1 /* 2 * Copyright (c) 2017-2020, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #ifndef XLAT_TABLES_V2_H 8 #define XLAT_TABLES_V2_H 9 10 #include <lib/xlat_tables/xlat_tables_defs.h> 11 #include <lib/xlat_tables/xlat_tables_v2_helpers.h> 12 13 #ifndef __ASSEMBLER__ 14 #include <stddef.h> 15 #include <stdint.h> 16 17 #include <lib/xlat_tables/xlat_mmu_helpers.h> 18 19 /* 20 * Default granularity size for an mmap_region_t. 21 * Useful when no specific granularity is required. 22 * 23 * By default, choose the biggest possible block size allowed by the 24 * architectural state and granule size in order to minimize the number of page 25 * tables required for the mapping. 26 */ 27 #define REGION_DEFAULT_GRANULARITY XLAT_BLOCK_SIZE(MIN_LVL_BLOCK_DESC) 28 29 /* Helper macro to define an mmap_region_t. */ 30 #define MAP_REGION(_pa, _va, _sz, _attr) \ 31 MAP_REGION_FULL_SPEC(_pa, _va, _sz, _attr, REGION_DEFAULT_GRANULARITY) 32 33 /* Helper macro to define an mmap_region_t with an identity mapping. */ 34 #define MAP_REGION_FLAT(_adr, _sz, _attr) \ 35 MAP_REGION(_adr, _adr, _sz, _attr) 36 37 /* 38 * Helper macro to define entries for mmap_region_t. It allows to define 'pa' 39 * and sets 'va' to 0 for each region. To be used with mmap_add_alloc_va(). 40 */ 41 #define MAP_REGION_ALLOC_VA(pa, sz, attr) MAP_REGION(pa, 0, sz, attr) 42 43 /* 44 * Helper macro to define an mmap_region_t to map with the desired granularity 45 * of translation tables. 46 * 47 * The granularity value passed to this macro must be a valid block or page 48 * size. When using a 4KB translation granule, this might be 4KB, 2MB or 1GB. 49 * Passing REGION_DEFAULT_GRANULARITY is also allowed and means that the library 50 * is free to choose the granularity for this region. In this case, it is 51 * equivalent to the MAP_REGION() macro. 52 */ 53 #define MAP_REGION2(_pa, _va, _sz, _attr, _gr) \ 54 MAP_REGION_FULL_SPEC(_pa, _va, _sz, _attr, _gr) 55 56 /* 57 * Shifts and masks to access fields of an mmap attribute 58 */ 59 #define MT_TYPE_MASK U(0x7) 60 #define MT_TYPE(_attr) ((_attr) & MT_TYPE_MASK) 61 /* Access permissions (RO/RW) */ 62 #define MT_PERM_SHIFT U(3) 63 /* Security state (SECURE/NS) */ 64 #define MT_SEC_SHIFT U(4) 65 /* Access permissions for instruction execution (EXECUTE/EXECUTE_NEVER) */ 66 #define MT_EXECUTE_SHIFT U(5) 67 /* In the EL1&0 translation regime, User (EL0) or Privileged (EL1). */ 68 #define MT_USER_SHIFT U(6) 69 70 /* Shareability attribute for the memory region */ 71 #define MT_SHAREABILITY_SHIFT U(7) 72 #define MT_SHAREABILITY_MASK (U(3) << MT_SHAREABILITY_SHIFT) 73 #define MT_SHAREABILITY(_attr) ((_attr) & MT_SHAREABILITY_MASK) 74 /* All other bits are reserved */ 75 76 /* 77 * Memory mapping attributes 78 */ 79 80 /* 81 * Memory types supported. 82 * These are organised so that, going down the list, the memory types are 83 * getting weaker; conversely going up the list the memory types are getting 84 * stronger. 85 */ 86 #define MT_DEVICE U(0) 87 #define MT_NON_CACHEABLE U(1) 88 #define MT_MEMORY U(2) 89 /* Values up to 7 are reserved to add new memory types in the future */ 90 91 #define MT_RO (U(0) << MT_PERM_SHIFT) 92 #define MT_RW (U(1) << MT_PERM_SHIFT) 93 94 #define MT_SECURE (U(0) << MT_SEC_SHIFT) 95 #define MT_NS (U(1) << MT_SEC_SHIFT) 96 97 /* 98 * Access permissions for instruction execution are only relevant for normal 99 * read-only memory, i.e. MT_MEMORY | MT_RO. They are ignored (and potentially 100 * overridden) otherwise: 101 * - Device memory is always marked as execute-never. 102 * - Read-write normal memory is always marked as execute-never. 103 */ 104 #define MT_EXECUTE (U(0) << MT_EXECUTE_SHIFT) 105 #define MT_EXECUTE_NEVER (U(1) << MT_EXECUTE_SHIFT) 106 107 /* 108 * When mapping a region at EL0 or EL1, this attribute will be used to determine 109 * if a User mapping (EL0) will be created or a Privileged mapping (EL1). 