1 /*
2 * Copyright (c) 2012 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <assert.h>
12 #include <limits.h>
13 #include <math.h>
14
15 #include "./vpx_dsp_rtcd.h"
16 #include "vpx_dsp/vpx_dsp_common.h"
17 #include "vpx_scale/yv12config.h"
18 #include "vpx/vpx_integer.h"
19 #include "vp9/common/vp9_reconinter.h"
20 #include "vp9/encoder/vp9_context_tree.h"
21 #include "vp9/encoder/vp9_denoiser.h"
22 #include "vp9/encoder/vp9_encoder.h"
23
24 #ifdef OUTPUT_YUV_DENOISED
25 static void make_grayscale(YV12_BUFFER_CONFIG *yuv);
26 #endif
27
absdiff_thresh(BLOCK_SIZE bs,int increase_denoising)28 static int absdiff_thresh(BLOCK_SIZE bs, int increase_denoising) {
29 (void)bs;
30 return 3 + (increase_denoising ? 1 : 0);
31 }
32
delta_thresh(BLOCK_SIZE bs,int increase_denoising)33 static int delta_thresh(BLOCK_SIZE bs, int increase_denoising) {
34 (void)bs;
35 (void)increase_denoising;
36 return 4;
37 }
38
noise_motion_thresh(BLOCK_SIZE bs,int increase_denoising)39 static int noise_motion_thresh(BLOCK_SIZE bs, int increase_denoising) {
40 (void)bs;
41 (void)increase_denoising;
42 return 625;
43 }
44
sse_thresh(BLOCK_SIZE bs,int increase_denoising)45 static unsigned int sse_thresh(BLOCK_SIZE bs, int increase_denoising) {
46 return (1 << num_pels_log2_lookup[bs]) * (increase_denoising ? 80 : 40);
47 }
48
sse_diff_thresh(BLOCK_SIZE bs,int increase_denoising,int motion_magnitude)49 static int sse_diff_thresh(BLOCK_SIZE bs, int increase_denoising,
50 int motion_magnitude) {
51 if (motion_magnitude > noise_motion_thresh(bs, increase_denoising)) {
52 if (increase_denoising)
53 return (1 << num_pels_log2_lookup[bs]) << 2;
54 else
55 return 0;
56 } else {
57 return (1 << num_pels_log2_lookup[bs]) << 4;
58 }
59 }
60
total_adj_weak_thresh(BLOCK_SIZE bs,int increase_denoising)61 static int total_adj_weak_thresh(BLOCK_SIZE bs, int increase_denoising) {
62 return (1 << num_pels_log2_lookup[bs]) * (increase_denoising ? 3 : 2);
63 }
64
65 // TODO(jackychen): If increase_denoising is enabled in the future,
66 // we might need to update the code for calculating 'total_adj' in
67 // case the C code is not bit-exact with corresponding sse2 code.
vp9_denoiser_filter_c(const uint8_t * sig,int sig_stride,const uint8_t * mc_avg,int mc_avg_stride,uint8_t * avg,int avg_stride,int increase_denoising,BLOCK_SIZE bs,int motion_magnitude)68 int vp9_denoiser_filter_c(const uint8_t *sig, int sig_stride,
69 const uint8_t *mc_avg, int mc_avg_stride,
70 uint8_t *avg, int avg_stride, int increase_denoising,
71 BLOCK_SIZE bs, int motion_magnitude) {
72 int r, c;
73 const uint8_t *sig_start = sig;
74 const uint8_t *mc_avg_start = mc_avg;
75 uint8_t *avg_start = avg;
76 int diff, adj, absdiff, delta;
77 int adj_val[] = { 3, 4, 6 };
78 int total_adj = 0;
79 int shift_inc = 1;
80
81 // If motion_magnitude is small, making the denoiser more aggressive by
82 // increasing the adjustment for each level. Add another increment for
83 // blocks that are labeled for increase denoising.
84 if (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) {
85 if (increase_denoising) {
86 shift_inc = 2;
87 }
88 adj_val[0] += shift_inc;
89 adj_val[1] += shift_inc;
90 adj_val[2] += shift_inc;
91 }
92
93 // First attempt to apply a strong temporal denoising filter.
94 for (r = 0; r < (4 << b_height_log2_lookup[bs]); ++r) {
95 for (c = 0; c < (4 << b_width_log2_lookup[bs]); ++c) {
96 diff = mc_avg[c] - sig[c];
97 absdiff = abs(diff);
98
99 if (absdiff <= absdiff_thresh(bs, increase_denoising)) {
100 avg[c] = mc_avg[c];
101 total_adj += diff;
102 } else {
103 switch (absdiff) {
104 case 4:
105 case 5:
106 case 6:
107 case 7: adj = adj_val[0]; break;
108 case 8:
109 case 9:
110 case 10:
111 case 11:
112 case 12:
113 case 13:
114 case 14:
115 case 15: adj = adj_val[1]; break;
116 default: adj = adj_val[2];
117 }
118 if (diff > 0) {
119 avg[c] = VPXMIN(UINT8_MAX, sig[c] + adj);
120 total_adj += adj;
121 } else {
122 avg[c] = VPXMAX(0, sig[c] - adj);
123 total_adj -= adj;
124 }
125 }
126 }
127 sig += sig_stride;
128 avg += avg_stride;
129 mc_avg += mc_avg_stride;
130 }
131
132 // If the strong filter did not modify the signal too much, we're all set.
