1 // Copyright 2019 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5
6 #include <assert.h>
7 #include <math.h>
8 #include <stdbool.h>
9 #include <stddef.h>
10 #include <stdint.h>
11 #include <stdlib.h>
12 #include <string.h>
13
14 #include <xnnpack.h>
15 #include <xnnpack/allocator.h>
16 #include <xnnpack/operator.h>
17 #include <xnnpack/common.h>
18 #include <xnnpack/log.h>
19 #include <xnnpack/math.h>
20 #include <xnnpack/params-init.h>
21 #include <xnnpack/params.h>
22 #include <xnnpack/indirection.h>
23
24
compute_output_dimension(size_t padded_input_dimension,size_t kernel_dimension)25 static inline size_t compute_output_dimension(
26 size_t padded_input_dimension,
27 size_t kernel_dimension)
28 {
29 return padded_input_dimension / kernel_dimension;
30 }
31
select_ukernel(size_t pooling_size,const struct argmaxpool_parameters * ukernel)32 static const struct argmaxpool_parameters* select_ukernel(
33 size_t pooling_size,
34 const struct argmaxpool_parameters* ukernel)
35 {
36 while (ukernel->qr == 0 && ukernel->mr < pooling_size) {
37 ukernel++;
38 }
39 return ukernel;
40 }
41
xnn_create_argmax_pooling2d_nhwc_f32(uint32_t input_padding_top,uint32_t input_padding_right,uint32_t input_padding_bottom,uint32_t input_padding_left,uint32_t pooling_height,uint32_t pooling_width,size_t channels,size_t input_pixel_stride,size_t output_pixel_stride,uint32_t flags,xnn_operator_t * argmax_pooling_op_out)42 enum xnn_status xnn_create_argmax_pooling2d_nhwc_f32(
43 uint32_t input_padding_top,
44 uint32_t input_padding_right,
45 uint32_t input_padding_bottom,
46 uint32_t input_padding_left,
47 uint32_t pooling_height,
48 uint32_t pooling_width,
49 size_t channels,
50 size_t input_pixel_stride,
51 size_t output_pixel_stride,
52 uint32_t flags,
53 xnn_operator_t* argmax_pooling_op_out)
54 {
55 xnn_operator_t argmax_pooling_op = NULL;
56 enum xnn_status status = xnn_status_uninitialized;
57
58 if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) {
59 xnn_log_error("failed to create %s operator: XNNPACK is not initialized",
60 xnn_operator_type_to_string(xnn_operator_type_argmax_pooling_nhwc_f32));
61 goto error;
62 }
63
64 status = xnn_status_invalid_parameter;
65
66 const uint32_t pooling_size = pooling_height * pooling_width;
67 if (pooling_size == 0) {
68 xnn_log_error(
69 "failed to create %s operator with %" PRIu32 "x%" PRIu32 " pooling size: "
70 "pooling size dimensions must be non-zero",
71 xnn_operator_type_to_string(xnn_operator_type_argmax_pooling_nhwc_f32), pooling_width, pooling_height);
72 goto error;
73 }
74
75 if (pooling_size == 1) {
76 xnn_log_error(
77 "failed to create %s operator with 1 pooling element: 1x1 pooling is meaningless",
78 xnn_operator_type_to_string(xnn_operator_type_argmax_pooling_nhwc_f32));
79 goto error;
80 }
81
82 if (channels == 0) {
83 xnn_log_error(
84 "failed to create %s operator with %zu channels: number of channels must be non-zero",
85 xnn_operator_type_to_string(xnn_operator_type_argmax_pooling_nhwc_f32), channels);
86 goto error;
87 }
88
89 if (input_pixel_stride < channels) {
90 xnn_log_error(
91 "failed to create %s operator with input pixel stride of %zu: "
92 "stride must be at least as large as the number of channels (%zu)",
93 xnn_operator_type_to_string(xnn_operator_type_argmax_pooling_nhwc_f32), input_pixel_stride, channels);
94 goto error;
95 }
96
97 if (output_pixel_stride < channels) {
98 xnn_log_error(
99 "failed to create %s operator with output pixel stride of %zu: "
100 "stride must be at least as large as the number of channels (%zu)",
101 xnn_operator_type_to_string(xnn_operator_type_argmax_pooling_nhwc_f32), output_pixel_stride, channels);
102 goto error;
103 }
104
105 const bool any_padding = (input_padding_left | input_padding_top | input_padding_right | input_padding_bottom) != 0;
106 if ((flags & XNN_FLAG_TENSORFLOW_SAME_PADDING) != 0) {
107 if (any_padding) {
108 xnn_log_error(
109 "failed to create %s operator with %" PRIu32 "+%" PRIu32 "x%" PRIu32 "+%" PRIu32" padding: "
110 "TensorFlow SAME padding can't be combined with explicit padding specification",
111 xnn_operator_type_to_string(xnn_operator_type_argmax_pooling_nhwc_f32),
112 input_padding_top, input_padding_left, input_padding_bottom, input_padding_right);
113 goto error;
114 }
115 }
116
117 status = xnn_status_out_of_memory;
118
119 argmax_pooling_op = xnn_allocate_zero_simd_memory(sizeof(struct xnn_operator));
120 if (argmax_pooling_op == NULL) {
121 xnn_log_error(
122 "failed to allocate %zu bytes for %s operator descriptor",
123 sizeof(struct xnn_operator), xnn_operator_type_to_string(xnn_operator_type_argmax_pooling_nhwc_f32));
124 goto error;
125 }
126
127 argmax_pooling_op->padding_top = input_padding_top;