110 */ 111 #define MT_USER (U(1) << MT_USER_SHIFT) 112 #define MT_PRIVILEGED (U(0) << MT_USER_SHIFT) 113 114 /* 115 * Shareability defines the visibility of any cache changes to 116 * all masters belonging to a shareable domain. 117 * 118 * MT_SHAREABILITY_ISH: For inner shareable domain 119 * MT_SHAREABILITY_OSH: For outer shareable domain 120 * MT_SHAREABILITY_NSH: For non shareable domain 121 */ 122 #define MT_SHAREABILITY_ISH (U(1) << MT_SHAREABILITY_SHIFT) 123 #define MT_SHAREABILITY_OSH (U(2) << MT_SHAREABILITY_SHIFT) 124 #define MT_SHAREABILITY_NSH (U(3) << MT_SHAREABILITY_SHIFT) 125 126 /* Compound attributes for most common usages */ 127 #define MT_CODE (MT_MEMORY | MT_RO | MT_EXECUTE) 128 #define MT_RO_DATA (MT_MEMORY | MT_RO | MT_EXECUTE_NEVER) 129 #define MT_RW_DATA (MT_MEMORY | MT_RW | MT_EXECUTE_NEVER) 130 131 /* 132 * Structure for specifying a single region of memory. 133 */ 134 typedef struct mmap_region { 135 unsigned long long base_pa; 136 uintptr_t base_va; 137 size_t size; 138 unsigned int attr; 139 /* Desired granularity. See the MAP_REGION2() macro for more details. */ 140 size_t granularity; 141 } mmap_region_t; 142 143 /* 144 * Translation regimes supported by this library. EL_REGIME_INVALID tells the 145 * library to detect it at runtime. 146 */ 147 #define EL1_EL0_REGIME 1 148 #define EL2_REGIME 2 149 #define EL3_REGIME 3 150 #define EL_REGIME_INVALID -1 151 152 /* 153 * Declare the translation context type. 154 * Its definition is private. 155 */ 156 typedef struct xlat_ctx xlat_ctx_t; 157 158 /* 159 * Statically allocate a translation context and associated structures. Also 160 * initialize them. 161 * 162 * _ctx_name: 163 * Prefix for the translation context variable. 164 * E.g. If _ctx_name is 'foo', the variable will be called 'foo_xlat_ctx'. 165 * Useful to distinguish multiple contexts from one another. 166 * 167 * _mmap_count: 168 * Number of mmap_region_t to allocate. 169 * Would typically be MAX_MMAP_REGIONS for the translation context describing 170 * the BL image currently executing. 171 * 172 * _xlat_tables_count: 173 * Number of sub-translation tables to allocate. 174 * Would typically be MAX_XLAT_TABLES for the translation context describing 175 * the BL image currently executing. 176 * Note that this is only for sub-tables ; at the initial lookup level, there 177 * is always a single table. 178 * 179 * _virt_addr_space_size, _phy_addr_space_size: 180 * Size (in bytes) of the virtual (resp. physical) address space. 181 * Would typically be PLAT_VIRT_ADDR_SPACE_SIZE 182 * (resp. PLAT_PHY_ADDR_SPACE_SIZE) for the translation context describing the 183 * BL image currently executing. 184 */ 185 #define REGISTER_XLAT_CONTEXT(_ctx_name, _mmap_count, _xlat_tables_count, \ 186 _virt_addr_space_size, _phy_addr_space_size) \ 187 REGISTER_XLAT_CONTEXT_FULL_SPEC(_ctx_name, (_mmap_count), \ 188 (_xlat_tables_count), \ 189 (_virt_addr_space_size), \ 190 (_phy_addr_space_size), \ 191 EL_REGIME_INVALID, \ 192 "xlat_table", "base_xlat_table") 193 194 /* 195 * Same as REGISTER_XLAT_CONTEXT plus the additional parameters: 196 * 197 * _xlat_regime: 198 * Specify the translation regime managed by this xlat_ctx_t instance. The 199 * values are the one from the EL*_REGIME definitions. 200 * 201 * _section_name: 202 * Specify the name of the section where the translation tables have to be 203 * placed by the linker. 204 * 205 * _base_table_section_name: 206 * Specify the name of the section where the base translation tables have to 207 * be placed by the linker. 