133 if (abs(total_adj) <= total_adj_strong_thresh(bs, increase_denoising)) {
134 return FILTER_BLOCK;
135 }
136
137 // Otherwise, we try to dampen the filter if the delta is not too high.
138 delta = ((abs(total_adj) - total_adj_strong_thresh(bs, increase_denoising)) >>
139 num_pels_log2_lookup[bs]) +
140 1;
141
142 if (delta >= delta_thresh(bs, increase_denoising)) {
143 return COPY_BLOCK;
144 }
145
146 mc_avg = mc_avg_start;
147 avg = avg_start;
148 sig = sig_start;
149 for (r = 0; r < (4 << b_height_log2_lookup[bs]); ++r) {
150 for (c = 0; c < (4 << b_width_log2_lookup[bs]); ++c) {
151 diff = mc_avg[c] - sig[c];
152 adj = abs(diff);
153 if (adj > delta) {
154 adj = delta;
155 }
156 if (diff > 0) {
157 // Diff positive means we made positive adjustment above
158 // (in first try/attempt), so now make negative adjustment to bring
159 // denoised signal down.
160 avg[c] = VPXMAX(0, avg[c] - adj);
161 total_adj -= adj;
162 } else {
163 // Diff negative means we made negative adjustment above
164 // (in first try/attempt), so now make positive adjustment to bring
165 // denoised signal up.
166 avg[c] = VPXMIN(UINT8_MAX, avg[c] + adj);
167 total_adj += adj;
168 }
169 }
170 sig += sig_stride;
171 avg += avg_stride;
172 mc_avg += mc_avg_stride;
173 }
174
175 // We can use the filter if it has been sufficiently dampened
176 if (abs(total_adj) <= total_adj_weak_thresh(bs, increase_denoising)) {
177 return FILTER_BLOCK;
178 }
179 return COPY_BLOCK;
180 }
181
block_start(uint8_t * framebuf,int stride,int mi_row,int mi_col)182 static uint8_t *block_start(uint8_t *framebuf, int stride, int mi_row,
183 int mi_col) {
184 return framebuf + (stride * mi_row << 3) + (mi_col << 3);
185 }
186
perform_motion_compensation(VP9_COMMON * const cm,VP9_DENOISER * denoiser,MACROBLOCK * mb,BLOCK_SIZE bs,int increase_denoising,int mi_row,int mi_col,PICK_MODE_CONTEXT * ctx,int motion_magnitude,int is_skin,int * zeromv_filter,int consec_zeromv,int num_spatial_layers,int width,int lst_fb_idx,int gld_fb_idx,int use_svc,int spatial_layer,int use_gf_temporal_ref)187 static VP9_DENOISER_DECISION perform_motion_compensation(
188 VP9_COMMON *const cm, VP9_DENOISER *denoiser, MACROBLOCK *mb, BLOCK_SIZE bs,
189 int increase_denoising, int mi_row, int mi_col, PICK_MODE_CONTEXT *ctx,
190 int motion_magnitude, int is_skin, int *zeromv_filter, int consec_zeromv,
191 int num_spatial_layers, int width, int lst_fb_idx, int gld_fb_idx,
192 int use_svc, int spatial_layer, int use_gf_temporal_ref) {
193 const int sse_diff = (ctx->newmv_sse == UINT_MAX)
194 ? 0
195 : ((int)ctx->zeromv_sse - (int)ctx->newmv_sse);
196 int frame;
197 int denoise_layer_idx = 0;
198 MACROBLOCKD *filter_mbd = &mb->e_mbd;
199 MODE_INFO *mi = filter_mbd->mi[0];
200 MODE_INFO saved_mi;
201 int i;
202 struct buf_2d saved_dst[MAX_MB_PLANE];
203 struct buf_2d saved_pre[MAX_MB_PLANE];
204 const RefBuffer *saved_block_refs[2];
205 MV_REFERENCE_FRAME saved_frame;
206
207 frame = ctx->best_reference_frame;
208
209 saved_mi = *mi;
210
211 if (is_skin && (motion_magnitude > 0 || consec_zeromv < 4)) return COPY_BLOCK;
212
213 // Avoid denoising small blocks. When noise > kDenLow or frame width > 480,
214 // denoise 16x16 blocks.
215 if (bs == BLOCK_8X8 || bs == BLOCK_8X16 || bs == BLOCK_16X8 ||
216 (bs == BLOCK_16X16 && width > 480 &&
217 denoiser->denoising_level <= kDenLow))
218 return COPY_BLOCK;
219
220 // If the best reference frame uses inter-prediction and there is enough of a
221 // difference in sum-squared-error, use it.
222 if (frame != INTRA_FRAME && frame != ALTREF_FRAME && frame != GOLDEN_FRAME &&
223 sse_diff > sse_diff_thresh(bs, increase_denoising, motion_magnitude)) {
224 mi->ref_frame[0] = ctx->best_reference_frame;
225 mi->mode = ctx->best_sse_inter_mode;
226 mi->mv[0] = ctx->best_sse_mv;
227 } else {
228 // Otherwise, use the zero reference frame.
229 frame = ctx->best_zeromv_reference_frame;
230 ctx->newmv_sse = ctx->zeromv_sse;
231 // Bias to last reference.
