(0 && "Invalid partition type");
1285 }
1286 }
1287
1288 if (parse_recon_flag & PARSE) {
1289 // update partition context
1290 if ((bsize == BLOCK_8X8 || partition != PARTITION_SPLIT) &&
1291 bsize >= BLOCK_8X8)
1292 dec_update_partition_context(twd, mi_row, mi_col, subsize, num_8x8_wh);
1293 }
1294 }
1295
setup_token_decoder(const uint8_t * data,const uint8_t * data_end,size_t read_size,struct vpx_internal_error_info * error_info,vpx_reader * r,vpx_decrypt_cb decrypt_cb,void * decrypt_state)1296 static void setup_token_decoder(const uint8_t *data, const uint8_t *data_end,
1297 size_t read_size,
1298 struct vpx_internal_error_info *error_info,
1299 vpx_reader *r, vpx_decrypt_cb decrypt_cb,
1300 void *decrypt_state) {
1301 // Validate the calculated partition length. If the buffer
1302 // described by the partition can't be fully read, then restrict
1303 // it to the portion that can be (for EC mode) or throw an error.
1304 if (!read_is_valid(data, read_size, data_end))
1305 vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME,
1306 "Truncated packet or corrupt tile length");
1307
1308 if (vpx_reader_init(r, data, read_size, decrypt_cb, decrypt_state))
1309 vpx_internal_error(error_info, VPX_CODEC_MEM_ERROR,
1310 "Failed to allocate bool decoder %d", 1);
1311 }
1312
read_coef_probs_common(vp9_coeff_probs_model * coef_probs,vpx_reader * r)1313 static void read_coef_probs_common(vp9_coeff_probs_model *coef_probs,
1314 vpx_reader *r) {
1315 int i, j, k, l, m;
1316
1317 if (vpx_read_bit(r))
1318 for (i = 0; i < PLANE_TYPES; ++i)
1319 for (j = 0; j < REF_TYPES; ++j)
1320 for (k = 0; k < COEF_BANDS; ++k)
1321 for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l)
1322 for (m = 0; m < UNCONSTRAINED_NODES; ++m)
1323 vp9_diff_update_prob(r, &coef_probs[i][j][k][l][m]);
1324 }
1325
read_coef_probs(FRAME_CONTEXT * fc,TX_MODE tx_mode,vpx_reader * r)1326 static void read_coef_probs(FRAME_CONTEXT *fc, TX_MODE tx_mode, vpx_reader *r) {
1327 const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
1328 TX_SIZE tx_size;
1329 for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size)
1330 read_coef_probs_common(fc->coef_probs[tx_size], r);
1331 }
1332
setup_segmentation(struct segmentation * seg,struct vpx_read_bit_buffer * rb)1333 static void setup_segmentation(struct segmentation *seg,
1334 struct vpx_read_bit_buffer *rb) {
1335 int i, j;
1336
1337 seg->update_map = 0;
1338 seg->update_data = 0;
1339
1340 seg->enabled = vpx_rb_read_bit(rb);
1341 if (!seg->enabled) return;
1342
1343 // Segmentation map update
1344 seg->update_map = vpx_rb_read_bit(rb);
1345 if (seg->update_map) {
1346 for (i = 0; i < SEG_TREE_PROBS; i++)
1347 seg->tree_probs[i] =
1348 vpx_rb_read_bit(rb) ? vpx_rb_read_literal(rb, 8) : MAX_PROB;
1349
1350 seg->temporal_update = vpx_rb_read_bit(rb);
1351 if (seg->temporal_update) {
1352 for (i = 0; i < PREDICTION_PROBS; i++)
1353 seg->pred_probs[i] =
1354 vpx_rb_read_bit(rb) ? vpx_rb_read_literal(rb, 8) : MAX_PROB;
1355 } else {
1356 for (i = 0; i < PREDICTION_PROBS; i++) seg->pred_probs[i] = MAX_PROB;
1357 }
1358 }
1359
1360 // Segmentation data update
1361 seg->update_data = vpx_rb_read_bit(rb);
1362 if (seg->update_data) {
1363 seg->abs_delta = vpx_rb_read_bit(rb);
1364
1365 vp9_clearall_segfeatures(seg);
1366
1367 for (i = 0; i < MAX_SEGMENTS; i++) {
1368 for (j = 0; j < SEG_LVL_MAX; j++) {
1369 int data = 0;
1370 const int feature_enabled = vpx_rb_read_bit(rb);
1371 if (feature_enabled) {
1372 vp9_enable_segfeature(seg, i, j);
1373 data = decode_unsigned_max(rb, vp9_seg_feature_data_max(j));
1374 if (vp9_is_segfeature_signed(j))
1375 data = vpx_rb_read_bit(rb) ? -data : data;
1376 }
1377 vp9_set_segdata(seg, i, j, data);
1378 }
1379 }
1380 }
1381 }
1382
setup_loopfilter(struct loopfilter * lf,struct vpx_read_bit_buffer * rb)1383 static void setup_loopfilter(struct loopfilter *lf,
1384 struct vpx_read_bit_buffer *rb) {
1385 lf->filter_level = vpx_rb_read_literal(rb, 6);
1386 lf->sharpness_level = vpx_rb_read_literal(rb, 3);
1387
1388 // Read in loop filter deltas applied at the MB level based on mode or ref
1389 // frame.
1390 lf->mode_ref_delta_update = 0;
1391
1392 lf->mode_ref_delta_enabled = vpx_rb_read_bit(rb);
1393 if (lf->mode_ref_delta_enabled) {
1394 lf->mode_ref_delta_update = vpx_rb_read_bit(rb);
1395 if (lf->mode_ref_delta_update) {
1396 int i;
1397
1398 for (i = 0; i < MAX_REF_LF_DELTAS; i++)
1399 if (vpx_rb_read_bit(rb))
1400 lf->ref_deltas[i] = vpx_rb_read_signed_literal(rb, 6);
1401
1402 for (i = 0; i < MAX_MODE_LF_DELTAS; i++)
1403 if (vpx_rb_read_bit(rb))
1404 lf->mode_deltas[i] = vpx_rb_read_signed_literal(rb, 6);
1405 }
1406 }
1407 }
1408
read_delta_q(struct vpx_read_bit_buffer * rb)1409 static INLINE int read_delta_q(struct vpx_read_bit_buffer *rb) {
1410 return vpx_rb_read_bit(rb) ? vpx_rb_read_signed_literal(rb, 4) : 0;
1411 }
1412
setup_quantization(VP9_COMMON * const cm,MACROBLOCKD * const xd,struct vpx_read_bit_buffer * rb)1413 static void setup_quantization(VP9_COMMON *const cm, MACROBLOCKD *const xd,
1414 struct vpx_read_bit_buffer *rb) {
1415 cm->base_qindex = vpx_rb_read_literal(rb, QINDEX_BITS);
1416 cm->y_dc_delta_q = read_delta_q(rb);
1417 cm->uv_dc_delta_q = read_delta_q(rb);
1418 cm->uv_ac_delta_q = read_delta_q(rb);
1419 cm->dequant_bit_depth = cm->bit_depth;
1420 xd->lossless = cm->base_qindex == 0 && cm->y_dc_delta_q == 0 &&
1421 cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0;
1422
1423 #if CONFIG_VP9_HIGHBITDEPTH
1424 xd->bd = (int)cm->bit_depth;
1425 #endif
1426 }
1427
setup_segmentation_dequant(VP9_COMMON * const cm)1428 static void setup_segmentation_dequant(VP9_COMMON *const cm) {
1429 // Build y/uv dequant values based on segmentation.
1430 if (cm->seg.enabled) {
1431 int i;
1432 for (i = 0; i < MAX_SEGMENTS; ++i) {
1433 const int qindex = vp9_get_qindex(&cm->seg, i, cm->base_qindex);
1434 cm->y_dequant[i][0] =
1435 vp9_dc_quant(qindex, cm->y_dc_delta_q, cm->bit_depth);
1436 cm->y_dequant[i][1] = vp9_ac_quant(qindex, 0, cm->bit_depth);
1437 cm->uv_dequant[i][0] =
1438 vp9_dc_quant(qindex, cm->uv_dc_delta_q, cm->bit_depth);
1439 cm->uv_dequant[i][1] =
1440 vp9_ac_quant(qindex, cm->uv_ac_delta_q, cm->bit_depth);
1441 }
1442 } else {
1443 const int qindex = cm->base_qindex;
1444 // When segmentation is disabled, only the first value is used. The
1445 // remaining are don't cares.
1446 cm->y_dequant[0][0] = vp9_dc_quant(qindex, cm->y_dc_delta_q, cm->bit_depth);
1447 cm->y_dequant[0][1] = vp9_ac_quant(qindex, 0, cm->bit_depth);
1448 cm->uv_dequant[0][0] =
1449 vp9_dc_quant(qindex, cm->uv_dc_delta_q, cm->bit_depth);
1450 cm->uv_dequant[0][1] =
1451 vp9_ac_quant(qindex, cm->uv_ac_delta_q, cm->bit_depth);
1452 }
1453 }
1454
read_interp_filter(struct vpx_read_bit_buffer * rb)1455 static INTERP_FILTER read_interp_filter(struct vpx_read_bit_buffer *rb) {
1456 const INTERP_FILTER literal_to_filter[] = { EIGHTTAP_SMOOTH, EIGHTTAP,
1457 EIGHTTAP_SHARP, BILINEAR };
1458 return vpx_rb_read_bit(rb) ? SWITCHABLE
1459 : literal_to_filter[vpx_rb_read_literal(rb, 2)];
1460 }
1461
setup_render_size(VP9_COMMON * cm,struct vpx_read_bit_buffer * rb)1462 static void setup_render_size(VP9_COMMON *cm, struct vpx_read_bit_buffer *rb) {
1463 cm->render_width = cm->width;
1464 cm->render_height = cm->height;
1465 if (vpx_rb_read_bit(rb))
1466 vp9_read_frame_size(rb, &cm->render_width, &cm->render_height);
1467 }
1468
resize_mv_buffer(VP9_COMMON * cm)1469 static void resize_mv_buffer(VP9_COMMON *cm) {
1470 vpx_free(cm->cur_frame->mvs);
1471 cm->cur_frame->mi_rows = cm->mi_rows;
1472 cm->cur_frame->mi_cols = cm->mi_cols;
1473 CHECK_MEM_ERROR(cm, cm->cur_frame->mvs,
1474 (MV_REF *)vpx_calloc(cm->mi_rows * cm->mi_cols,
1475 sizeof(*cm->cur_frame->mvs)));
1476 }
1477
resize_context_buffers(VP9_COMMON * cm,int width,int height)1478 static void resize_context_buffers(VP9_COMMON *cm, int width, int height) {
1479 #if CONFIG_SIZE_LIMIT
1480 if (width > DECODE_WIDTH_LIMIT || height > DECODE_HEIGHT_LIMIT)
1481 vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
1482 "Dimensions of %dx%d beyond allowed size of %dx%d.",
1483 width, height, DECODE_WIDTH_LIMIT, DECODE_HEIGHT_LIMIT);
1484 #endif
1485 if (cm->width != width || cm->height != height) {
1486 const int new_mi_rows =
1487 ALIGN_POWER_OF_TWO(height, MI_SIZE_LOG2) >> MI_SIZE_LOG2;
1488 const int new_mi_cols =
1489 ALIGN_POWER_OF_TWO(width, MI_SIZE_LOG2) >> MI_SIZE_LOG2;
1490
1491 // Allocations in vp9_alloc_context_buffers() depend on individual
1492 // dimensions as well as the overall size.