208 */ 209 #define REGISTER_XLAT_CONTEXT2(_ctx_name, _mmap_count, _xlat_tables_count, \ 210 _virt_addr_space_size, _phy_addr_space_size, \ 211 _xlat_regime, _section_name, _base_table_section_name) \ 212 REGISTER_XLAT_CONTEXT_FULL_SPEC(_ctx_name, (_mmap_count), \ 213 (_xlat_tables_count), \ 214 (_virt_addr_space_size), \ 215 (_phy_addr_space_size), \ 216 (_xlat_regime), \ 217 (_section_name), (_base_table_section_name) \ 218 ) 219 220 /****************************************************************************** 221 * Generic translation table APIs. 222 * Each API comes in 2 variants: 223 * - one that acts on the current translation context for this BL image 224 * - another that acts on the given translation context instead. This variant 225 * is named after the 1st version, with an additional '_ctx' suffix. 226 *****************************************************************************/ 227 228 /* 229 * Initialize translation tables from the current list of mmap regions. Calling 230 * this function marks the transition point after which static regions can no 231 * longer be added. 232 */ 233 void init_xlat_tables(void); 234 void init_xlat_tables_ctx(xlat_ctx_t *ctx); 235 236 /* 237 * Fill all fields of a dynamic translation tables context. It must be done 238 * either statically with REGISTER_XLAT_CONTEXT() or at runtime with this 239 * function. 240 */ 241 void xlat_setup_dynamic_ctx(xlat_ctx_t *ctx, unsigned long long pa_max, 242 uintptr_t va_max, struct mmap_region *mmap, 243 unsigned int mmap_num, uint64_t **tables, 244 unsigned int tables_num, uint64_t *base_table, 245 int xlat_regime, int *mapped_regions); 246 247 /* 248 * Add a static region with defined base PA and base VA. This function can only 249 * be used before initializing the translation tables. The region cannot be 250 * removed afterwards. 251 */ 252 void mmap_add_region(unsigned long long base_pa, uintptr_t base_va, 253 size_t size, unsigned int attr); 254 void mmap_add_region_ctx(xlat_ctx_t *ctx, const mmap_region_t *mm); 255 256 /* 257 * Add an array of static regions with defined base PA and base VA. This 258 * function can only be used before initializing the translation tables. The 259 * regions cannot be removed afterwards. 260 */ 261 void mmap_add(const mmap_region_t *mm); 262 void mmap_add_ctx(xlat_ctx_t *ctx, const mmap_region_t *mm); 263 264 /* 265 * Add a region with defined base PA. Returns base VA calculated using the 266 * highest existing region in the mmap array even if it fails to allocate the 267 * region. 268 */ 269 void mmap_add_region_alloc_va(unsigned long long base_pa, uintptr_t *base_va, 270 size_t size, unsigned int attr); 271 void mmap_add_region_alloc_va_ctx(xlat_ctx_t *ctx, mmap_region_t *mm); 272 273 /* 274 * Add an array of static regions with defined base PA, and fill the base VA 275 * field on the array of structs. This function can only be used before 276 * initializing the translation tables. The regions cannot be removed afterwards. 277 */ 278 void mmap_add_alloc_va(mmap_region_t *mm); 279 280 #if PLAT_XLAT_TABLES_DYNAMIC 281 /* 282 * Add a dynamic region with defined base PA and base VA. This type of region 283 * can be added and removed even after the translation tables are initialized. 284 * 285 * Returns: 286 * 0: Success. 287 * EINVAL: Invalid values were used as arguments. 288 * ERANGE: Memory limits were surpassed. 289 * ENOMEM: Not enough space in the mmap array or not enough free xlat tables. 290 * EPERM: It overlaps another region in an invalid way. 291 */ 292 int mmap_add_dynamic_region(unsigned long long base_pa, uintptr_t base_va, 293 size_t size, unsigned int attr); 294 int mmap_add_dynamic_region_ctx(xlat_ctx_t *ctx, mmap_region_t *mm); 295 296 /* 297 * Add a dynamic region with defined base PA. Returns base VA calculated using 298 * the highest existing region in the mmap array even if it fails to allocate 299 * the region. 300 * 301 * mmap_add_dynamic_region_alloc_va() returns the allocated VA in 'base_va'. 302 * mmap_add_dynamic_region_alloc_va_ctx() returns it in 'mm->base_va'. 303 * 304 * It returns the same error values as mmap_add_dynamic_region(). 