232 if ((num_spatial_layers > 1 && !use_gf_temporal_ref) ||
233 frame == ALTREF_FRAME ||
234 (frame == GOLDEN_FRAME && use_gf_temporal_ref) ||
235 (frame != LAST_FRAME &&
236 ((ctx->zeromv_lastref_sse<(5 * ctx->zeromv_sse)>> 2) ||
237 denoiser->denoising_level >= kDenHigh))) {
238 frame = LAST_FRAME;
239 ctx->newmv_sse = ctx->zeromv_lastref_sse;
240 }
241 mi->ref_frame[0] = frame;
242 mi->mode = ZEROMV;
243 mi->mv[0].as_int = 0;
244 ctx->best_sse_inter_mode = ZEROMV;
245 ctx->best_sse_mv.as_int = 0;
246 *zeromv_filter = 1;
247 if (denoiser->denoising_level > kDenMedium) {
248 motion_magnitude = 0;
249 }
250 }
251
252 saved_frame = frame;
253 // When using SVC, we need to map REF_FRAME to the frame buffer index.
254 if (use_svc) {
255 if (frame == LAST_FRAME)
256 frame = lst_fb_idx + 1;
257 else if (frame == GOLDEN_FRAME)
258 frame = gld_fb_idx + 1;
259 // Shift for the second spatial layer.
260 if (num_spatial_layers - spatial_layer == 2)
261 frame = frame + denoiser->num_ref_frames;
262 denoise_layer_idx = num_spatial_layers - spatial_layer - 1;
263 }
264
265 // Force copy (no denoise, copy source in denoised buffer) if
266 // running_avg_y[frame] is NULL.
267 if (denoiser->running_avg_y[frame].buffer_alloc == NULL) {
268 // Restore everything to its original state
269 *mi = saved_mi;
270 return COPY_BLOCK;
271 }
272
273 if (ctx->newmv_sse > sse_thresh(bs, increase_denoising)) {
274 // Restore everything to its original state
275 *mi = saved_mi;
276 return COPY_BLOCK;
277 }
278 if (motion_magnitude > (noise_motion_thresh(bs, increase_denoising) << 3)) {
279 // Restore everything to its original state
280 *mi = saved_mi;
281 return COPY_BLOCK;
282 }
283
284 // We will restore these after motion compensation.
285 for (i = 0; i < MAX_MB_PLANE; ++i) {
286 saved_pre[i] = filter_mbd->plane[i].pre[0];
287 saved_dst[i] = filter_mbd->plane[i].dst;
288 }
289 saved_block_refs[0] = filter_mbd->block_refs[0];
290
291 // Set the pointers in the MACROBLOCKD to point to the buffers in the denoiser
292 // struct.
293 filter_mbd->plane[0].pre[0].buf =
294 block_start(denoiser->running_avg_y[frame].y_buffer,
295 denoiser->running_avg_y[frame].y_stride, mi_row, mi_col);
296 filter_mbd->plane[0].pre[0].stride = denoiser->running_avg_y[frame].y_stride;
297 filter_mbd->plane[1].pre[0].buf =
298 block_start(denoiser->running_avg_y[frame].u_buffer,
299 denoiser->running_avg_y[frame].uv_stride, mi_row, mi_col);
300 filter_mbd->plane[1].pre[0].stride = denoiser->running_avg_y[frame].uv_stride;
301 filter_mbd->plane[2].pre[0].buf =
302 block_start(denoiser->running_avg_y[frame].v_buffer,
303 denoiser->running_avg_y[frame].uv_stride, mi_row, mi_col);
304 filter_mbd->plane[2].pre[0].stride = denoiser->running_avg_y[frame].uv_stride;
305
306 filter_mbd->plane[0].dst.buf = block_start(
307 denoiser->mc_running_avg_y[denoise_layer_idx].y_buffer,
308 denoiser->mc_running_avg_y[denoise_layer_idx].y_stride, mi_row, mi_col);
309 filter_mbd->plane[0].dst.stride =
310 denoiser->mc_running_avg_y[denoise_layer_idx].y_stride;
311 filter_mbd->plane[1].dst.buf = block_start(
312 denoiser->mc_running_avg_y[denoise_layer_idx].u_buffer,
313 denoiser->mc_running_avg_y[denoise_layer_idx].uv_stride, mi_row, mi_col);
314 filter_mbd->plane[1].dst.stride =
315 denoiser->mc_running_avg_y[denoise_layer_idx].uv_stride;
316 filter_mbd->plane[2].dst.buf = block_start(
317 denoiser->mc_running_avg_y[denoise_layer_idx].v_buffer,
318 denoiser->mc_running_avg_y[denoise_layer_idx].uv_stride, mi_row, mi_col);
319 filter_mbd->plane[2].dst.stride =
320 denoiser->mc_running_avg_y[denoise_layer_idx].uv_stride;
321
322 set_ref_ptrs(cm, filter_mbd, saved_frame, NONE);