1493 if (new_mi_cols > cm->mi_cols || new_mi_rows > cm->mi_rows) {
1494 if (vp9_alloc_context_buffers(cm, width, height)) {
1495 // The cm->mi_* values have been cleared and any existing context
1496 // buffers have been freed. Clear cm->width and cm->height to be
1497 // consistent and to force a realloc next time.
1498 cm->width = 0;
1499 cm->height = 0;
1500 vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
1501 "Failed to allocate context buffers");
1502 }
1503 } else {
1504 vp9_set_mb_mi(cm, width, height);
1505 }
1506 vp9_init_context_buffers(cm);
1507 cm->width = width;
1508 cm->height = height;
1509 }
1510 if (cm->cur_frame->mvs == NULL || cm->mi_rows > cm->cur_frame->mi_rows ||
1511 cm->mi_cols > cm->cur_frame->mi_cols) {
1512 resize_mv_buffer(cm);
1513 }
1514 }
1515
setup_frame_size(VP9_COMMON * cm,struct vpx_read_bit_buffer * rb)1516 static void setup_frame_size(VP9_COMMON *cm, struct vpx_read_bit_buffer *rb) {
1517 int width, height;
1518 BufferPool *const pool = cm->buffer_pool;
1519 vp9_read_frame_size(rb, &width, &height);
1520 resize_context_buffers(cm, width, height);
1521 setup_render_size(cm, rb);
1522
1523 if (vpx_realloc_frame_buffer(
1524 get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x,
1525 cm->subsampling_y,
1526 #if CONFIG_VP9_HIGHBITDEPTH
1527 cm->use_highbitdepth,
1528 #endif
1529 VP9_DEC_BORDER_IN_PIXELS, cm->byte_alignment,
1530 &pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb,
1531 pool->cb_priv)) {
1532 vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
1533 "Failed to allocate frame buffer");
1534 }
1535
1536 pool->frame_bufs[cm->new_fb_idx].released = 0;
1537 pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x;
1538 pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y;
1539 pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth;
1540 pool->frame_bufs[cm->new_fb_idx].buf.color_space = cm->color_space;
1541 pool->frame_bufs[cm->new_fb_idx].buf.color_range = cm->color_range;
1542 pool->frame_bufs[cm->new_fb_idx].buf.render_width = cm->render_width;
1543 pool->frame_bufs[cm->new_fb_idx].buf.render_height = cm->render_height;
1544 }
1545
valid_ref_frame_img_fmt(vpx_bit_depth_t ref_bit_depth,int ref_xss,int ref_yss,vpx_bit_depth_t this_bit_depth,int this_xss,int this_yss)1546 static INLINE int valid_ref_frame_img_fmt(vpx_bit_depth_t ref_bit_depth,
1547 int ref_xss, int ref_yss,
1548 vpx_bit_depth_t this_bit_depth,
1549 int this_xss, int this_yss) {
1550 return ref_bit_depth == this_bit_depth && ref_xss == this_xss &&
1551 ref_yss == this_yss;
1552 }
1553
setup_frame_size_with_refs(VP9_COMMON * cm,struct vpx_read_bit_buffer * rb)1554 static void setup_frame_size_with_refs(VP9_COMMON *cm,
1555 struct vpx_read_bit_buffer *rb) {
1556 int width, height;
1557 int found = 0, i;
1558 int has_valid_ref_frame = 0;
1559 BufferPool *const pool = cm->buffer_pool;
1560 for (i = 0; i < REFS_PER_FRAME; ++i) {
1561 if (vpx_rb_read_bit(rb)) {
1562 if (cm->frame_refs[i].idx != INVALID_IDX) {
1563 YV12_BUFFER_CONFIG *const buf = cm->frame_refs[i].buf;
1564 width = buf->y_crop_width;
1565 height = buf->y_crop_height;
1566 found = 1;
1567 break;
1568 } else {
1569 vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
1570 "Failed to decode frame size");
1571 }
1572 }
1573 }
1574
1575 if (!found) vp9_read_frame_size(rb, &width, &height);
1576
1577 if (width <= 0 || height <= 0)
1578 vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
1579 "Invalid frame size");
1580
1581 // Check to make sure at least one of frames that this frame references
1582 // has valid dimensions.
1583 for (i = 0; i < REFS_PER_FRAME; ++i) {
1584 RefBuffer *const ref_frame = &cm->frame_refs[i];
1585 has_valid_ref_frame |=
1586 (ref_frame->idx != INVALID_IDX &&
1587 valid_ref_frame_size(ref_frame->buf->y_crop_width,
1588 ref_frame->buf->y_crop_height, width, height));
1589 }
1590 if (!has_valid_ref_frame)
1591 vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
1592 "Referenced frame has invalid size");
1593 for (i = 0; i < REFS_PER_FRAME; ++i) {
1594 RefBuffer *const ref_frame = &cm->frame_refs[i];
1595 if (ref_frame->idx == INVALID_IDX ||
1596 !valid_ref_frame_img_fmt(ref_frame->buf->bit_depth,
1597 ref_frame->buf->subsampling_x,
1598 ref_frame->buf->subsampling_y, cm->bit_depth,
1599 cm->subsampling_x, cm->subsampling_y))
1600 vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
1601 "Referenced frame has incompatible color format");
1602 }
1603
1604 resize_context_buffers(cm, width, height);
1605 setup_render_size(cm, rb);
1606
1607 if (vpx_realloc_frame_buffer(
1608 get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x,
1609 cm->subsampling_y,
1610 #if CONFIG_VP9_HIGHBITDEPTH
1611 cm->use_highbitdepth,
1612 #endif
1613 VP9_DEC_BORDER_IN_PIXELS, cm->byte_alignment,
1614 &pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb,
1615 pool->cb_priv)) {
1616 vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
1617 "Failed to allocate frame buffer");
1618 }
1619
1620 pool->frame_bufs[cm->new_fb_idx].released = 0;
1621 pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x;
1622 pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y;
1623 pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth;
1624 pool->frame_bufs[cm->new_fb_idx].buf.color_space = cm->color_space;
1625 pool->frame_bufs[cm->new_fb_idx].buf.color_range = cm->color_range;
1626 pool->frame_bufs[cm->new_fb_idx].buf.render_width = cm->render_width;
1627 pool->frame_bufs[cm->new_fb_idx].buf.render_height = cm->render_height;
1628 }
1629
setup_tile_info(VP9_COMMON * cm,struct vpx_read_bit_buffer * rb)1630 static void setup_tile_info(VP9_COMMON *cm, struct vpx_read_bit_buffer *rb) {
1631 int min_log2_tile_cols, max_log2_tile_cols, max_ones;
1632 vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
1633
1634 // columns
1635 max_ones = max_log2_tile_cols - min_log2_tile_cols;
1636 cm->log2_tile_cols = min_log2_tile_cols;
1637 while (max_ones-- && vpx_rb_read_bit(rb)) cm->log2_tile_cols++;
1638
1639 if (cm->log2_tile_cols > 6)
1640 vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
1641 "Invalid number of tile columns");
1642
1643 // rows
1644 cm->log2_tile_rows = vpx_rb_read_bit(rb);
1645 if (cm->log2_tile_rows) cm->log2_tile_rows += vpx_rb_read_bit(rb);
1646 }
1647
1648 // Reads the next tile returning its size and adjusting '*data' accordingly
1649 // based on 'is_last'.