128 argmax_pooling_op->padding_right = input_padding_right;
129 argmax_pooling_op->padding_bottom = input_padding_bottom;
130 argmax_pooling_op->padding_left = input_padding_left;
131
132 argmax_pooling_op->kernel_height = pooling_height;
133 argmax_pooling_op->kernel_width = pooling_width;
134 argmax_pooling_op->stride_height = pooling_height;
135 argmax_pooling_op->stride_width = pooling_width;
136 argmax_pooling_op->dilation_height = 1;
137 argmax_pooling_op->dilation_width = 1;
138 argmax_pooling_op->channels = channels;
139 argmax_pooling_op->input_pixel_stride = input_pixel_stride;
140 argmax_pooling_op->output_pixel_stride = output_pixel_stride;
141
142 argmax_pooling_op->type = xnn_operator_type_argmax_pooling_nhwc_f32;
143 argmax_pooling_op->flags = flags;
144
145 argmax_pooling_op->state = xnn_run_state_invalid;
146
147 *argmax_pooling_op_out = argmax_pooling_op;
148 return xnn_status_success;
149
150 error:
151 xnn_delete_operator(argmax_pooling_op);
152 return status;
153 }
154
xnn_setup_argmax_pooling2d_nhwc_f32(xnn_operator_t argmax_pooling_op,size_t batch_size,size_t input_height,size_t input_width,const float * input,float * output,uint32_t * index,pthreadpool_t threadpool)155 enum xnn_status xnn_setup_argmax_pooling2d_nhwc_f32(
156 xnn_operator_t argmax_pooling_op,
157 size_t batch_size,
158 size_t input_height,
159 size_t input_width,
160 const float* input,
161 float* output,
162 uint32_t* index,
163 pthreadpool_t threadpool)
164 {
165 if (argmax_pooling_op->type != xnn_operator_type_argmax_pooling_nhwc_f32) {
166 xnn_log_error("failed to setup operator: operator type mismatch (expected %s, got %s)",
167 xnn_operator_type_to_string(xnn_operator_type_argmax_pooling_nhwc_f32),
168 xnn_operator_type_to_string(argmax_pooling_op->type));
169 return xnn_status_invalid_parameter;
170 }
171 argmax_pooling_op->state = xnn_run_state_invalid;
172
173 if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) {
174 xnn_log_error("failed to setup %s operator: XNNPACK is not initialized",
175 xnn_operator_type_to_string(xnn_operator_type_argmax_pooling_nhwc_f32));
176 return xnn_status_uninitialized;
177 }
178
179 if (input_width == 0 || input_height == 0) {
180 xnn_log_error(
181 "failed to setup %s operator with %zux%zu input: input dimensions must be non-zero",
182 xnn_operator_type_to_string(xnn_operator_type_argmax_pooling_nhwc_f32), input_width, input_height);
183 return xnn_status_invalid_parameter;
184 }
185
186 if (batch_size == 0) {
187 argmax_pooling_op->state = xnn_run_state_skip;
188 return xnn_status_success;
189 }
190
191 argmax_pooling_op->batch_size = batch_size;
192 argmax_pooling_op->input_height = input_height;
193 argmax_pooling_op->input_width = input_width;
194 argmax_pooling_op->input = input;
195
196 const size_t pooling_height = argmax_pooling_op->kernel_height;
197 const size_t pooling_width = argmax_pooling_op->kernel_width;
198
199 if (argmax_pooling_op->flags & XNN_FLAG_TENSORFLOW_SAME_PADDING) {
200 argmax_pooling_op->output_height = divide_round_up(input_height, pooling_height);
201 argmax_pooling_op->output_width = divide_round_up(input_width, pooling_width);
202
203 const uint32_t padding_height = argmax_pooling_op->output_height * pooling_height - input_height;
204 const uint32_t padding_width = argmax_pooling_op->output_width * pooling_width - input_width;
205 argmax_pooling_op->padding_top = padding_height / 2;
206 argmax_pooling_op->padding_left = padding_width / 2;
207 argmax_pooling_op->padding_bottom = padding_height - argmax_pooling_op->padding_top;
208 argmax_pooling_op->padding_right = padding_width - argmax_pooling_op->padding_left;
209 } else {
210 argmax_pooling_op->output_height = compute_output_dimension(
211 argmax_pooling_op->padding_top + input_height + argmax_pooling_op->padding_bottom,
212 argmax_pooling_op->kernel_height);
213 argmax_pooling_op->output_width = compute_output_dimension(
214 argmax_pooling_op->padding_left + input_width + argmax_pooling_op->padding_right,
215 argmax_pooling_op->kernel_width);
216 }
217
218 const size_t pooling_size = pooling_height * pooling_width;
219 const size_t output_height = argmax_pooling_op->output_height;
220 const size_t output_width = argmax_pooling_op->output_width;
221 const struct argmaxpool_parameters* ukernel = select_ukernel(pooling_size, xnn_params.f32.argmaxpool);
222 const uint32_t mr = ukernel->mr;
223
224 const size_t step_width = pooling_width;
225 const size_t step_height = pooling_size + (output_width - 1) * step_width * pooling_height;
226
227 if (input_height != argmax_pooling_op->last_input_height ||
228 input_width != argmax_pooling_op->last_input_width)
229 {
230 // Micro-kernel may read up to (mr - 1) elements after the end of indirection buffer.