323 vp9_build_inter_predictors_sby(filter_mbd, mi_row, mi_col, bs);
324
325 // Restore everything to its original state
326 *mi = saved_mi;
327 filter_mbd->block_refs[0] = saved_block_refs[0];
328 for (i = 0; i < MAX_MB_PLANE; ++i) {
329 filter_mbd->plane[i].pre[0] = saved_pre[i];
330 filter_mbd->plane[i].dst = saved_dst[i];
331 }
332
333 return FILTER_BLOCK;
334 }
335
vp9_denoiser_denoise(VP9_COMP * cpi,MACROBLOCK * mb,int mi_row,int mi_col,BLOCK_SIZE bs,PICK_MODE_CONTEXT * ctx,VP9_DENOISER_DECISION * denoiser_decision,int use_gf_temporal_ref)336 void vp9_denoiser_denoise(VP9_COMP *cpi, MACROBLOCK *mb, int mi_row, int mi_col,
337 BLOCK_SIZE bs, PICK_MODE_CONTEXT *ctx,
338 VP9_DENOISER_DECISION *denoiser_decision,
339 int use_gf_temporal_ref) {
340 int mv_col, mv_row;
341 int motion_magnitude = 0;
342 int zeromv_filter = 0;
343 VP9_DENOISER *denoiser = &cpi->denoiser;
344 VP9_DENOISER_DECISION decision = COPY_BLOCK;
345
346 const int shift =
347 cpi->svc.number_spatial_layers - cpi->svc.spatial_layer_id == 2
348 ? denoiser->num_ref_frames
349 : 0;
350 YV12_BUFFER_CONFIG avg = denoiser->running_avg_y[INTRA_FRAME + shift];
351 const int denoise_layer_index =
352 cpi->svc.number_spatial_layers - cpi->svc.spatial_layer_id - 1;
353 YV12_BUFFER_CONFIG mc_avg = denoiser->mc_running_avg_y[denoise_layer_index];
354 uint8_t *avg_start = block_start(avg.y_buffer, avg.y_stride, mi_row, mi_col);
355
356 uint8_t *mc_avg_start =
357 block_start(mc_avg.y_buffer, mc_avg.y_stride, mi_row, mi_col);
358 struct buf_2d src = mb->plane[0].src;
359 int is_skin = 0;
360 int increase_denoising = 0;
361 int consec_zeromv = 0;
362 int last_is_reference = cpi->ref_frame_flags & VP9_LAST_FLAG;
363 mv_col = ctx->best_sse_mv.as_mv.col;
364 mv_row = ctx->best_sse_mv.as_mv.row;
365 motion_magnitude = mv_row * mv_row + mv_col * mv_col;
366
367 if (cpi->use_skin_detection && bs <= BLOCK_32X32 &&
368 denoiser->denoising_level < kDenHigh) {
369 int motion_level = (motion_magnitude < 16) ? 0 : 1;
370 // If motion for current block is small/zero, compute consec_zeromv for
371 // skin detection (early exit in skin detection is done for large
372 // consec_zeromv when current block has small/zero motion).
373 consec_zeromv = 0;
374 if (motion_level == 0) {
375 VP9_COMMON *const cm = &cpi->common;
376 int j, i;
377 // Loop through the 8x8 sub-blocks.
378 const int bw = num_8x8_blocks_wide_lookup[bs];
379 const int bh = num_8x8_blocks_high_lookup[bs];
380 const int xmis = VPXMIN(cm->mi_cols - mi_col, bw);
381 const int ymis = VPXMIN(cm->mi_rows - mi_row, bh);
382 const int block_index = mi_row * cm->mi_cols + mi_col;
383 consec_zeromv = 100;
384 for (i = 0; i < ymis; i++) {
385 for (j = 0; j < xmis; j++) {
386 int bl_index = block_index + i * cm->mi_cols + j;
387 consec_zeromv = VPXMIN(cpi->consec_zero_mv[bl_index], consec_zeromv);
388 // No need to keep checking 8x8 blocks if any of the sub-blocks
389 // has small consec_zeromv (since threshold for no_skin based on
390 // zero/small motion in skin detection is high, i.e, > 4).
391 if (consec_zeromv < 4) {
392 i = ymis;
393 break;
394 }
395 }
396 }
397 }
398 // TODO(marpan): Compute skin detection over sub-blocks.
399 is_skin = vp9_compute_skin_block(
400 mb->plane[0].src.buf, mb->plane[1].src.buf, mb->plane[2].src.buf,
401 mb->plane[0].src.stride, mb->plane[1].src.stride, bs, consec_zeromv,
402 motion_level);
403 }
404 if (!is_skin && denoiser->denoising_level == kDenHigh) increase_denoising = 1;
405
406 // Copy block if LAST_FRAME is not a reference.
407 // Last doesn't always exist when SVC layers are dynamically changed, e.g. top
408 // spatial layer doesn't have last reference when it's brought up for the
409 // first time on the fly.