get_tile_buffer(const uint8_t * const data_end,int is_last,struct vpx_internal_error_info * error_info,const uint8_t ** data,vpx_decrypt_cb decrypt_cb,void * decrypt_state,TileBuffer * buf)1650 static void get_tile_buffer(const uint8_t *const data_end, int is_last,
1651 struct vpx_internal_error_info *error_info,
1652 const uint8_t **data, vpx_decrypt_cb decrypt_cb,
1653 void *decrypt_state, TileBuffer *buf) {
1654 size_t size;
1655
1656 if (!is_last) {
1657 if (!read_is_valid(*data, 4, data_end))
1658 vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME,
1659 "Truncated packet or corrupt tile length");
1660
1661 if (decrypt_cb) {
1662 uint8_t be_data[4];
1663 decrypt_cb(decrypt_state, *data, be_data, 4);
1664 size = mem_get_be32(be_data);
1665 } else {
1666 size = mem_get_be32(*data);
1667 }
1668 *data += 4;
1669
1670 if (size > (size_t)(data_end - *data))
1671 vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME,
1672 "Truncated packet or corrupt tile size");
1673 } else {
1674 size = data_end - *data;
1675 }
1676
1677 buf->data = *data;
1678 buf->size = size;
1679
1680 *data += size;
1681 }
1682
get_tile_buffers(VP9Decoder * pbi,const uint8_t * data,const uint8_t * data_end,int tile_cols,int tile_rows,TileBuffer (* tile_buffers)[1<<6])1683 static void get_tile_buffers(VP9Decoder *pbi, const uint8_t *data,
1684 const uint8_t *data_end, int tile_cols,
1685 int tile_rows,
1686 TileBuffer (*tile_buffers)[1 << 6]) {
1687 int r, c;
1688
1689 for (r = 0; r < tile_rows; ++r) {
1690 for (c = 0; c < tile_cols; ++c) {
1691 const int is_last = (r == tile_rows - 1) && (c == tile_cols - 1);
1692 TileBuffer *const buf = &tile_buffers[r][c];
1693 buf->col = c;
1694 get_tile_buffer(data_end, is_last, &pbi->common.error, &data,
1695 pbi->decrypt_cb, pbi->decrypt_state, buf);
1696 }
1697 }
1698 }
1699
map_write(RowMTWorkerData * const row_mt_worker_data,int map_idx,int sync_idx)1700 static void map_write(RowMTWorkerData *const row_mt_worker_data, int map_idx,
1701 int sync_idx) {
1702 #if CONFIG_MULTITHREAD
1703 pthread_mutex_lock(&row_mt_worker_data->recon_sync_mutex[sync_idx]);
1704 row_mt_worker_data->recon_map[map_idx] = 1;
1705 pthread_cond_signal(&row_mt_worker_data->recon_sync_cond[sync_idx]);
1706 pthread_mutex_unlock(&row_mt_worker_data->recon_sync_mutex[sync_idx]);
1707 #else
1708 (void)row_mt_worker_data;
1709 (void)map_idx;
1710 (void)sync_idx;
1711 #endif // CONFIG_MULTITHREAD
1712 }
1713
map_read(RowMTWorkerData * const row_mt_worker_data,int map_idx,int sync_idx)1714 static void map_read(RowMTWorkerData *const row_mt_worker_data, int map_idx,
1715 int sync_idx) {
1716 #if CONFIG_MULTITHREAD
1717 volatile int8_t *map = row_mt_worker_data->recon_map + map_idx;
1718 pthread_mutex_t *const mutex =
1719 &row_mt_worker_data->recon_sync_mutex[sync_idx];
1720 pthread_mutex_lock(mutex);
1721 while (!(*map)) {
1722 pthread_cond_wait(&row_mt_worker_data->recon_sync_cond[sync_idx], mutex);
1723 }
1724 pthread_mutex_unlock(mutex);
1725 #else
1726 (void)row_mt_worker_data;
1727 (void)map_idx;
1728 (void)sync_idx;
1729 #endif // CONFIG_MULTITHREAD
1730 }
1731
lpf_map_write_check(VP9LfSync * lf_sync,int row,int num_tile_cols)1732 static int lpf_map_write_check(VP9LfSync *lf_sync, int row, int num_tile_cols) {
1733 int return_val = 0;
1734 #if CONFIG_MULTITHREAD
1735 int corrupted;
1736 pthread_mutex_lock(lf_sync->lf_mutex);
1737 corrupted = lf_sync->corrupted;
1738 pthread_mutex_unlock(lf_sync->lf_mutex);
1739 if (!corrupted) {
1740 pthread_mutex_lock(&lf_sync->recon_done_mutex[row]);
1741 lf_sync->num_tiles_done[row] += 1;
1742 if (num_tile_cols == lf_sync->num_tiles_done[row]) return_val = 1;
1743 pthread_mutex_unlock(&lf_sync->recon_done_mutex[row]);
1744 }
1745 #else
1746 (void)lf_sync;
1747 (void)row;
1748 (void)num_tile_cols;
1749 #endif
1750 return return_val;
1751 }
1752
vp9_tile_done(VP9Decoder * pbi)1753 static void vp9_tile_done(VP9Decoder *pbi) {
1754 #if CONFIG_MULTITHREAD
1755 int terminate;
1756 RowMTWorkerData *const row_mt_worker_data = pbi->row_mt_worker_data;
1757 const int all_parse_done = 1 << pbi->common.log2_tile_cols;
1758 pthread_mutex_lock(&row_mt_worker_data->recon_done_mutex);
1759 row_mt_worker_data->num_tiles_done++;
1760 terminate = all_parse_done == row_mt_worker_data->num_tiles_done;
1761 pthread_mutex_unlock(&row_mt_worker_data->recon_done_mutex);
1762 if (terminate) {
1763 vp9_jobq_terminate(&row_mt_worker_data->jobq);
1764 }
1765 #else
1766 (void)pbi;
1767 #endif
1768 }
1769
vp9_jobq_alloc(VP9Decoder * pbi)1770 static void vp9_jobq_alloc(VP9Decoder *pbi) {
1771 VP9_COMMON *const cm = &pbi->common;
1772 RowMTWorkerData *const row_mt_worker_data = pbi->row_mt_worker_data;
1773 const int aligned_rows = mi_cols_aligned_to_sb(cm->mi_rows);
1774 const int sb_rows = aligned_rows >> MI_BLOCK_SIZE_LOG2;
1775 const int tile_cols = 1 << cm->log2_tile_cols;
1776 const size_t jobq_size = (tile_cols * sb_rows * 2 + sb_rows) * sizeof(Job);
1777
1778 if (jobq_size > row_mt_worker_data->jobq_size) {
1779 vpx_free(row_mt_worker_data->jobq_buf);
1780 CHECK_MEM_ERROR(cm, row_mt_worker_data->jobq_buf, vpx_calloc(1, jobq_size));
1781 vp9_jobq_init(&row_mt_worker_data->jobq, row_mt_worker_data->jobq_buf,
1782 jobq_size);
1783 row_mt_worker_data->jobq_size = jobq_size;
1784 }
1785 }
1786
recon_tile_row(TileWorkerData * tile_data,VP9Decoder * pbi,int mi_row,int is_last_row,VP9LfSync * lf_sync,int cur_tile_col)1787 static void recon_tile_row(TileWorkerData *tile_data, VP9Decoder *pbi,
1788 int mi_row, int is_last_row, VP9LfSync *lf_sync,
1789 int cur_tile_col) {
1790 VP9_COMMON *const cm = &pbi->common;
1791 RowMTWorkerData *const row_mt_worker_data = pbi->row_mt_worker_data;
1792 const int tile_cols = 1 << cm->log2_tile_cols;
1793 const int aligned_cols = mi_cols_aligned_to_sb(cm->mi_cols);
1794 const int sb_cols = aligned_cols >> MI_BLOCK_SIZE_LOG2;
1795 const int cur_sb_row = mi_row >> MI_BLOCK_SIZE_LOG2;
1796 int mi_col_start = tile_data->xd.tile.mi_col_start;
1797 int mi_col_end = tile_data->xd.tile.mi_col_end;
1798 int mi_col;
1799
1800 vp9_zero(tile_data->xd.left_context);
1801 vp9_zero(tile_data->xd.left_seg_context);
1802 for (mi_col = mi_col_start; mi_col < mi_col_end; mi_col += MI_BLOCK_SIZE) {
1803 const int c = mi_col >> MI_BLOCK_SIZE_LOG2;
1804 int plane;
1805 const int sb_num = (cur_sb_row * (aligned_cols >> MI_BLOCK_SIZE_LOG2) + c);
1806
1807 // Top Dependency
1808 if (cur_sb_row) {
1809 map_read(row_mt_worker_data, ((cur_sb_row - 1) * sb_cols) + c,
1810 ((cur_sb_row - 1) * tile_cols) + cur_tile_col);
1811 }
1812
1813 for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
1814 tile_data->xd.plane[plane].eob =
1815 row_mt_worker_data->eob[plane] + (sb_num << EOBS_PER_SB_LOG2);
1816 tile_data->xd.plane[plane].dqcoeff =
1817 row_mt_worker_data->dqcoeff[plane] + (sb_num << DQCOEFFS_PER_SB_LOG2);
1818 }
1819 tile_data->xd.partition =
1820 row_mt_worker_data->partition + (sb_num * PARTITIONS_PER_SB);
1821 process_partition(tile_data, pbi, mi_row, mi_col, BLOCK_64X64, 4, RECON,
1822 recon_block);
1823 if (cm->lf.filter_level && !cm->skip_loop_filter) {
1824 // Queue LPF_JOB
1825 int is_lpf_job_ready = 0;
1826
1827 if (mi_col + MI_BLOCK_SIZE >= mi_col_end) {
1828 // Checks if this row has been decoded in all tiles
1829 is_lpf_job_ready = lpf_map_write_check(lf_sync, cur_sb_row, tile_cols);
1830
1831 if (is_lpf_job_ready) {
1832 Job lpf_job;
1833 lpf_job.job_type = LPF_JOB;
1834 if (cur_sb_row > 0) {
1835 lpf_job.row_num = mi_row - MI_BLOCK_SIZE;
1836 vp9_jobq_queue(&row_mt_worker_data->jobq, &lpf_job,
1837 sizeof(lpf_job));
1838 }
1839 if (is_last_row) {
1840 lpf_job.row_num = mi_row;
1841 vp9_jobq_queue(&row_mt_worker_data->jobq, &lpf_job,
1842 sizeof(lpf_job));
1843 }
1844 }
1845 }
1846 }
1847 map_write(row_mt_worker_data, (cur_sb_row * sb_cols) + c,
1848 (cur_sb_row * tile_cols) + cur_tile_col);
1849 }
1850 }
1851
parse_tile_row(TileWorkerData * tile_data,VP9Decoder * pbi,int mi_row,int cur_tile_col,uint8_t ** data_end)1852 static void parse_tile_row(TileWorkerData *tile_data, VP9Decoder *pbi,
1853 int mi_row, int cur_tile_col, uint8_t **data_end) {
1854 int mi_col;
1855 VP9_COMMON *const cm = &pbi->common;
1856 RowMTWorkerData *const row_mt_worker_data = pbi->row_mt_worker_data;
1857 TileInfo *tile = &tile_data->xd.tile;
1858 TileBuffer *const buf = &pbi->tile_buffers[cur_tile_col];
1859 const int aligned_cols = mi_cols_aligned_to_sb(cm->mi_cols);
1860
1861 vp9_zero(tile_data->dqcoeff);
1862 vp9_tile_init(tile, cm, 0, cur_tile_col);
1863
1864 /* Update reader only at the beginning of each row in a tile */
1865 if (mi_row == 0) {
1866 setup_token_decoder(buf->data, *data_end, buf->size, &tile_data->error_info,
1867 &tile_data->bit_reader, pbi->decrypt_cb,
1868 pbi->decrypt_state);
1869 }
1870 vp9_init_macroblockd(cm, &tile_data->xd, tile_data->dqcoeff);
1871 tile_data->xd.error_info = &tile_data->error_info;
1872
1873 vp9_zero(tile_data->xd.left_context);
1874 vp9_zero(tile_data->xd.left_seg_context);
1875 for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
1876 mi_col += MI_BLOCK_SIZE) {
1877 const int r = mi_row >> MI_BLOCK_SIZE_LOG2;
1878 const int c = mi_col >> MI_BLOCK_SIZE_LOG2;
1879 int plane;
1880 const int sb_num = (r * (aligned_cols >> MI_BLOCK_SIZE_LOG2) + c);
1881 for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
1882 tile_data->xd.plane[plane].eob =
1883 row_mt_worker_data->eob[plane] + (sb_num << EOBS_PER_SB_LOG2);
1884 tile_data->xd.plane[plane].dqcoeff =
1885 row_mt_worker_data->dqcoeff[plane] + (sb_num << DQCOEFFS_PER_SB_LOG2);
1886 }
1887 tile_data->xd.partition =