305 */ 306 int mmap_add_dynamic_region_alloc_va(unsigned long long base_pa, 307 uintptr_t *base_va, 308 size_t size, unsigned int attr); 309 int mmap_add_dynamic_region_alloc_va_ctx(xlat_ctx_t *ctx, mmap_region_t *mm); 310 311 /* 312 * Remove a region with the specified base VA and size. Only dynamic regions can 313 * be removed, and they can be removed even if the translation tables are 314 * initialized. 315 * 316 * Returns: 317 * 0: Success. 318 * EINVAL: The specified region wasn't found. 319 * EPERM: Trying to remove a static region. 320 */ 321 int mmap_remove_dynamic_region(uintptr_t base_va, size_t size); 322 int mmap_remove_dynamic_region_ctx(xlat_ctx_t *ctx, 323 uintptr_t base_va, 324 size_t size); 325 326 #endif /* PLAT_XLAT_TABLES_DYNAMIC */ 327 328 /* 329 * Change the memory attributes of the memory region starting from a given 330 * virtual address in a set of translation tables. 331 * 332 * This function can only be used after the translation tables have been 333 * initialized. 334 * 335 * The base address of the memory region must be aligned on a page boundary. 336 * The size of this memory region must be a multiple of a page size. 337 * The memory region must be already mapped by the given translation tables 338 * and it must be mapped at the granularity of a page. 339 * 340 * Return 0 on success, a negative value on error. 341 * 342 * In case of error, the memory attributes remain unchanged and this function 343 * has no effect. 344 * 345 * ctx 346 * Translation context to work on. 347 * base_va: 348 * Virtual address of the 1st page to change the attributes of. 349 * size: 350 * Size in bytes of the memory region. 351 * attr: 352 * New attributes of the page tables. The attributes that can be changed are 353 * data access (MT_RO/MT_RW), instruction access (MT_EXECUTE_NEVER/MT_EXECUTE) 354 * and user/privileged access (MT_USER/MT_PRIVILEGED) in the case of contexts 355 * that are used in the EL1&0 translation regime. Also, note that this 356 * function doesn't allow to remap a region as RW and executable, or to remap 357 * device memory as executable. 358 * 359 * NOTE: The caller of this function must be able to write to the translation 360 * tables, i.e. the memory where they are stored must be mapped with read-write 361 * access permissions. This function assumes it is the case. If this is not 362 * the case then this function might trigger a data abort exception. 363 * 364 * NOTE2: The caller is responsible for making sure that the targeted 365 * translation tables are not modified by any other code while this function is 366 * executing. 367 */ 368 int xlat_change_mem_attributes_ctx(const xlat_ctx_t *ctx, uintptr_t base_va, 369 size_t size, uint32_t attr); 370 int xlat_change_mem_attributes(uintptr_t base_va, size_t size, uint32_t attr); 371 372 #if PLAT_RO_XLAT_TABLES 373 /* 374 * Change the memory attributes of the memory region encompassing the higher 375 * level translation tables to secure read-only data. 376 * 377 * Return 0 on success, a negative error code on error. 378 */ 379 int xlat_make_tables_readonly(void); 380 #endif 381 382 /* 383 * Query the memory attributes of a memory page in a set of translation tables. 384 * 385 * Return 0 on success, a negative error code on error. 386 * On success, the attributes are stored into *attr. 387 * 388 * ctx 389 * Translation context to work on. 390 * base_va 391 * Virtual address of the page to get the attributes of. 392 * There are no alignment restrictions on this address. The attributes of the 393 * memory page it lies within are returned. 394 * attr 395 * Output parameter where to store the attributes of the targeted memory page. 396 */ 397 int xlat_get_mem_attributes_ctx(const xlat_ctx_t *ctx, uintptr_t base_va, 398 uint32_t *attr); 399 int xlat_get_mem_attributes(uintptr_t base_va, uint32_t *attr); 400 401 #endif /*__ASSEMBLER__*/ 402 #endif /* XLAT_TABLES_V2_H */ 403