410 if (last_is_reference && denoiser->denoising_level >= kDenLow &&
411 !ctx->sb_skip_denoising)
412 decision = perform_motion_compensation(
413 &cpi->common, denoiser, mb, bs, increase_denoising, mi_row, mi_col, ctx,
414 motion_magnitude, is_skin, &zeromv_filter, consec_zeromv,
415 cpi->svc.number_spatial_layers, cpi->Source->y_width, cpi->lst_fb_idx,
416 cpi->gld_fb_idx, cpi->use_svc, cpi->svc.spatial_layer_id,
417 use_gf_temporal_ref);
418
419 if (decision == FILTER_BLOCK) {
420 decision = vp9_denoiser_filter(src.buf, src.stride, mc_avg_start,
421 mc_avg.y_stride, avg_start, avg.y_stride,
422 increase_denoising, bs, motion_magnitude);
423 }
424
425 if (decision == FILTER_BLOCK) {
426 vpx_convolve_copy(avg_start, avg.y_stride, src.buf, src.stride, NULL, 0, 0,
427 0, 0, num_4x4_blocks_wide_lookup[bs] << 2,
428 num_4x4_blocks_high_lookup[bs] << 2);
429 } else { // COPY_BLOCK
430 vpx_convolve_copy(src.buf, src.stride, avg_start, avg.y_stride, NULL, 0, 0,
431 0, 0, num_4x4_blocks_wide_lookup[bs] << 2,
432 num_4x4_blocks_high_lookup[bs] << 2);
433 }
434 *denoiser_decision = decision;
435 if (decision == FILTER_BLOCK && zeromv_filter == 1)
436 *denoiser_decision = FILTER_ZEROMV_BLOCK;
437 }
438
copy_frame(YV12_BUFFER_CONFIG * const dest,const YV12_BUFFER_CONFIG * const src)439 static void copy_frame(YV12_BUFFER_CONFIG *const dest,
440 const YV12_BUFFER_CONFIG *const src) {
441 int r;
442 const uint8_t *srcbuf = src->y_buffer;
443 uint8_t *destbuf = dest->y_buffer;
444
445 assert(dest->y_width == src->y_width);
446 assert(dest->y_height == src->y_height);
447
448 for (r = 0; r < dest->y_height; ++r) {
449 memcpy(destbuf, srcbuf, dest->y_width);
450 destbuf += dest->y_stride;
451 srcbuf += src->y_stride;
452 }
453 }
454
swap_frame_buffer(YV12_BUFFER_CONFIG * const dest,YV12_BUFFER_CONFIG * const src)455 static void swap_frame_buffer(YV12_BUFFER_CONFIG *const dest,
456 YV12_BUFFER_CONFIG *const src) {
457 uint8_t *tmp_buf = dest->y_buffer;
458 assert(dest->y_width == src->y_width);
459 assert(dest->y_height == src->y_height);
460 dest->y_buffer = src->y_buffer;
461 src->y_buffer = tmp_buf;
462 }
463
vp9_denoiser_update_frame_info(VP9_DENOISER * denoiser,YV12_BUFFER_CONFIG src,struct SVC * svc,FRAME_TYPE frame_type,int refresh_alt_ref_frame,int refresh_golden_frame,int refresh_last_frame,int alt_fb_idx,int gld_fb_idx,int lst_fb_idx,int resized,int svc_refresh_denoiser_buffers,int second_spatial_layer)464 void vp9_denoiser_update_frame_info(
465 VP9_DENOISER *denoiser, YV12_BUFFER_CONFIG src, struct SVC *svc,
466 FRAME_TYPE frame_type, int refresh_alt_ref_frame, int refresh_golden_frame,
467 int refresh_last_frame, int alt_fb_idx, int gld_fb_idx, int lst_fb_idx,
468 int resized, int svc_refresh_denoiser_buffers, int second_spatial_layer) {
469 const int shift = second_spatial_layer ? denoiser->num_ref_frames : 0;
470 // Copy source into denoised reference buffers on KEY_FRAME or
471 // if the just encoded frame was resized. For SVC, copy source if the base
472 // spatial layer was key frame.
473 if (frame_type == KEY_FRAME || resized != 0 || denoiser->reset ||
474 svc_refresh_denoiser_buffers) {
475 int i;
476 // Start at 1 so as not to overwrite the INTRA_FRAME
477 for (i = 1; i < denoiser->num_ref_frames; ++i) {
478 if (denoiser->running_avg_y[i + shift].buffer_alloc != NULL)
479 copy_frame(&denoiser->running_avg_y[i + shift], &src);
480 }
481 denoiser->reset = 0;
482 return;
483 }
484
485 if (svc->temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_BYPASS &&
486 svc->use_set_ref_frame_config) {
487 int i;
488 for (i = 0; i < REF_FRAMES; i++) {
489 if (svc->update_buffer_slot[svc->spatial_layer_id] & (1 << i))
490 copy_frame(&denoiser->running_avg_y[i + 1 + shift],
491 &denoiser->running_avg_y[INTRA_FRAME + shift]);
492 }
493 } else {
494 // If more than one refresh occurs, must copy frame buffer.