1888 row_mt_worker_data->partition + sb_num * PARTITIONS_PER_SB;
1889 process_partition(tile_data, pbi, mi_row, mi_col, BLOCK_64X64, 4, PARSE,
1890 parse_block);
1891 }
1892 }
1893
row_decode_worker_hook(void * arg1,void * arg2)1894 static int row_decode_worker_hook(void *arg1, void *arg2) {
1895 ThreadData *const thread_data = (ThreadData *)arg1;
1896 uint8_t **data_end = (uint8_t **)arg2;
1897 VP9Decoder *const pbi = thread_data->pbi;
1898 VP9_COMMON *const cm = &pbi->common;
1899 RowMTWorkerData *const row_mt_worker_data = pbi->row_mt_worker_data;
1900 const int aligned_cols = mi_cols_aligned_to_sb(cm->mi_cols);
1901 const int aligned_rows = mi_cols_aligned_to_sb(cm->mi_rows);
1902 const int sb_rows = aligned_rows >> MI_BLOCK_SIZE_LOG2;
1903 const int tile_cols = 1 << cm->log2_tile_cols;
1904 Job job;
1905 LFWorkerData *lf_data = thread_data->lf_data;
1906 VP9LfSync *lf_sync = thread_data->lf_sync;
1907 volatile int corrupted = 0;
1908 TileWorkerData *volatile tile_data_recon = NULL;
1909
1910 while (!vp9_jobq_dequeue(&row_mt_worker_data->jobq, &job, sizeof(job), 1)) {
1911 int mi_col;
1912 const int mi_row = job.row_num;
1913
1914 if (job.job_type == LPF_JOB) {
1915 lf_data->start = mi_row;
1916 lf_data->stop = lf_data->start + MI_BLOCK_SIZE;
1917
1918 if (cm->lf.filter_level && !cm->skip_loop_filter &&
1919 mi_row < cm->mi_rows) {
1920 vp9_loopfilter_job(lf_data, lf_sync);
1921 }
1922 } else if (job.job_type == RECON_JOB) {
1923 const int cur_sb_row = mi_row >> MI_BLOCK_SIZE_LOG2;
1924 const int is_last_row = sb_rows - 1 == cur_sb_row;
1925 int mi_col_start, mi_col_end;
1926 if (!tile_data_recon)
1927 CHECK_MEM_ERROR(cm, tile_data_recon,
1928 vpx_memalign(32, sizeof(TileWorkerData)));
1929
1930 tile_data_recon->xd = pbi->mb;
1931 vp9_tile_init(&tile_data_recon->xd.tile, cm, 0, job.tile_col);
1932 vp9_init_macroblockd(cm, &tile_data_recon->xd, tile_data_recon->dqcoeff);
1933 mi_col_start = tile_data_recon->xd.tile.mi_col_start;
1934 mi_col_end = tile_data_recon->xd.tile.mi_col_end;
1935
1936 if (setjmp(tile_data_recon->error_info.jmp)) {
1937 const int sb_cols = aligned_cols >> MI_BLOCK_SIZE_LOG2;
1938 tile_data_recon->error_info.setjmp = 0;
1939 corrupted = 1;
1940 for (mi_col = mi_col_start; mi_col < mi_col_end;
1941 mi_col += MI_BLOCK_SIZE) {
1942 const int c = mi_col >> MI_BLOCK_SIZE_LOG2;
1943 map_write(row_mt_worker_data, (cur_sb_row * sb_cols) + c,
1944 (cur_sb_row * tile_cols) + job.tile_col);
1945 }
1946 if (is_last_row) {
1947 vp9_tile_done(pbi);
1948 }
1949 continue;
1950 }
1951
1952 tile_data_recon->error_info.setjmp = 1;
1953 tile_data_recon->xd.error_info = &tile_data_recon->error_info;
1954
1955 recon_tile_row(tile_data_recon, pbi, mi_row, is_last_row, lf_sync,
1956 job.tile_col);
1957
1958 if (corrupted)
1959 vpx_internal_error(&tile_data_recon->error_info,
1960 VPX_CODEC_CORRUPT_FRAME,
1961 "Failed to decode tile data");
1962
1963 if (is_last_row) {
1964 vp9_tile_done(pbi);
1965 }
1966 } else if (job.job_type == PARSE_JOB) {
1967 TileWorkerData *const tile_data = &pbi->tile_worker_data[job.tile_col];
1968
1969 if (setjmp(tile_data->error_info.jmp)) {
1970 tile_data->error_info.setjmp = 0;
1971 corrupted = 1;
1972 vp9_tile_done(pbi);
1973 continue;
1974 }
1975
1976 tile_data->xd = pbi->mb;
1977 tile_data->xd.counts =
1978 cm->frame_parallel_decoding_mode ? 0 : &tile_data->counts;
1979
1980 tile_data->error_info.setjmp = 1;
1981
1982 parse_tile_row(tile_data, pbi, mi_row, job.tile_col, data_end);
1983
1984 corrupted |= tile_data->xd.corrupted;
1985 if (corrupted)
1986 vpx_internal_error(&tile_data->error_info, VPX_CODEC_CORRUPT_FRAME,
1987 "Failed to decode tile data");
1988
1989 /* Queue in the recon_job for this row */
1990 {
1991 Job recon_job;
1992 recon_job.row_num = mi_row;
1993 recon_job.tile_col = job.tile_col;
1994 recon_job.job_type = RECON_JOB;
1995 vp9_jobq_queue(&row_mt_worker_data->jobq, &recon_job,
1996 sizeof(recon_job));
1997 }
1998
1999 /* Queue next parse job */
2000 if (mi_row + MI_BLOCK_SIZE < cm->mi_rows) {
2001 Job parse_job;
2002 parse_job.row_num = mi_row + MI_BLOCK_SIZE;
2003 parse_job.tile_col = job.tile_col;
2004 parse_job.job_type = PARSE_JOB;
2005 vp9_jobq_queue(&row_mt_worker_data->jobq, &parse_job,
2006 sizeof(parse_job));
2007 }
2008 }
2009 }
2010
2011 vpx_free(tile_data_recon);
2012 return !corrupted;
2013 }
2014
decode_tiles(VP9Decoder * pbi,const uint8_t * data,const uint8_t * data_end)2015 static const uint8_t *decode_tiles(VP9Decoder *pbi, const uint8_t *data,
2016 const uint8_t *data_end) {
2017 VP9_COMMON *const cm = &pbi->common;
2018 const VPxWorkerInterface *const winterface = vpx_get_worker_interface();
2019 const int aligned_cols = mi_cols_aligned_to_sb(cm->mi_cols);
2020 const int tile_cols = 1 << cm->log2_tile_cols;
2021 const int tile_rows = 1 << cm->log2_tile_rows;
2022 TileBuffer tile_buffers[4][1 << 6];
2023 int tile_row, tile_col;
2024 int mi_row, mi_col;
2025 TileWorkerData *tile_data = NULL;
2026
2027 if (cm->lf.filter_level && !cm->skip_loop_filter &&
2028 pbi->lf_worker.data1 == NULL) {
2029 CHECK_MEM_ERROR(cm, pbi->lf_worker.data1,
2030 vpx_memalign(32, sizeof(LFWorkerData)));
2031 pbi->lf_worker.hook = vp9_loop_filter_worker;
2032 if (pbi->max_threads > 1 && !winterface->reset(&pbi->lf_worker)) {
2033 vpx_internal_error(&cm->error, VPX_CODEC_ERROR,
2034 "Loop filter thread creation failed");
2035 }
2036 }
2037
2038 if (cm->lf.filter_level && !cm->skip_loop_filter) {
2039 LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1;
2040 // Be sure to sync as we might be resuming after a failed frame decode.
2041 winterface->sync(&pbi->lf_worker);
2042 vp9_loop_filter_data_reset(lf_data, get_frame_new_buffer(cm), cm,
2043 pbi->mb.plane);
2044 }
2045
2046 assert(tile_rows <= 4);
2047 assert(tile_cols <= (1 << 6));
2048
2049 // Note: this memset assumes above_context[0], [1] and [2]
2050 // are allocated as part of the same buffer.
2051 memset(cm->above_context, 0,
2052 sizeof(*cm->above_context) * MAX_MB_PLANE * 2 * aligned_cols);
2053
2054 memset(cm->above_seg_context, 0,
2055 sizeof(*cm->above_seg_context) * aligned_cols);
2056
2057 vp9_reset_lfm(cm);
2058
2059 get_tile_buffers(pbi, data, data_end, tile_cols, tile_rows, tile_buffers);
2060
2061 // Load all tile information into tile_data.
2062 for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
2063 for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
2064 const TileBuffer *const buf = &tile_buffers[tile_row][tile_col];
2065 tile_data = pbi->tile_worker_data + tile_cols * tile_row + tile_col;
2066 tile_data->xd = pbi->mb;
2067 tile_data->xd.corrupted = 0;
2068 tile_data->xd.counts =
2069 cm->frame_parallel_decoding_mode ? NULL : &cm->counts;
2070 vp9_zero(tile_data->dqcoeff);
2071 vp9_tile_init(&tile_data->xd.tile, cm, tile_row, tile_col);
2072 setup_token_decoder(buf->data, data_end, buf->size, &cm->error,
2073 &tile_data->bit_reader, pbi->decrypt_cb,
2074 pbi->decrypt_state);
2075 vp9_init_macroblockd(cm, &tile_data->xd, tile_data->dqcoeff);
2076 }
2077 }
2078
2079 for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
2080 TileInfo tile;
2081 vp9_tile_set_row(&tile, cm, tile_row);
2082 for (mi_row = tile.mi_row_start; mi_row < tile.mi_row_end;
2083 mi_row += MI_BLOCK_SIZE) {
2084 for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
2085 const int col =
2086 pbi->inv_tile_order ? tile_cols - tile_col - 1 : tile_col;
2087 tile_data = pbi->tile_worker_data + tile_cols * tile_row + col;
2088 vp9_tile_set_col(&tile, cm, col);
2089 vp9_zero(tile_data->xd.left_context);
2090 vp9_zero(tile_data->xd.left_seg_context);
2091 for (mi_col = tile.mi_col_start; mi_col < tile.mi_col_end;
2092 mi_col += MI_BLOCK_SIZE) {
2093 if (pbi->row_mt == 1) {
2094 int plane;
2095 RowMTWorkerData *const row_mt_worker_data = pbi->row_mt_worker_data;
2096 for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
2097 tile_data->xd.plane[plane].eob = row_mt_worker_data->eob[plane];
2098 tile_data->xd.plane[plane].dqcoeff =
2099 row_mt_worker_data->dqcoeff[plane];
2100 }
2101 tile_data->xd.partition = row_mt_worker_data->partition;
2102 process_partition(tile_data, pbi, mi_row, mi_col, BLOCK_64X64, 4,
2103 PARSE, parse_block);
2104
2105 for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
2106 tile_data->xd.plane[plane].eob = row_mt_worker_data->eob[plane];
2107 tile_data->xd.plane[plane].dqcoeff =
2108 row_mt_worker_data->dqcoeff[plane];
2109 }
2110 tile_data->xd.partition = row_mt_worker_data->partition;
2111 process_partition(tile_data, pbi, mi_row, mi_col, BLOCK_64X64, 4,
2112 RECON, recon_block);
2113 } else {
2114 decode_partition(tile_data, pbi, mi_row, mi_col, BLOCK_64X64, 4);
2115 }
2116 }
2117 pbi->mb.corrupted |= tile_data->xd.corrupted;
2118 if (pbi->mb.corrupted)
2119 vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
2120 "Failed to decode tile data");
2121 }
2122 // Loopfilter one row.
2123 if (cm->lf.filter_level && !cm->skip_loop_filter) {
2124 const int lf_start = mi_row - MI_BLOCK_SIZE;
2125 LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1;
2126
2127 // delay the loopfilter by 1 macroblock row.
2128 if (lf_start < 0) continue;
2129
2130 // decoding has completed: finish up the loop filter in this thread.
2131 if (mi_row + MI_BLOCK_SIZE >= cm->mi_rows) continue;
2132
2133 winterface->sync(&pbi->lf_worker);
2134 lf_data->start = lf_start;
2135 lf_data->stop = mi_row;
2136 if (pbi->max_threads > 1) {
2137 winterface->launch(&pbi->lf_worker);
2138 } else {
2139 winterface->execute(&pbi->lf_worker);
2140 }
2141 }
2142 }
2143 }
2144
2145 // Loopfilter remaining rows in the frame.