231 const size_t indirection_buffer_size = sizeof(void*) * ((mr - 1) + output_height * step_height);
232
233 const void** indirection_buffer =
234 (const void**) xnn_reallocate_memory(argmax_pooling_op->indirection_buffer, indirection_buffer_size);
235 if (indirection_buffer == NULL) {
236 xnn_log_error(
237 "failed to allocate %zu bytes for %s operator indirection buffer",
238 indirection_buffer_size, xnn_operator_type_to_string(xnn_operator_type_argmax_pooling_nhwc_f32));
239 return xnn_status_out_of_memory;
240 }
241 argmax_pooling_op->indirection_buffer = indirection_buffer;
242
243 xnn_indirection_init_maxpool2d(argmax_pooling_op, step_height, step_width, 2 /* log2(sizeof(float)) */);
244
245 argmax_pooling_op->last_input = input;
246 argmax_pooling_op->last_input_height = input_height;
247 argmax_pooling_op->last_input_width = input_width;
248 }
249
250 const size_t channels = argmax_pooling_op->channels;
251
252 const size_t indirect_input_height_stride = step_height * sizeof(void*);
253 const size_t output_width_stride = argmax_pooling_op->output_pixel_stride * sizeof(float);
254 const size_t output_height_stride = output_width * output_width_stride;
255 const size_t index_height_stride = output_width * channels * sizeof(uint32_t);
256
257 const uint32_t qr = ukernel->qr;
258 const size_t multipass_adjustment = qr == 0 ? 0 : round_up(pooling_size - mr, qr) + mr - qr;
259 argmax_pooling_op->context.argmax_pooling = (struct argmax_pooling_context) {
260 .indirect_input = argmax_pooling_op->indirection_buffer,
261 .indirect_input_height_stride = indirect_input_height_stride,
262 .input_offset = (size_t) ((uintptr_t) input - (uintptr_t) argmax_pooling_op->last_input),
263 .input_batch_stride = input_height * input_width * argmax_pooling_op->input_pixel_stride * sizeof(float),
264 .output = output,
265 .output_batch_stride = output_height * output_height_stride,
266 .output_height_stride = output_height_stride,
267 .output_width = output_width,
268 .index = index,
269 .index_batch_stride = output_height * index_height_stride,
270 .index_height_stride = index_height_stride,
271 .pooling_size = pooling_size,
272 .channels = channels,
273 .input_increment = (pooling_height * step_width - multipass_adjustment) * sizeof(void*),
274 .output_increment = output_width_stride - channels * sizeof(float),
275 };
276 argmax_pooling_op->compute.type = xnn_parallelization_type_2d;
277 argmax_pooling_op->compute.range[0] = batch_size;
278 argmax_pooling_op->compute.range[1] = output_height;
279
280 if (pooling_size <= mr) {
281 argmax_pooling_op->context.argmax_pooling.unipass_ukernel = ukernel->up;
282 argmax_pooling_op->compute.task_2d = (pthreadpool_task_2d_t) xnn_compute_argmax_pooling_unipass;
283 } else {
284 argmax_pooling_op->context.argmax_pooling.multipass_ukernel = ukernel->mp;
285 argmax_pooling_op->compute.task_2d = (pthreadpool_task_2d_t) xnn_compute_argmax_pooling_multipass;
286 }
287 argmax_pooling_op->state = xnn_run_state_ready;
288
289 return xnn_status_success;
290 }
291
292