495 if ((refresh_alt_ref_frame + refresh_golden_frame + refresh_last_frame) >
496 1) {
497 if (refresh_alt_ref_frame) {
498 copy_frame(&denoiser->running_avg_y[alt_fb_idx + 1 + shift],
499 &denoiser->running_avg_y[INTRA_FRAME + shift]);
500 }
501 if (refresh_golden_frame) {
502 copy_frame(&denoiser->running_avg_y[gld_fb_idx + 1 + shift],
503 &denoiser->running_avg_y[INTRA_FRAME + shift]);
504 }
505 if (refresh_last_frame) {
506 copy_frame(&denoiser->running_avg_y[lst_fb_idx + 1 + shift],
507 &denoiser->running_avg_y[INTRA_FRAME + shift]);
508 }
509 } else {
510 if (refresh_alt_ref_frame) {
511 swap_frame_buffer(&denoiser->running_avg_y[alt_fb_idx + 1 + shift],
512 &denoiser->running_avg_y[INTRA_FRAME + shift]);
513 }
514 if (refresh_golden_frame) {
515 swap_frame_buffer(&denoiser->running_avg_y[gld_fb_idx + 1 + shift],
516 &denoiser->running_avg_y[INTRA_FRAME + shift]);
517 }
518 if (refresh_last_frame) {
519 swap_frame_buffer(&denoiser->running_avg_y[lst_fb_idx + 1 + shift],
520 &denoiser->running_avg_y[INTRA_FRAME + shift]);
521 }
522 }
523 }
524 }
525
vp9_denoiser_reset_frame_stats(PICK_MODE_CONTEXT * ctx)526 void vp9_denoiser_reset_frame_stats(PICK_MODE_CONTEXT *ctx) {
527 ctx->zeromv_sse = UINT_MAX;
528 ctx->newmv_sse = UINT_MAX;
529 ctx->zeromv_lastref_sse = UINT_MAX;
530 ctx->best_sse_mv.as_int = 0;
531 }
532
vp9_denoiser_update_frame_stats(MODE_INFO * mi,unsigned int sse,PREDICTION_MODE mode,PICK_MODE_CONTEXT * ctx)533 void vp9_denoiser_update_frame_stats(MODE_INFO *mi, unsigned int sse,
534 PREDICTION_MODE mode,
535 PICK_MODE_CONTEXT *ctx) {
536 if (mi->mv[0].as_int == 0 && sse < ctx->zeromv_sse) {
537 ctx->zeromv_sse = sse;
538 ctx->best_zeromv_reference_frame = mi->ref_frame[0];
539 if (mi->ref_frame[0] == LAST_FRAME) ctx->zeromv_lastref_sse = sse;
540 }
541
542 if (mi->mv[0].as_int != 0 && sse < ctx->newmv_sse) {
543 ctx->newmv_sse = sse;
544 ctx->best_sse_inter_mode = mode;
545 ctx->best_sse_mv = mi->mv[0];
546 ctx->best_reference_frame = mi->ref_frame[0];
547 }
548 }
549
vp9_denoiser_realloc_svc_helper(VP9_COMMON * cm,VP9_DENOISER * denoiser,int fb_idx)550 static int vp9_denoiser_realloc_svc_helper(VP9_COMMON *cm,
551 VP9_DENOISER *denoiser, int fb_idx) {
552 int fail = 0;
553 if (denoiser->running_avg_y[fb_idx].buffer_alloc == NULL) {
554 fail =
555 vpx_alloc_frame_buffer(&denoiser->running_avg_y[fb_idx], cm->width,
556 cm->height, cm->subsampling_x, cm->subsampling_y,
557 #if CONFIG_VP9_HIGHBITDEPTH
558 cm->use_highbitdepth,
559 #endif
560 VP9_ENC_BORDER_IN_PIXELS, 0);
561 if (fail) {
562 vp9_denoiser_free(denoiser);
563 return 1;
564 }
565 }
566 return 0;
567 }
568
vp9_denoiser_realloc_svc(VP9_COMMON * cm,VP9_DENOISER * denoiser,struct SVC * svc,int svc_buf_shift,int refresh_alt,int refresh_gld,int refresh_lst,int alt_fb_idx,int gld_fb_idx,int lst_fb_idx)569 int vp9_denoiser_realloc_svc(VP9_COMMON *cm, VP9_DENOISER *denoiser,
570 struct SVC *svc, int svc_buf_shift,
571 int refresh_alt, int refresh_gld, int refresh_lst,
572 int alt_fb_idx, int gld_fb_idx, int lst_fb_idx) {
573 int fail = 0;
574 if (svc->temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_BYPASS &&
575 svc->use_set_ref_frame_config) {
576 int i;
577 for (i = 0; i < REF_FRAMES; i++) {
578 if (cm->frame_type == KEY_FRAME ||
579 svc->update_buffer_slot[svc->spatial_layer_id] & (1 << i)) {
580 fail = vp9_denoiser_realloc_svc_helper(cm, denoiser,
581 i + 1 + svc_buf_shift);
582 }
583 }
584 } else {
585 if (refresh_alt) {
586 // Increase the frame buffer index by 1 to map it to the buffer index in
587 // the denoiser.
588 fail = vp9_denoiser_realloc_svc_helper(cm, denoiser,
589 alt_fb_idx + 1 + svc_buf_shift);
590 if (fail) return 1;
591 }
592 if (refresh_gld) {
593 fail = vp9_denoiser_realloc_svc_helper(cm, denoiser,
594 gld_fb_idx + 1 + svc_buf_shift);
595 if (fail) return 1;
596 }
597 if (refresh_lst) {
598 fail = vp9_denoiser_realloc_svc_helper(cm, denoiser,
599 lst_fb_idx + 1 + svc_buf_shift);
600 if (fail) return 1;
601 }
602 }
603 return 0;
604 }
605
vp9_denoiser_alloc(VP9_COMMON * cm,struct SVC * svc,VP9_DENOISER * denoiser,int use_svc,int noise_sen,int width,int height,int ssx,int ssy,int use_highbitdepth,int border)606 int vp9_denoiser_alloc(VP9_COMMON *cm, struct SVC *svc, VP9_DENOISER *denoiser,
607 int use_svc, int noise_sen, int width, int height,
608 int ssx, int ssy,
609 #if CONFIG_VP9_HIGHBITDEPTH
610 int use_highbitdepth,
611 #endif
612 int border) {
613 int i, layer, fail, init_num_ref_frames;
614 const int legacy_byte_alignment = 0;
615 int num_layers = 1;
616 int scaled_width = width;
617 int scaled_height = height;
618 if (use_svc) {
619 LAYER_CONTEXT *lc = &svc->layer_context[svc->spatial_layer_id *
620 svc->number_temporal_layers +
621 svc->temporal_layer_id];
622 get_layer_resolution(width, height, lc->scaling_factor_num,
623 lc->scaling_factor_den, &scaled_width, &scaled_height);
624 // For SVC: only denoise at most 2 spatial (highest) layers.