2146 if (cm->lf.filter_level && !cm->skip_loop_filter) {
2147 LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1;
2148 winterface->sync(&pbi->lf_worker);
2149 lf_data->start = lf_data->stop;
2150 lf_data->stop = cm->mi_rows;
2151 winterface->execute(&pbi->lf_worker);
2152 }
2153
2154 // Get last tile data.
2155 tile_data = pbi->tile_worker_data + tile_cols * tile_rows - 1;
2156
2157 return vpx_reader_find_end(&tile_data->bit_reader);
2158 }
2159
set_rows_after_error(VP9LfSync * lf_sync,int start_row,int mi_rows,int num_tiles_left,int total_num_tiles)2160 static void set_rows_after_error(VP9LfSync *lf_sync, int start_row, int mi_rows,
2161 int num_tiles_left, int total_num_tiles) {
2162 do {
2163 int mi_row;
2164 const int aligned_rows = mi_cols_aligned_to_sb(mi_rows);
2165 const int sb_rows = (aligned_rows >> MI_BLOCK_SIZE_LOG2);
2166 const int corrupted = 1;
2167 for (mi_row = start_row; mi_row < mi_rows; mi_row += MI_BLOCK_SIZE) {
2168 const int is_last_row = (sb_rows - 1 == mi_row >> MI_BLOCK_SIZE_LOG2);
2169 vp9_set_row(lf_sync, total_num_tiles, mi_row >> MI_BLOCK_SIZE_LOG2,
2170 is_last_row, corrupted);
2171 }
2172 /* If there are multiple tiles, the second tile should start marking row
2173 * progress from row 0.
2174 */
2175 start_row = 0;
2176 } while (num_tiles_left--);
2177 }
2178
2179 // On entry 'tile_data->data_end' points to the end of the input frame, on exit
2180 // it is updated to reflect the bitreader position of the final tile column if
2181 // present in the tile buffer group or NULL otherwise.
tile_worker_hook(void * arg1,void * arg2)2182 static int tile_worker_hook(void *arg1, void *arg2) {
2183 TileWorkerData *const tile_data = (TileWorkerData *)arg1;
2184 VP9Decoder *const pbi = (VP9Decoder *)arg2;
2185
2186 TileInfo *volatile tile = &tile_data->xd.tile;
2187 const int final_col = (1 << pbi->common.log2_tile_cols) - 1;
2188 const uint8_t *volatile bit_reader_end = NULL;
2189 VP9_COMMON *cm = &pbi->common;
2190
2191 LFWorkerData *lf_data = tile_data->lf_data;
2192 VP9LfSync *lf_sync = tile_data->lf_sync;
2193
2194 volatile int mi_row = 0;
2195 volatile int n = tile_data->buf_start;
2196 tile_data->error_info.setjmp = 1;
2197
2198 if (setjmp(tile_data->error_info.jmp)) {
2199 tile_data->error_info.setjmp = 0;
2200 tile_data->xd.corrupted = 1;
2201 tile_data->data_end = NULL;
2202 if (pbi->lpf_mt_opt && cm->lf.filter_level && !cm->skip_loop_filter) {
2203 const int num_tiles_left = tile_data->buf_end - n;
2204 const int mi_row_start = mi_row;
2205 set_rows_after_error(lf_sync, mi_row_start, cm->mi_rows, num_tiles_left,
2206 1 << cm->log2_tile_cols);
2207 }
2208 return 0;
2209 }
2210
2211 tile_data->xd.corrupted = 0;
2212
2213 do {
2214 int mi_col;
2215 const TileBuffer *const buf = pbi->tile_buffers + n;
2216
2217 /* Initialize to 0 is safe since we do not deal with streams that have
2218 * more than one row of tiles. (So tile->mi_row_start will be 0)
2219 */
2220 assert(cm->log2_tile_rows == 0);
2221 mi_row = 0;
2222 vp9_zero(tile_data->dqcoeff);
2223 vp9_tile_init(tile, &pbi->common, 0, buf->col);
2224 setup_token_decoder(buf->data, tile_data->data_end, buf->size,
2225 &tile_data->error_info, &tile_data->bit_reader,
2226 pbi->decrypt_cb, pbi->decrypt_state);
2227 vp9_init_macroblockd(&pbi->common, &tile_data->xd, tile_data->dqcoeff);
2228 // init resets xd.error_info
2229 tile_data->xd.error_info = &tile_data->error_info;
2230
2231 for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
2232 mi_row += MI_BLOCK_SIZE) {
2233 vp9_zero(tile_data->xd.left_context);
2234 vp9_zero(tile_data->xd.left_seg_context);
2235 for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
2236 mi_col += MI_BLOCK_SIZE) {
2237 decode_partition(tile_data, pbi, mi_row, mi_col, BLOCK_64X64, 4);
2238 }
2239 if (pbi->lpf_mt_opt && cm->lf.filter_level && !cm->skip_loop_filter) {
2240 const int aligned_rows = mi_cols_aligned_to_sb(cm->mi_rows);
2241 const int sb_rows = (aligned_rows >> MI_BLOCK_SIZE_LOG2);
2242 const int is_last_row = (sb_rows - 1 == mi_row >> MI_BLOCK_SIZE_LOG2);
2243 vp9_set_row(lf_sync, 1 << cm->log2_tile_cols,
2244 mi_row >> MI_BLOCK_SIZE_LOG2, is_last_row,
2245 tile_data->xd.corrupted);
2246 }
2247 }
2248
2249 if (buf->col == final_col) {
2250 bit_reader_end = vpx_reader_find_end(&tile_data->bit_reader);
2251 }
2252 } while (!tile_data->xd.corrupted && ++n <= tile_data->buf_end);
2253
2254 if (pbi->lpf_mt_opt && n < tile_data->buf_end && cm->lf.filter_level &&
2255 !cm->skip_loop_filter) {
2256 /* This was not incremented in the tile loop, so increment before tiles left
2257 * calculation
2258 */
2259 ++n;
2260 set_rows_after_error(lf_sync, 0, cm->mi_rows, tile_data->buf_end - n,
2261 1 << cm->log2_tile_cols);
2262 }
2263
2264 if (pbi->lpf_mt_opt && !tile_data->xd.corrupted && cm->lf.filter_level &&
2265 !cm->skip_loop_filter) {
2266 vp9_loopfilter_rows(lf_data, lf_sync);
2267 }
2268
2269 tile_data->data_end = bit_reader_end;
2270 return !tile_data->xd.corrupted;
2271 }
2272
2273 // sorts in descending order
compare_tile_buffers(const void * a,const void * b)2274 static int compare_tile_buffers(const void *a, const void *b) {
2275 const TileBuffer *const buf_a = (const TileBuffer *)a;
2276 const TileBuffer *const buf_b = (const TileBuffer *)b;
2277 return (buf_a->size < buf_b->size) - (buf_a->size > buf_b->size);
2278 }
2279
init_mt(VP9Decoder * pbi)2280 static INLINE void init_mt(VP9Decoder *pbi) {
2281 int n;
2282 VP9_COMMON *const cm = &pbi->common;
2283 VP9LfSync *lf_row_sync = &pbi->lf_row_sync;
2284 const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols);
2285 const VPxWorkerInterface *const winterface = vpx_get_worker_interface();
2286
2287 if (pbi->num_tile_workers == 0) {
2288 const int num_threads = pbi->max_threads;
2289 CHECK_MEM_ERROR(cm, pbi->tile_workers,
2290 vpx_malloc(num_threads * sizeof(*pbi->tile_workers)));
2291 for (n = 0; n < num_threads; ++n) {
2292 VPxWorker *const worker = &pbi->tile_workers[n];
2293 ++pbi->num_tile_workers;
2294
2295 winterface->init(worker);
2296 if (n < num_threads - 1 && !winterface->reset(worker)) {
2297 vpx_internal_error(&cm->error, VPX_CODEC_ERROR,
2298 "Tile decoder thread creation failed");
2299 }
2300 }
2301 }
2302
2303 // Initialize LPF
2304 if ((pbi->lpf_mt_opt || pbi->row_mt) && cm->lf.filter_level &&
2305 !cm->skip_loop_filter) {
2306 vp9_lpf_mt_init(lf_row_sync, cm, cm->lf.filter_level,
2307 pbi->num_tile_workers);
2308 }
2309
2310 // Note: this memset assumes above_context[0], [1] and [2]
2311 // are allocated as part of the same buffer.
2312 memset(cm->above_context, 0,
2313 sizeof(*cm->above_context) * MAX_MB_PLANE * 2 * aligned_mi_cols);
2314
2315 memset(cm->above_seg_context, 0,
2316 sizeof(*cm->above_seg_context) * aligned_mi_cols);
2317
2318 vp9_reset_lfm(cm);
2319 }
2320
decode_tiles_row_wise_mt(VP9Decoder * pbi,const uint8_t * data,const uint8_t * data_end)2321 static const uint8_t *decode_tiles_row_wise_mt(VP9Decoder *pbi,
2322 const uint8_t *data,
2323 const uint8_t *data_end) {
2324 VP9_COMMON *const cm = &pbi->common;
2325 RowMTWorkerData *const row_mt_worker_data = pbi->row_mt_worker_data;
2326 const VPxWorkerInterface *const winterface = vpx_get_worker_interface();
2327 const int tile_cols = 1 << cm->log2_tile_cols;
2328 const int tile_rows = 1 << cm->log2_tile_rows;
2329 const int num_workers = pbi->max_threads;
2330 int i, n;
2331 int col;
2332 int corrupted = 0;
2333 const int sb_rows = mi_cols_aligned_to_sb(cm->mi_rows) >> MI_BLOCK_SIZE_LOG2;
2334 const int sb_cols = mi_cols_aligned_to_sb(cm->mi_cols) >> MI_BLOCK_SIZE_LOG2;
2335 VP9LfSync *lf_row_sync = &pbi->lf_row_sync;
2336 YV12_BUFFER_CONFIG *const new_fb = get_frame_new_buffer(cm);
2337
2338 assert(tile_cols <= (1 << 6));
2339 assert(tile_rows == 1);
2340 (void)tile_rows;
2341
2342 memset(row_mt_worker_data->recon_map, 0,
2343 sb_rows * sb_cols * sizeof(*row_mt_worker_data->recon_map));
2344
2345 init_mt(pbi);
2346
2347 // Reset tile decoding hook
2348 for (n = 0; n < num_workers; ++n) {
2349 VPxWorker *const worker = &pbi->tile_workers[n];
2350 ThreadData *const thread_data = &pbi->row_mt_worker_data->thread_data[n];
2351 winterface->sync(worker);
2352
2353 if (cm->lf.filter_level && !cm->skip_loop_filter) {
2354 thread_data->lf_sync = lf_row_sync;
2355 thread_data->lf_data = &thread_data->lf_sync->lfdata[n];
2356 vp9_loop_filter_data_reset(thread_data->lf_data, new_fb, cm,
2357 pbi->mb.plane);
2358 }
2359
2360 thread_data->pbi = pbi;
2361
2362 worker->hook = row_decode_worker_hook;
2363 worker->data1 = thread_data;
2364 worker->data2 = (void *)&row_mt_worker_data->data_end;
2365 }
2366
2367 for (col = 0; col < tile_cols; ++col) {
2368 TileWorkerData *const tile_data = &pbi->tile_worker_data[col];
2369 tile_data->xd = pbi->mb;
2370 tile_data->xd.counts =
2371 cm->frame_parallel_decoding_mode ? NULL : &tile_data->counts;
2372 }
2373
2374 /* Reset the jobq to start of the jobq buffer */
2375 vp9_jobq_reset(&row_mt_worker_data->jobq);
2376 row_mt_worker_data->num_tiles_done = 0;
2377 row_mt_worker_data->data_end = NULL;
2378
2379 // Load tile data into tile_buffers
2380 get_tile_buffers(pbi, data, data_end, tile_cols, tile_rows,
2381 &pbi->tile_buffers);
2382
2383 // Initialize thread frame counts.
