• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2020 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #include <assert.h>
7 #include <math.h>
8 #include <stdbool.h>
9 #include <stddef.h>
10 #include <stdint.h>
11 #include <stdlib.h>
12 #include <string.h>
13 
14 #include <xnnpack.h>
15 #include <xnnpack/allocator.h>
16 #include <xnnpack/operator.h>
17 #include <xnnpack/log.h>
18 #include <xnnpack/common.h>
19 #include <xnnpack/math.h>
20 #include <xnnpack/params.h>
21 #include <xnnpack/indirection.h>
22 
xnn_create_resize_bilinear2d_nchw_f32(size_t channels,size_t input_pixel_stride,size_t output_pixel_stride,uint32_t flags,xnn_operator_t * resize_op_out)23 enum xnn_status xnn_create_resize_bilinear2d_nchw_f32(
24     size_t channels,
25     size_t input_pixel_stride,
26     size_t output_pixel_stride,
27     uint32_t flags,
28     xnn_operator_t* resize_op_out)
29 {
30   xnn_operator_t resize_op = NULL;
31   enum xnn_status status = xnn_status_uninitialized;
32 
33   if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) {
34     xnn_log_error("failed to create %s operator: XNNPACK is not initialized",
35       xnn_operator_type_to_string(xnn_operator_type_resize_bilinear_nchw_f32));
36     goto error;
37   }
38 
39   status = xnn_status_invalid_parameter;
40 
41   if (channels == 0) {
42     xnn_log_error(
43       "failed to create %s operator with %zu channels: number of channels must be non-zero",
44       xnn_operator_type_to_string(xnn_operator_type_resize_bilinear_nchw_f32), channels);
45     goto error;
46   }
47 
48   if (input_pixel_stride < channels) {
49     xnn_log_error(
50       "failed to create %s operator with input pixel stride of %zu: "
51       "stride must be at least as large as the number of channels (%zu)",
52       xnn_operator_type_to_string(xnn_operator_type_resize_bilinear_nchw_f32), input_pixel_stride, channels);
53     goto error;
54   }
55 
56   if (output_pixel_stride < channels) {
57     xnn_log_error(
58       "failed to create %s operator with output pixel stride of %zu: "
59       "stride must be at least as large as the number of channels (%zu)",
60       xnn_operator_type_to_string(xnn_operator_type_resize_bilinear_nchw_f32), output_pixel_stride, channels);
61     goto error;
62   }
63 
64   status = xnn_status_out_of_memory;
65 
66   resize_op = xnn_allocate_zero_simd_memory(sizeof(struct xnn_operator));
67   if (resize_op == NULL) {
68     xnn_log_error(
69       "failed to allocate %zu bytes for %s operator descriptor",
70       sizeof(struct xnn_operator), xnn_operator_type_to_string(xnn_operator_type_resize_bilinear_nchw_f32));
71     goto error;
72   }
73 
74   resize_op->channels = channels;
75   resize_op->input_pixel_stride = input_pixel_stride;
76   resize_op->output_pixel_stride = output_pixel_stride;
77 
78   resize_op->type = xnn_operator_type_resize_bilinear_nchw_f32;
79   resize_op->flags = flags;
80 
81   resize_op->state = xnn_run_state_invalid;
82 
83   *resize_op_out = resize_op;
84   return xnn_status_success;
85 
86 error:
87   xnn_delete_operator(resize_op);
88   return status;
89 }
90 
xnn_setup_resize_bilinear2d_nchw_f32(xnn_operator_t resize_op,size_t batch_size,size_t input_height,size_t input_width,size_t output_height,size_t output_width,const float * input,float * output,pthreadpool_t threadpool)91 enum xnn_status xnn_setup_resize_bilinear2d_nchw_f32(
92     xnn_operator_t resize_op,
93     size_t batch_size,
94     size_t input_height,
95     size_t input_width,
96     size_t output_height,
97     size_t output_width,
98     const float* input,
99     float* output,
100     pthreadpool_t threadpool)
101 {
102   if (resize_op->type != xnn_operator_type_resize_bilinear_nchw_f32) {
103     xnn_log_error("failed to setup operator: operator type mismatch (expected %s, got %s)",
104       xnn_operator_type_to_string(xnn_operator_type_resize_bilinear_nchw_f32),
105       xnn_operator_type_to_string(resize_op->type));
106     return xnn_status_invalid_parameter;
107   }
108   resize_op->state = xnn_run_state_invalid;
109 
110   if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) {
111     xnn_log_error("failed to setup %s operator: XNNPACK is not initialized",
112       xnn_operator_type_to_string(xnn_operator_type_resize_bilinear_nchw_f32));
113     return xnn_status_uninitialized;
114   }
115 
116   if (input_width <= 1 || input_height <= 1) {
117     xnn_log_error(
118       "failed to setup %s operator with %zux%zu input: input dimensions must be greater than 1",
119       xnn_operator_type_to_string(xnn_operator_type_resize_bilinear_nchw_f32), input_width, input_height);
120     return xnn_status_invalid_parameter;
121   }
122 
123   if (max(input_width, input_height) >= 16777216) {
124     xnn_log_error(
125       "failed to setup %s operator with %zux%zu input: input dimensions must be below 2**24",
126       xnn_operator_type_to_string(xnn_operator_type_resize_bilinear_nchw_f32), input_width, input_height);
127     return xnn_status_unsupported_parameter;
128   }
129 
130   if (output_width == 0 || output_height == 0) {
131     xnn_log_error(