625 if (noise_sen >= 2)
626 // Denoise from one spatial layer below the top.
627 svc->first_layer_denoise = VPXMAX(svc->number_spatial_layers - 2, 0);
628 else
629 // Only denoise the top spatial layer.
630 svc->first_layer_denoise = VPXMAX(svc->number_spatial_layers - 1, 0);
631 num_layers = svc->number_spatial_layers - svc->first_layer_denoise;
632 }
633 assert(denoiser != NULL);
634 denoiser->num_ref_frames = use_svc ? SVC_REF_FRAMES : NONSVC_REF_FRAMES;
635 init_num_ref_frames = use_svc ? MAX_REF_FRAMES : NONSVC_REF_FRAMES;
636 denoiser->num_layers = num_layers;
637 CHECK_MEM_ERROR(cm, denoiser->running_avg_y,
638 vpx_calloc(denoiser->num_ref_frames * num_layers,
639 sizeof(denoiser->running_avg_y[0])));
640 CHECK_MEM_ERROR(
641 cm, denoiser->mc_running_avg_y,
642 vpx_calloc(num_layers, sizeof(denoiser->mc_running_avg_y[0])));
643
644 for (layer = 0; layer < num_layers; ++layer) {
645 const int denoise_width = (layer == 0) ? width : scaled_width;
646 const int denoise_height = (layer == 0) ? height : scaled_height;
647 for (i = 0; i < init_num_ref_frames; ++i) {
648 fail = vpx_alloc_frame_buffer(
649 &denoiser->running_avg_y[i + denoiser->num_ref_frames * layer],
650 denoise_width, denoise_height, ssx, ssy,
651 #if CONFIG_VP9_HIGHBITDEPTH
652 use_highbitdepth,
653 #endif
654 border, legacy_byte_alignment);
655 if (fail) {
656 vp9_denoiser_free(denoiser);
657 return 1;
658 }
659 #ifdef OUTPUT_YUV_DENOISED
660 make_grayscale(&denoiser->running_avg_y[i]);
661 #endif
662 }
663
664 fail = vpx_alloc_frame_buffer(&denoiser->mc_running_avg_y[layer],
665 denoise_width, denoise_height, ssx, ssy,
666 #if CONFIG_VP9_HIGHBITDEPTH
667 use_highbitdepth,
668 #endif
669 border, legacy_byte_alignment);
670 if (fail) {
671 vp9_denoiser_free(denoiser);
672 return 1;
673 }
674 }
675
676 // denoiser->last_source only used for noise_estimation, so only for top
677 // layer.
678 fail = vpx_alloc_frame_buffer(&denoiser->last_source, width, height, ssx, ssy,
679 #if CONFIG_VP9_HIGHBITDEPTH
680 use_highbitdepth,
681 #endif
682 border, legacy_byte_alignment);
683 if (fail) {
684 vp9_denoiser_free(denoiser);
685 return 1;
686 }
687 #ifdef OUTPUT_YUV_DENOISED
688 make_grayscale(&denoiser->running_avg_y[i]);
689 #endif
690 denoiser->frame_buffer_initialized = 1;
691 denoiser->denoising_level = kDenMedium;
692 denoiser->prev_denoising_level = kDenMedium;
693 denoiser->reset = 0;
694 denoiser->current_denoiser_frame = 0;
695 return 0;
696 }
697
vp9_denoiser_free(VP9_DENOISER * denoiser)698 void vp9_denoiser_free(VP9_DENOISER *denoiser) {
699 int i;
700 if (denoiser == NULL) {
701 return;
702 }
703 denoiser->frame_buffer_initialized = 0;
704 for (i = 0; i < denoiser->num_ref_frames * denoiser->num_layers; ++i) {
705 vpx_free_frame_buffer(&denoiser->running_avg_y[i]);
706 }
707 vpx_free(denoiser->running_avg_y);
708 denoiser->running_avg_y = NULL;
709
710 for (i = 0; i < denoiser->num_layers; ++i) {
711 vpx_free_frame_buffer(&denoiser->mc_running_avg_y[i]);
712 }
713
714 vpx_free(denoiser->mc_running_avg_y);
715 denoiser->mc_running_avg_y = NULL;
716 vpx_free_frame_buffer(&denoiser->last_source);
717 }
718
force_refresh_longterm_ref(VP9_COMP * const cpi)719 static void force_refresh_longterm_ref(VP9_COMP *const cpi) {
720 SVC *const svc = &cpi->svc;
721 // If long term reference is used, force refresh of that slot, so
722 // denoiser buffer for long term reference stays in sync.