2384 if (!cm->frame_parallel_decoding_mode) {
2385 for (col = 0; col < tile_cols; ++col) {
2386 TileWorkerData *const tile_data = &pbi->tile_worker_data[col];
2387 vp9_zero(tile_data->counts);
2388 }
2389 }
2390
2391 // queue parse jobs for 0th row of every tile
2392 for (col = 0; col < tile_cols; ++col) {
2393 Job parse_job;
2394 parse_job.row_num = 0;
2395 parse_job.tile_col = col;
2396 parse_job.job_type = PARSE_JOB;
2397 vp9_jobq_queue(&row_mt_worker_data->jobq, &parse_job, sizeof(parse_job));
2398 }
2399
2400 for (i = 0; i < num_workers; ++i) {
2401 VPxWorker *const worker = &pbi->tile_workers[i];
2402 worker->had_error = 0;
2403 if (i == num_workers - 1) {
2404 winterface->execute(worker);
2405 } else {
2406 winterface->launch(worker);
2407 }
2408 }
2409
2410 for (; n > 0; --n) {
2411 VPxWorker *const worker = &pbi->tile_workers[n - 1];
2412 // TODO(jzern): The tile may have specific error data associated with
2413 // its vpx_internal_error_info which could be propagated to the main info
2414 // in cm. Additionally once the threads have been synced and an error is
2415 // detected, there's no point in continuing to decode tiles.
2416 corrupted |= !winterface->sync(worker);
2417 }
2418
2419 pbi->mb.corrupted = corrupted;
2420
2421 {
2422 /* Set data end */
2423 TileWorkerData *const tile_data = &pbi->tile_worker_data[tile_cols - 1];
2424 row_mt_worker_data->data_end = vpx_reader_find_end(&tile_data->bit_reader);
2425 }
2426
2427 // Accumulate thread frame counts.
2428 if (!cm->frame_parallel_decoding_mode) {
2429 for (i = 0; i < tile_cols; ++i) {
2430 TileWorkerData *const tile_data = &pbi->tile_worker_data[i];
2431 vp9_accumulate_frame_counts(&cm->counts, &tile_data->counts, 1);
2432 }
2433 }
2434
2435 return row_mt_worker_data->data_end;
2436 }
2437
decode_tiles_mt(VP9Decoder * pbi,const uint8_t * data,const uint8_t * data_end)2438 static const uint8_t *decode_tiles_mt(VP9Decoder *pbi, const uint8_t *data,
2439 const uint8_t *data_end) {
2440 VP9_COMMON *const cm = &pbi->common;
2441 const VPxWorkerInterface *const winterface = vpx_get_worker_interface();
2442 const uint8_t *bit_reader_end = NULL;
2443 VP9LfSync *lf_row_sync = &pbi->lf_row_sync;
2444 YV12_BUFFER_CONFIG *const new_fb = get_frame_new_buffer(cm);
2445 const int tile_cols = 1 << cm->log2_tile_cols;
2446 const int tile_rows = 1 << cm->log2_tile_rows;
2447 const int num_workers = VPXMIN(pbi->max_threads, tile_cols);
2448 int n;
2449
2450 assert(tile_cols <= (1 << 6));
2451 assert(tile_rows == 1);
2452 (void)tile_rows;
2453
2454 init_mt(pbi);
2455
2456 // Reset tile decoding hook
2457 for (n = 0; n < num_workers; ++n) {
2458 VPxWorker *const worker = &pbi->tile_workers[n];
2459 TileWorkerData *const tile_data =
2460 &pbi->tile_worker_data[n + pbi->total_tiles];
2461 winterface->sync(worker);
2462
2463 if (pbi->lpf_mt_opt && cm->lf.filter_level && !cm->skip_loop_filter) {
2464 tile_data->lf_sync = lf_row_sync;
2465 tile_data->lf_data = &tile_data->lf_sync->lfdata[n];
2466 vp9_loop_filter_data_reset(tile_data->lf_data, new_fb, cm, pbi->mb.plane);
2467 tile_data->lf_data->y_only = 0;
2468 }
2469
2470 tile_data->xd = pbi->mb;
2471 tile_data->xd.counts =
2472 cm->frame_parallel_decoding_mode ? NULL : &tile_data->counts;
2473 worker->hook = tile_worker_hook;
2474 worker->data1 = tile_data;
2475 worker->data2 = pbi;
2476 }
2477
2478 // Load tile data into tile_buffers
2479 get_tile_buffers(pbi, data, data_end, tile_cols, tile_rows,
2480 &pbi->tile_buffers);
2481
2482 // Sort the buffers based on size in descending order.
2483 qsort(pbi->tile_buffers, tile_cols, sizeof(pbi->tile_buffers[0]),
2484 compare_tile_buffers);
2485
2486 if (num_workers == tile_cols) {
2487 // Rearrange the tile buffers such that the largest, and
2488 // presumably the most difficult, tile will be decoded in the main thread.
2489 // This should help minimize the number of instances where the main thread
2490 // is waiting for a worker to complete.
2491 const TileBuffer largest = pbi->tile_buffers[0];
2492 memmove(pbi->tile_buffers, pbi->tile_buffers + 1,
2493 (tile_cols - 1) * sizeof(pbi->tile_buffers[0]));
2494 pbi->tile_buffers[tile_cols - 1] = largest;
2495 } else {
2496 int start = 0, end = tile_cols - 2;
2497 TileBuffer tmp;
2498
2499 // Interleave the tiles to distribute the load between threads, assuming a
2500 // larger tile implies it is more difficult to decode.
2501 while (start < end) {
2502 tmp = pbi->tile_buffers[start];
2503 pbi->tile_buffers[start] = pbi->tile_buffers[end];
2504 pbi->tile_buffers[end] = tmp;
2505 start += 2;
2506 end -= 2;
2507 }
2508 }
2509
2510 // Initialize thread frame counts.
2511 if (!cm->frame_parallel_decoding_mode) {
2512 for (n = 0; n < num_workers; ++n) {
2513 TileWorkerData *const tile_data =
2514 (TileWorkerData *)pbi->tile_workers[n].data1;
2515 vp9_zero(tile_data->counts);
2516 }
2517 }
2518
2519 {
2520 const int base = tile_cols / num_workers;
2521 const int remain = tile_cols % num_workers;
2522 int buf_start = 0;
2523
2524 for (n = 0; n < num_workers; ++n) {
2525 const int count = base + (remain + n) / num_workers;
2526 VPxWorker *const worker = &pbi->tile_workers[n];
2527 TileWorkerData *const tile_data = (TileWorkerData *)worker->data1;
2528
2529 tile_data->buf_start = buf_start;
2530 tile_data->buf_end = buf_start + count - 1;
2531 tile_data->data_end = data_end;
2532 buf_start += count;
2533
2534 worker->had_error = 0;
2535 if (n == num_workers - 1) {
2536 assert(tile_data->buf_end == tile_cols - 1);
2537 winterface->execute(worker);
2538 } else {
2539 winterface->launch(worker);
2540 }
2541 }
2542
2543 for (; n > 0; --n) {
2544 VPxWorker *const worker = &pbi->tile_workers[n - 1];
2545 TileWorkerData *const tile_data = (TileWorkerData *)worker->data1;
2546 // TODO(jzern): The tile may have specific error data associated with
2547 // its vpx_internal_error_info which could be propagated to the main info
2548 // in cm. Additionally once the threads have been synced and an error is
2549 // detected, there's no point in continuing to decode tiles.
2550 pbi->mb.corrupted |= !winterface->sync(worker);
2551 if (!bit_reader_end) bit_reader_end = tile_data->data_end;
2552 }
2553 }
2554
2555 // Accumulate thread frame counts.
2556 if (!cm->frame_parallel_decoding_mode) {
2557 for (n = 0; n < num_workers; ++n) {
2558 TileWorkerData *const tile_data =
2559 (TileWorkerData *)pbi->tile_workers[n].data1;
2560 vp9_accumulate_frame_counts(&cm->counts, &tile_data->counts, 1);
2561 }
2562 }
2563
2564 assert(bit_reader_end || pbi->mb.corrupted);
2565 return bit_reader_end;
2566 }
2567
error_handler(void * data)2568 static void error_handler(void *data) {
2569 VP9_COMMON *const cm = (VP9_COMMON *)data;
2570 vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet");
2571 }
2572
read_bitdepth_colorspace_sampling(VP9_COMMON * cm,struct vpx_read_bit_buffer * rb)2573 static void read_bitdepth_colorspace_sampling(VP9_COMMON *cm,
2574 struct vpx_read_bit_buffer *rb) {
2575 if (cm->profile >= PROFILE_2) {
2576 cm->bit_depth = vpx_rb_read_bit(rb) ? VPX_BITS_12 : VPX_BITS_10;
2577 #if CONFIG_VP9_HIGHBITDEPTH
2578 cm->use_highbitdepth = 1;
2579 #endif
2580 } else {
2581 cm->bit_depth = VPX_BITS_8;
2582 #if CONFIG_VP9_HIGHBITDEPTH
2583 cm->use_highbitdepth = 0;
2584 #endif
2585 }
2586 cm->color_space = vpx_rb_read_literal(rb, 3);
2587 if (cm->color_space != VPX_CS_SRGB) {
2588 cm->color_range = (vpx_color_range_t)vpx_rb_read_bit(rb);
2589 if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
2590 cm->subsampling_x = vpx_rb_read_bit(rb);
2591 cm->subsampling_y = vpx_rb_read_bit(rb);
2592 if (cm->subsampling_x == 1 && cm->subsampling_y == 1)
2593 vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
2594 "4:2:0 color not supported in profile 1 or 3");
2595 if (vpx_rb_read_bit(rb))
2596 vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
2597 "Reserved bit set");
2598 } else {
2599 cm->subsampling_y = cm->subsampling_x = 1;
2600 }
2601 } else {
2602 cm->color_range = VPX_CR_FULL_RANGE;
2603 if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
2604 // Note if colorspace is SRGB then 4:4:4 chroma sampling is assumed.