132       "failed to setup %s operator with %zux%zu output: output dimensions must be non-zero",
133       xnn_operator_type_to_string(xnn_operator_type_resize_bilinear_nchw_f32), output_width, output_height);
134     return xnn_status_invalid_parameter;
135   }
136 
137   if (max(output_width, output_height) >= 16777216) {
138     xnn_log_error(
139       "failed to setup %s operator with %zux%zu output: output dimensions must be below 2**24",
140       xnn_operator_type_to_string(xnn_operator_type_resize_bilinear_nchw_f32), output_width, output_height);
141     return xnn_status_unsupported_parameter;
142   }
143 
144   if (batch_size == 0) {
145     resize_op->state = xnn_run_state_skip;
146     return xnn_status_success;
147   }
148 
149   if (output_height * output_width != resize_op->last_output_height * resize_op->last_output_width) {
150     const size_t indirection_buffer_size = sizeof(void*) * (output_height * output_width * 4);
151     const size_t packed_weights_size = sizeof(float) * (output_height * output_width * 2);
152 
153     const void** indirection_buffer = (const void**) xnn_reallocate_memory(resize_op->indirection_buffer, indirection_buffer_size);
154     if (indirection_buffer == NULL) {
155       xnn_log_error(
156         "failed to allocate %zu bytes for %s operator indirection buffer",
157         indirection_buffer_size, xnn_operator_type_to_string(xnn_operator_type_resize_bilinear_nchw_f32));
158       return xnn_status_out_of_memory;
159     }
160     resize_op->indirection_buffer = indirection_buffer;
161 
162     // Note: packed weights must be SIMD-aligned, so we can't use xnn_reallocate_memory
163     xnn_release_simd_memory(resize_op->packed_weights);
164     resize_op->packed_weights = xnn_allocate_simd_memory(packed_weights_size);
165     if (resize_op->packed_weights == NULL) {
166       xnn_log_error(
167         "failed to allocate %zu bytes for %s operator packed weights",
168         packed_weights_size, xnn_operator_type_to_string(xnn_operator_type_resize_bilinear_nchw_f32));
169       return xnn_status_out_of_memory;
170     }
171   }
172 
173   const size_t input_pixel_stride_in_bytes = sizeof(float); // Since the layout in CHW the pixels
174   if (input_height != resize_op->last_input_height ||
175       input_width != resize_op->last_input_width ||
176       output_height != resize_op->last_output_height ||
177       output_width != resize_op->last_output_width)
178   {
179     const uint32_t flags = resize_op->flags;
180     xnn_indirection_init_resize_bilinear2d_chw_f32(
181         input_pixel_stride_in_bytes,
182         input_height, input_width,
183         output_height, output_width,
184         input, resize_op->indirection_buffer, resize_op->packed_weights,
185         !!(flags & XNN_FLAG_ALIGN_CORNERS),
186         !!(flags & XNN_FLAG_TENSORFLOW_LEGACY_MODE));
187 
188     resize_op->last_input = input;
189     resize_op->last_input_height = input_height;
190     resize_op->last_input_width = input_width;
191     resize_op->last_output_height = output_height;
192     resize_op->last_output_width = output_width;
193   }
194 
195   resize_op->context.resize_bilinear_chw = (struct resize_bilinear_chw_context) {
196     .output_pixels = output_height * output_width,
197     .channels = resize_op->channels,
198     .input_channel_stride =  input_height * input_width * sizeof(float),
199     .indirect_input = resize_op->indirection_buffer,
200     .input_offset = (size_t) ((uintptr_t) input - (uintptr_t) resize_op->last_input),
201     .input_batch_stride = resize_op->input_pixel_stride * input_height * input_width * sizeof(float),
202     .packed_weights = resize_op->packed_weights,
203     .output = output,
204     .output_batch_stride = resize_op->output_pixel_stride * output_height * output_width * sizeof(float),
205     .output_channel_stride = output_height * output_width * sizeof(float),
206     .ukernel = xnn_params.f32.ibilinear_chw.ukernel,
207   };
208 
209   const size_t num_threads = pthreadpool_get_threads_count(threadpool);
210   size_t output_channel_tile = resize_op->channels;
211   if (num_threads > 1) {
212     const size_t target_tiles_per_thread = 4;
213     const size_t max_channel_tile = divide_round_up(output_channel_tile, num_threads * target_tiles_per_thread);
214     if (max_channel_tile < output_channel_tile) {
215       const uint32_t output_channel_subtile = xnn_params.f32.ibilinear_chw.channel_tile;
216       output_channel_tile =
217         min(output_channel_tile,
218           divide_round_up(output_channel_tile, max_channel_tile * output_channel_subtile) * output_channel_subtile);
219     }
220   }
221   resize_op->compute.type = xnn_parallelization_type_2d_tile_1d;
222   resize_op->compute.task_2d_tile_1d = (pthreadpool_task_2d_tile_1d_t) xnn_compute_resize_bilinear_chw;
223   resize_op->compute.range[0] = batch_size;
224   resize_op->compute.range[1] = resize_op->channels;
225   resize_op->compute.tile[0] = output_channel_tile;
226   resize_op->state = xnn_run_state_ready;
227 
228   return xnn_status_success;
229 }
230