723 if (svc->use_gf_temporal_ref_current_layer) {
724 int index = svc->spatial_layer_id;
725 if (svc->number_spatial_layers == 3) index = svc->spatial_layer_id - 1;
726 assert(index >= 0);
727 cpi->alt_fb_idx = svc->buffer_gf_temporal_ref[index].idx;
728 cpi->refresh_alt_ref_frame = 1;
729 }
730 }
731
vp9_denoiser_set_noise_level(VP9_COMP * const cpi,int noise_level)732 void vp9_denoiser_set_noise_level(VP9_COMP *const cpi, int noise_level) {
733 VP9_DENOISER *const denoiser = &cpi->denoiser;
734 denoiser->denoising_level = noise_level;
735 if (denoiser->denoising_level > kDenLowLow &&
736 denoiser->prev_denoising_level == kDenLowLow) {
737 denoiser->reset = 1;
738 force_refresh_longterm_ref(cpi);
739 } else {
740 denoiser->reset = 0;
741 }
742 denoiser->prev_denoising_level = denoiser->denoising_level;
743 }
744
745 // Scale/increase the partition threshold
746 // for denoiser speed-up.
vp9_scale_part_thresh(int64_t threshold,VP9_DENOISER_LEVEL noise_level,int content_state,int temporal_layer_id)747 int64_t vp9_scale_part_thresh(int64_t threshold, VP9_DENOISER_LEVEL noise_level,
748 int content_state, int temporal_layer_id) {
749 if ((content_state == kLowSadLowSumdiff) ||
750 (content_state == kHighSadLowSumdiff) ||
751 (content_state == kLowVarHighSumdiff) || (noise_level == kDenHigh) ||
752 (temporal_layer_id != 0)) {
753 int64_t scaled_thr =
754 (temporal_layer_id < 2) ? (3 * threshold) >> 1 : (7 * threshold) >> 2;
755 return scaled_thr;
756 } else {
757 return (5 * threshold) >> 2;
758 }
759 }
760
761 // Scale/increase the ac skip threshold for
762 // denoiser speed-up.
vp9_scale_acskip_thresh(int64_t threshold,VP9_DENOISER_LEVEL noise_level,int abs_sumdiff,int temporal_layer_id)763 int64_t vp9_scale_acskip_thresh(int64_t threshold,
764 VP9_DENOISER_LEVEL noise_level, int abs_sumdiff,
765 int temporal_layer_id) {
766 if (noise_level >= kDenLow && abs_sumdiff < 5)
767 return threshold *=
768 (noise_level == kDenLow) ? 2 : (temporal_layer_id == 2) ? 10 : 6;
769 else
770 return threshold;
771 }
772
vp9_denoiser_reset_on_first_frame(VP9_COMP * const cpi)773 void vp9_denoiser_reset_on_first_frame(VP9_COMP *const cpi) {
774 if (vp9_denoise_svc_non_key(cpi) &&
775 cpi->denoiser.current_denoiser_frame == 0) {
776 cpi->denoiser.reset = 1;
777 force_refresh_longterm_ref(cpi);
778 }
779 }
780
vp9_denoiser_update_ref_frame(VP9_COMP * const cpi)781 void vp9_denoiser_update_ref_frame(VP9_COMP *const cpi) {
782 VP9_COMMON *const cm = &cpi->common;
783 SVC *const svc = &cpi->svc;
784
785 if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc(cpi) &&
786 cpi->denoiser.denoising_level > kDenLowLow) {
787 int svc_refresh_denoiser_buffers = 0;
788 int denoise_svc_second_layer = 0;
789 FRAME_TYPE frame_type = cm->intra_only ? KEY_FRAME : cm->frame_type;
790 cpi->denoiser.current_denoiser_frame++;
791 if (cpi->use_svc) {
792 const int svc_buf_shift =
793 svc->number_spatial_layers - svc->spatial_layer_id == 2
794 ? cpi->denoiser.num_ref_frames
795 : 0;
796 int layer =
797 LAYER_IDS_TO_IDX(svc->spatial_layer_id, svc->temporal_layer_id,
798 svc->number_temporal_layers);
799 LAYER_CONTEXT *const lc = &svc->layer_context[layer];
800 svc_refresh_denoiser_buffers =
801 lc->is_key_frame || svc->spatial_layer_sync[svc->spatial_layer_id];
802 denoise_svc_second_layer =
803 svc->number_spatial_layers - svc->spatial_layer_id == 2 ? 1 : 0;
804 // Check if we need to allocate extra buffers in the denoiser
805 // for refreshed frames.
806 if (vp9_denoiser_realloc_svc(cm, &cpi->denoiser, svc, svc_buf_shift,
807 cpi->refresh_alt_ref_frame,
808 cpi->refresh_golden_frame,
809 cpi->refresh_last_frame, cpi->alt_fb_idx,
810 cpi->gld_fb_idx, cpi->lst_fb_idx))
811 vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
812 "Failed to re-allocate denoiser for SVC");
813 }
814 vp9_denoiser_update_frame_info(
815 &cpi->denoiser, *cpi->Source, svc, frame_type,
816 cpi->refresh_alt_ref_frame, cpi->refresh_golden_frame,
817 cpi->refresh_last_frame, cpi->alt_fb_idx, cpi->gld_fb_idx,
818 cpi->lst_fb_idx, cpi->resize_pending, svc_refresh_denoiser_buffers,
819 denoise_svc_second_layer);
820 }
821 }
822
823 #ifdef OUTPUT_YUV_DENOISED
make_grayscale(YV12_BUFFER_CONFIG * yuv)824 static void make_grayscale(YV12_BUFFER_CONFIG *yuv) {
825 int r, c;
826 uint8_t *u = yuv->u_buffer;
827 uint8_t *v = yuv->v_buffer;
828
829 for (r = 0; r < yuv->uv_height; ++r) {
830 for (c = 0; c < yuv->uv_width; ++c) {
831 u[c] = UINT8_MAX / 2;
832 v[c] = UINT8_MAX / 2;
833 }
834 u += yuv->uv_stride;
835 v += yuv->uv_stride;
836 }
837 }
838 #endif
839