2605 // 4:2:2 or 4:4:0 chroma sampling is not allowed.
2606 cm->subsampling_y = cm->subsampling_x = 0;
2607 if (vpx_rb_read_bit(rb))
2608 vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
2609 "Reserved bit set");
2610 } else {
2611 vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
2612 "4:4:4 color not supported in profile 0 or 2");
2613 }
2614 }
2615 }
2616
flush_all_fb_on_key(VP9_COMMON * cm)2617 static INLINE void flush_all_fb_on_key(VP9_COMMON *cm) {
2618 if (cm->frame_type == KEY_FRAME && cm->current_video_frame > 0) {
2619 RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
2620 BufferPool *const pool = cm->buffer_pool;
2621 int i;
2622 for (i = 0; i < FRAME_BUFFERS; ++i) {
2623 if (i == cm->new_fb_idx) continue;
2624 frame_bufs[i].ref_count = 0;
2625 if (!frame_bufs[i].released) {
2626 pool->release_fb_cb(pool->cb_priv, &frame_bufs[i].raw_frame_buffer);
2627 frame_bufs[i].released = 1;
2628 }
2629 }
2630 }
2631 }
2632
read_uncompressed_header(VP9Decoder * pbi,struct vpx_read_bit_buffer * rb)2633 static size_t read_uncompressed_header(VP9Decoder *pbi,
2634 struct vpx_read_bit_buffer *rb) {
2635 VP9_COMMON *const cm = &pbi->common;
2636 BufferPool *const pool = cm->buffer_pool;
2637 RefCntBuffer *const frame_bufs = pool->frame_bufs;
2638 int i, mask, ref_index = 0;
2639 size_t sz;
2640
2641 cm->last_frame_type = cm->frame_type;
2642 cm->last_intra_only = cm->intra_only;
2643
2644 if (vpx_rb_read_literal(rb, 2) != VP9_FRAME_MARKER)
2645 vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
2646 "Invalid frame marker");
2647
2648 cm->profile = vp9_read_profile(rb);
2649 #if CONFIG_VP9_HIGHBITDEPTH
2650 if (cm->profile >= MAX_PROFILES)
2651 vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
2652 "Unsupported bitstream profile");
2653 #else
2654 if (cm->profile >= PROFILE_2)
2655 vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
2656 "Unsupported bitstream profile");
2657 #endif
2658
2659 cm->show_existing_frame = vpx_rb_read_bit(rb);
2660 if (cm->show_existing_frame) {
2661 // Show an existing frame directly.
2662 const int frame_to_show = cm->ref_frame_map[vpx_rb_read_literal(rb, 3)];
2663 if (frame_to_show < 0 || frame_bufs[frame_to_show].ref_count < 1) {
2664 vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
2665 "Buffer %d does not contain a decoded frame",
2666 frame_to_show);
2667 }
2668
2669 ref_cnt_fb(frame_bufs, &cm->new_fb_idx, frame_to_show);
2670 pbi->refresh_frame_flags = 0;
2671 cm->lf.filter_level = 0;
2672 cm->show_frame = 1;
2673
2674 return 0;
2675 }
2676
2677 cm->frame_type = (FRAME_TYPE)vpx_rb_read_bit(rb);
2678 cm->show_frame = vpx_rb_read_bit(rb);
2679 cm->error_resilient_mode = vpx_rb_read_bit(rb);
2680
2681 if (cm->frame_type == KEY_FRAME) {
2682 if (!vp9_read_sync_code(rb))
2683 vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
2684 "Invalid frame sync code");
2685
2686 read_bitdepth_colorspace_sampling(cm, rb);
2687 pbi->refresh_frame_flags = (1 << REF_FRAMES) - 1;
2688
2689 for (i = 0; i < REFS_PER_FRAME; ++i) {
2690 cm->frame_refs[i].idx = INVALID_IDX;
2691 cm->frame_refs[i].buf = NULL;
2692 }
2693
2694 setup_frame_size(cm, rb);
2695 if (pbi->need_resync) {
2696 memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map));
2697 flush_all_fb_on_key(cm);
2698 pbi->need_resync = 0;
2699 }
2700 } else {
2701 cm->intra_only = cm->show_frame ? 0 : vpx_rb_read_bit(rb);
2702
2703 cm->reset_frame_context =
2704 cm->error_resilient_mode ? 0 : vpx_rb_read_literal(rb, 2);
2705
2706 if (cm->intra_only) {
2707 if (!vp9_read_sync_code(rb))
2708 vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
2709 "Invalid frame sync code");
2710 if (cm->profile > PROFILE_0) {
2711 read_bitdepth_colorspace_sampling(cm, rb);
2712 } else {
2713 // NOTE: The intra-only frame header does not include the specification
2714 // of either the color format or color sub-sampling in profile 0. VP9
2715 // specifies that the default color format should be YUV 4:2:0 in this
2716 // case (normative).
2717 cm->color_space = VPX_CS_BT_601;
2718 cm->color_range = VPX_CR_STUDIO_RANGE;
2719 cm->subsampling_y = cm->subsampling_x = 1;
2720 cm->bit_depth = VPX_BITS_8;
2721 #if CONFIG_VP9_HIGHBITDEPTH
2722 cm->use_highbitdepth = 0;
2723 #endif
2724 }
2725
2726 pbi->refresh_frame_flags = vpx_rb_read_literal(rb, REF_FRAMES);
2727 setup_frame_size(cm, rb);
2728 if (pbi->need_resync) {
2729 memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map));
2730 pbi->need_resync = 0;
2731 }
2732 } else if (pbi->need_resync != 1) { /* Skip if need resync */
2733 pbi->refresh_frame_flags = vpx_rb_read_literal(rb, REF_FRAMES);
2734 for (i = 0; i < REFS_PER_FRAME; ++i) {
2735 const int ref = vpx_rb_read_literal(rb, REF_FRAMES_LOG2);
2736 const int idx = cm->ref_frame_map[ref];
2737 RefBuffer *const ref_frame = &cm->frame_refs[i];
2738 ref_frame->idx = idx;
2739 ref_frame->buf = &frame_bufs[idx].buf;
2740 cm->ref_frame_sign_bias[LAST_FRAME + i] = vpx_rb_read_bit(rb);
2741 }
2742
2743 setup_frame_size_with_refs(cm, rb);
2744
2745 cm->allow_high_precision_mv = vpx_rb_read_bit(rb);
2746 cm->interp_filter = read_interp_filter(rb);
2747
2748 for (i = 0; i < REFS_PER_FRAME; ++i) {
2749 RefBuffer *const ref_buf = &cm->frame_refs[i];
2750 #if CONFIG_VP9_HIGHBITDEPTH
2751 vp9_setup_scale_factors_for_frame(
2752 &ref_buf->sf, ref_buf->buf->y_crop_width,
2753 ref_buf->buf->y_crop_height, cm->width, cm->height,
2754 cm->use_highbitdepth);
2755 #else
2756 vp9_setup_scale_factors_for_frame(
2757 &ref_buf->sf, ref_buf->buf->y_crop_width,
2758 ref_buf->buf->y_crop_height, cm->width, cm->height);
2759 #endif
2760 }
2761 }
2762 }
2763 #if CONFIG_VP9_HIGHBITDEPTH
2764 get_frame_new_buffer(cm)->bit_depth = cm->bit_depth;
2765 #endif
2766 get_frame_new_buffer(cm)->color_space = cm->color_space;
2767 get_frame_new_buffer(cm)->color_range = cm->color_range;
2768 get_frame_new_buffer(cm)->render_width = cm->render_width;
2769 get_frame_new_buffer(cm)->render_height = cm->render_height;
2770
2771 if (pbi->need_resync) {
2772 vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
2773 "Keyframe / intra-only frame required to reset decoder"
2774 " state");
2775 }
2776
2777 if (!cm->error_resilient_mode) {
2778 cm->refresh_frame_context = vpx_rb_read_bit(rb);
2779 cm->frame_parallel_decoding_mode = vpx_rb_read_bit(rb);
2780 if (!cm->frame_parallel_decoding_mode) vp9_zero(cm->counts);
2781 } else {
2782 cm->refresh_frame_context = 0;
2783 cm->frame_parallel_decoding_mode = 1;
2784 }
2785
2786 // This flag will be overridden by the call to vp9_setup_past_independence
2787 // below, forcing the use of context 0 for those frame types.
2788 cm->frame_context_idx = vpx_rb_read_literal(rb, FRAME_CONTEXTS_LOG2);
2789
2790 // Generate next_ref_frame_map.
2791 for (mask = pbi->refresh_frame_flags; mask; mask >>= 1) {
2792 if (mask & 1) {
2793 cm->next_ref_frame_map[ref_index] = cm->new_fb_idx;
2794 ++frame_bufs[cm->new_fb_idx].ref_count;
2795 } else {
2796 cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index];
2797 }
2798 // Current thread holds the reference frame.
2799 if (cm->ref_frame_map[ref_index] >= 0)
2800 ++frame_bufs[cm->ref_frame_map[ref_index]].ref_count;
2801 ++ref_index;
2802 }
2803
2804 for (; ref_index < REF_FRAMES; ++ref_index) {
2805 cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index];
2806 // Current thread holds the reference frame.
2807 if (cm->ref_frame_map[ref_index] >= 0)
2808 ++frame_bufs[cm->ref_frame_map[ref_index]].ref_count;
2809 }
2810 pbi->hold_ref_buf = 1;
2811
2812 if (frame_is_intra_only(cm) || cm->error_resilient_mode)
2813 vp9_setup_past_independence(cm);
2814
2815 setup_loopfilter(&cm->lf, rb);
2816 setup_quantization(cm, &pbi->mb, rb);
2817 setup_segmentation(&cm->seg, rb);
2818 setup_segmentation_dequant(cm);
2819
2820 setup_tile_info(cm, rb);
2821 if (pbi->row_mt == 1) {
2822 int num_sbs = 1;
2823 const int aligned_rows = mi_cols_aligned_to_sb(cm->mi_rows);
2824 const int sb_rows = aligned_rows >> MI_BLOCK_SIZE_LOG2;
2825 const int num_jobs = sb_rows << cm->log2_tile_cols;
2826
2827 if (pbi->row_mt_worker_data == NULL) {
2828 CHECK_MEM_ERROR(cm, pbi->row_mt_worker_data,
2829 vpx_calloc(1, sizeof(*pbi->row_mt_worker_data)));
2830 #if CONFIG_MULTITHREAD
2831 pthread_mutex_init(&pbi->row_mt_worker_data->recon_done_mutex, NULL);
2832 #endif
2833 }
2834
2835 if (pbi->max_threads > 1) {
2836 const int aligned_cols = mi_cols_aligned_to_sb(cm->mi_cols);
2837 const int sb_cols = aligned_cols >> MI_BLOCK_SIZE_LOG2;
2838
2839 num_sbs = sb_cols * sb_rows;
2840 }
2841
2842 if (num_sbs > pbi->row_mt_worker_data->num_sbs ||
2843 num_jobs > pbi->row_mt_worker_data->num_jobs) {
2844 vp9_dec_free_row_mt_mem(pbi->row_mt_worker_data);
2845 vp9_dec_alloc_row_mt_mem(pbi->row_mt_worker_data, cm, num_sbs,
2846 pbi->max_threads, num_jobs);
2847 }
2848 vp9_jobq_alloc(pbi);
2849 }
2850 sz = vpx_rb_read_literal(rb, 16);
2851
2852 if (sz == 0)
2853 vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
2854 "Invalid header size");
2855
2856 return sz;
2857 }
2858
read_compressed_header(VP9Decoder * pbi,const uint8_t * data,size_t partition_size)2859 static int read_compressed_header(VP9Decoder *pbi, const uint8_t *data,
2860 size_t partition_size) {
2861 VP9_COMMON *const cm = &pbi->common;
2862 MACROBLOCKD *const xd = &pbi->mb;
2863 FRAME_CONTEXT *const fc = cm->fc;
2864 vpx_reader r;
2865 int k;
2866
2867 if (vpx_reader_init(&r, data, partition_size, pbi->decrypt_cb,
2868 pbi->decrypt_state))
2869 vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
2870 "Failed to allocate bool decoder 0");
2871
2872 cm->tx_mode = xd->lossless ? ONLY_4X4 : read_tx_mode(&r);
2873 if (cm->tx_mode == TX_MODE_SELECT) read_tx_mode_probs(&fc->tx_probs, &r);
2874 read_coef_probs(fc, cm->tx_mode, &r);
2875
2876 for (k = 0; k < SKIP_CONTEXTS; ++k)
2877 vp9_diff_update_prob(&r, &fc->skip_probs[k]);
2878
2879 if (!frame_is_intra_only(cm)) {
2880 nmv_context *const nmvc = &fc->nmvc;
2881 int i, j;
2882
2883 read_inter_mode_probs(fc, &r);
2884
2885 if (cm->interp_filter == SWITCHABLE) read_switchable_interp_probs(fc, &r);
2886
2887 for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
2888 vp9_diff_update_prob(&r, &fc->intra_inter_prob[i]);
2889
2890 cm->reference_mode = read_frame_reference_mode(cm, &r);
2891 if (cm->reference_mode != SINGLE_REFERENCE)
2892 vp9_setup_compound_reference_mode(cm);
2893 read_frame_reference_mode_probs(cm, &r);
2894
2895 for (j = 0; j < BLOCK_SIZE_GROUPS; j++)
2896 for (i = 0; i < INTRA_MODES - 1; ++i)
2897 vp9_diff_update_prob(&r, &fc->y_mode_prob[j][i]);
2898
2899 for (j = 0; j < PARTITION_CONTEXTS; ++j)
2900 for (i = 0; i < PARTITION_TYPES - 1; ++i)
2901 vp9_diff_update_prob(&r, &fc->partition_prob[j][i]);
2902
2903 read_mv_probs(nmvc, cm->allow_high_precision_mv, &r);
2904 }
2905
2906 return vpx_reader_has_error(&r);
2907 }
2908
init_read_bit_buffer(VP9Decoder * pbi,struct vpx_read_bit_buffer * rb,const uint8_t * data,const uint8_t * data_end,uint8_t clear_data[MAX_VP9_HEADER_SIZE])2909 static struct vpx_read_bit_buffer *init_read_bit_buffer(
2910 VP9Decoder *pbi, struct vpx_read_bit_buffer *rb, const uint8_t *data,
2911 const uint8_t *data_end, uint8_t clear_data[MAX_VP9_HEADER_SIZE]) {
2912 rb->bit_offset = 0;
2913 rb->error_handler = error_handler;
2914 rb->error_handler_data = &pbi->common;
2915 if (pbi->decrypt_cb) {
2916 const int n = (int)VPXMIN(MAX_VP9_HEADER_SIZE, data_end - data);
2917 pbi->decrypt_cb(pbi->decrypt_state, data, clear_data, n);
2918 rb->bit_buffer = clear_data;
2919 rb->bit_buffer_end = clear_data + n;
2920 } else {
2921 rb->bit_buffer = data;
2922 rb->bit_buffer_end = data_end;
2923 }
2924 return rb;
2925 }
2926
2927 //------------------------------------------------------------------------------
2928
vp9_read_sync_code(struct vpx_read_bit_buffer * const rb)2929 int vp9_read_sync_code(struct vpx_read_bit_buffer *const rb) {
2930 return vpx_rb_read_literal(rb, 8) == VP9_SYNC_CODE_0 &&
2931 vpx_rb_read_literal(rb, 8) == VP9_SYNC_CODE_1 &&
2932 vpx_rb_read_literal(rb, 8) == VP9_SYNC_CODE_2;
2933 }
2934
vp9_read_frame_size(struct vpx_read_bit_buffer * rb,int * width,int * height)2935 void vp9_read_frame_size(struct vpx_read_bit_buffer *rb, int *width,
2936 int *height) {
2937 *width = vpx_rb_read_literal(rb, 16) + 1;
2938 *height = vpx_rb_read_literal(rb, 16) + 1;
2939 }
2940
vp9_read_profile(struct vpx_read_bit_buffer * rb)2941 BITSTREAM_PROFILE vp9_read_profile(struct vpx_read_bit_buffer *rb) {
2942 int profile = vpx_rb_read_bit(rb);
2943 profile |= vpx_rb_read_bit(rb) << 1;
2944 if (profile > 2) profile += vpx_rb_read_bit(rb);
2945 return (BITSTREAM_PROFILE)profile;
2946 }
2947
vp9_decode_frame(VP9Decoder * pbi,const uint8_t * data,const uint8_t * data_end,const uint8_t ** p_data_end)2948 void vp9_decode_frame(VP9Decoder *pbi, const uint8_t *data,
2949 const uint8_t *data_end, const uint8_t **p_data_end) {
2950 VP9_COMMON *const cm = &pbi->common;
2951 MACROBLOCKD *const xd = &pbi->mb;
2952 struct vpx_read_bit_buffer rb;
2953 int context_updated = 0;
2954 uint8_t clear_data[MAX_VP9_HEADER_SIZE];
2955 const size_t first_partition_size = read_uncompressed_header(
2956 pbi, init_read_bit_buffer(pbi, &rb, data, data_end, clear_data));
2957 const int tile_rows = 1 << cm->log2_tile_rows;
2958 const int tile_cols = 1 << cm->log2_tile_cols;
2959 YV12_BUFFER_CONFIG *const new_fb = get_frame_new_buffer(cm);
2960 #if CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG
2961 bitstream_queue_set_frame_read(cm->current_video_frame * 2 + cm->show_frame);
2962 #endif
2963 #if CONFIG_MISMATCH_DEBUG
2964 mismatch_move_frame_idx_r();
2965 #endif
2966 xd->cur_buf = new_fb;
2967
2968 if (!first_partition_size) {
2969 // showing a frame directly
2970 *p_data_end = data + (cm->profile <= PROFILE_2 ? 1 : 2);
2971 return;
2972 }
2973
2974 data += vpx_rb_bytes_read(&rb);
2975 if (!read_is_valid(data, first_partition_size, data_end))
2976 vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
2977 "Truncated packet or corrupt header length");
2978
2979 cm->use_prev_frame_mvs =
2980 !cm->error_resilient_mode && cm->width == cm->last_width &&
2981 cm->height == cm->last_height && !cm->last_intra_only &&
2982 cm->last_show_frame && (cm->last_frame_type != KEY_FRAME);
2983
2984 vp9_setup_block_planes(xd, cm->subsampling_x, cm->subsampling_y);
2985
2986 *cm->fc = cm->frame_contexts[cm->frame_context_idx];
2987 if (!cm->fc->initialized)
2988 vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
2989 "Uninitialized entropy context.");
2990
2991 xd->corrupted = 0;
2992 new_fb->corrupted = read_compressed_header(pbi, data, first_partition_size);
2993 if (new_fb->corrupted)
2994 vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
2995 "Decode failed. Frame data header is corrupted.");
2996
2997 if (cm->lf.filter_level && !cm->skip_loop_filter) {
2998 vp9_loop_filter_frame_init(cm, cm->lf.filter_level);
2999 }
3000
3001 if (pbi->tile_worker_data == NULL ||
3002 (tile_cols * tile_rows) != pbi->total_tiles) {
3003 const int num_tile_workers =
3004 tile_cols * tile_rows + ((pbi->max_threads > 1) ? pbi->max_threads : 0);
3005 const size_t twd_size = num_tile_workers * sizeof(*pbi->tile_worker_data);
3006 // Ensure tile data offsets will be properly aligned. This may fail on
3007 // platforms without DECLARE_ALIGNED().
3008 assert((sizeof(*pbi->tile_worker_data) % 16) == 0);
3009 vpx_free(pbi->tile_worker_data);
3010 CHECK_MEM_ERROR(cm, pbi->tile_worker_data, vpx_memalign(32, twd_size));
3011 pbi->total_tiles = tile_rows * tile_cols;
3012 }
3013
3014 if (pbi->max_threads > 1 && tile_rows == 1 &&
3015 (tile_cols > 1 || pbi->row_mt == 1)) {
3016 if (pbi->row_mt == 1) {
3017 *p_data_end =
3018 decode_tiles_row_wise_mt(pbi, data + first_partition_size, data_end);
3019 } else {
3020 // Multi-threaded tile decoder
3021 *p_data_end = decode_tiles_mt(pbi, data + first_partition_size, data_end);
3022 if (!pbi->lpf_mt_opt) {
3023 if (!xd->corrupted) {
3024 if (!cm->skip_loop_filter) {
3025 // If multiple threads are used to decode tiles, then we use those
3026 // threads to do parallel loopfiltering.
3027 vp9_loop_filter_frame_mt(
3028 new_fb, cm, pbi->mb.plane, cm->lf.filter_level, 0, 0,
3029 pbi->tile_workers, pbi->num_tile_workers, &pbi->lf_row_sync);
3030 }
3031 } else {
3032 vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
3033 "Decode failed. Frame data is corrupted.");
3034 }
3035 }
3036 }
3037 } else {
3038 *p_data_end = decode_tiles(pbi, data + first_partition_size, data_end);
3039 }
3040
3041 if (!xd->corrupted) {
3042 if (!cm->error_resilient_mode && !cm->frame_parallel_decoding_mode) {
3043 vp9_adapt_coef_probs(cm);
3044
3045 if (!frame_is_intra_only(cm)) {
3046 vp9_adapt_mode_probs(cm);
3047 vp9_adapt_mv_probs(cm, cm->allow_high_precision_mv);
3048 }
3049 }
3050 } else {
3051 vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
3052 "Decode failed. Frame data is corrupted.");
3053 }
3054
3055 // Non frame parallel update frame context here.
3056 if (cm->refresh_frame_context && !context_updated)
3057 cm->frame_contexts[cm->frame_context_idx] = *cm->fc;
3058 }
3059