• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddextexp/avx2-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 #include <math.h>
12 
13 #include <immintrin.h>
14 
15 #include <xnnpack/raddextexp.h>
16 
17 
18 static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
19 
xnn_f32_raddextexp_ukernel__avx2_p5_x64(size_t elements,const float * x,float * sum)20 void xnn_f32_raddextexp_ukernel__avx2_p5_x64(
21     size_t elements,
22     const float* x,
23     float* sum)
24 {
25   assert(elements % sizeof(float) == 0);
26 
27   const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
28   const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f);
29   const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f);
30 
31   // The smallest elements such that 2**elements is considered non-negligible.
32   // For smaller elements, 2**elements is replaced with zero.
33   const __m256 vmin_exponent = _mm256_set1_ps(-127.0f);
34   const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
35   const __m256 vminus_inf = _mm256_set1_ps(-INFINITY);
36 
37   const __m256 vc0 = _mm256_set1_ps(1.0f);
38   const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
39   const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
40   const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
41   const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
42   const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
43 
44   __m256 vaccv0 = _mm256_setzero_ps();
45   __m256 vacce0 = vminus_inf;
46   for (; elements >= 64 * sizeof(float); elements -= 64 * sizeof(float)) {
47     // Load 64 (8x8) inputs at a time.
48     const __m256 vx0 = _mm256_loadu_ps(x);
49     const __m256 vx1 = _mm256_loadu_ps(x + 8);
50     const __m256 vx2 = _mm256_loadu_ps(x + 16);
51     const __m256 vx3 = _mm256_loadu_ps(x + 24);
52     const __m256 vx4 = _mm256_loadu_ps(x + 32);
53     const __m256 vx5 = _mm256_loadu_ps(x + 40);
54     const __m256 vx6 = _mm256_loadu_ps(x + 48);
55     const __m256 vx7 = _mm256_loadu_ps(x + 56);
56     x += 64;
57 
58     // Compute reduced argument elements := round(x / log(2)).
59     const __m256 vn0 = _mm256_round_ps(_mm256_mul_ps(vx0, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
60     const __m256 vn1 = _mm256_round_ps(_mm256_mul_ps(vx1, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
61     const __m256 vn2 = _mm256_round_ps(_mm256_mul_ps(vx2, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
62     const __m256 vn3 = _mm256_round_ps(_mm256_mul_ps(vx3, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
63     const __m256 vn4 = _mm256_round_ps(_mm256_mul_ps(vx4, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
64     const __m256 vn5 = _mm256_round_ps(_mm256_mul_ps(vx5, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
65     const __m256 vn6 = _mm256_round_ps(_mm256_mul_ps(vx6, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
66     const __m256 vn7 = _mm256_round_ps(_mm256_mul_ps(vx7, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
67 
68     // Compute reduced argument t := x - elements * log(2).
69     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
70     __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0);
71     __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1);
72     __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2);
73     __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3);
74     __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4);
75     __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5);
76     __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6);
77     __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7);
78 
79     vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0);
80     vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1);
81     vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2);
82     vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3);
83     vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4);
84     vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5);
85     vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6);
86     vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7);
87 
88     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
89     __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
90     __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
91     __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
92     __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
93     __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4);
94     __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4);
95     __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4);
96     __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4);
97 
98     vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
99     vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
100     vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
101     vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
102     vp4 = _mm256_fmadd_ps(vp4, vt4, vc3);
103     vp5 = _mm256_fmadd_ps(vp5, vt5, vc3);
104     vp6 = _mm256_fmadd_ps(vp6, vt6, vc3);
105     vp7 = _mm256_fmadd_ps(vp7, vt7, vc3);
106 
107     vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
108     vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
109     vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
110     vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
111     vp4 = _mm256_fmadd_ps(vp4, vt4, vc2);
112     vp5 = _mm256_fmadd_ps(vp5, vt5, vc2);
113     vp6 = _mm256_fmadd_ps(vp6, vt6, vc2);
114     vp7 = _mm256_fmadd_ps(vp7, vt7, vc2);
115 
116     vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
117     vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
118     vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
119     vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
120     vp4 = _mm256_fmadd_ps(vp4, vt4, vc1);
121     vp5 = _mm256_fmadd_ps(vp5, vt5, vc1);
122     vp6 = _mm256_fmadd_ps(vp6, vt6, vc1);
123     vp7 = _mm256_fmadd_ps(vp7, vt7, vc1);
124 
125     vp0 = _mm256_fmadd_ps(vp0, vt0, vc0);
126     vp1 = _mm256_fmadd_ps(vp1, vt1, vc0);
127     vp2 = _mm256_fmadd_ps(vp2, vt2, vc0);
128     vp3 = _mm256_fmadd_ps(vp3, vt3, vc0);
129     vp4 = _mm256_fmadd_ps(vp4, vt4, vc0);
130     vp5 = _mm256_fmadd_ps(vp5, vt5, vc0);
131     vp6 = _mm256_fmadd_ps(vp6, vt6, vc0);
132     vp7 = _mm256_fmadd_ps(vp7, vt7, vc0);
133 
134     // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation where
135     //  - vnX is "exponent"
136     //  - vpX is "mantissa"
137     //
138     // exp2(ae) * av + exp2(be) * bv =
139     //   = exp2(max(ae, be)) * exp2(ae - max(ae, be)) * av + exp2(max(ae, be)) * exp2(be - max(ae, be)) * bv
140     //   = exp2(max_e) * (exp2(ae - max_e) * av + exp2(be - max_e) * bv)
141     //   = exp2(max_e) * (exp2(delta_ae) * av + exp2(delta_be) * bv)
142     //
143     // For computational efficiency we may add several "extended" floating-point numbers at a time.
144     __m256 vmax_e0 = _mm256_max_ps(vacce0, vn0);
145     vmax_e0 = _mm256_max_ps(vmax_e0, vn1);
146     vmax_e0 = _mm256_max_ps(vmax_e0, vn2);
147     vmax_e0 = _mm256_max_ps(vmax_e0, vn3);
148     vmax_e0 = _mm256_max_ps(vmax_e0, vn4);
149     vmax_e0 = _mm256_max_ps(vmax_e0, vn5);
150     vmax_e0 = _mm256_max_ps(vmax_e0, vn6);
151     vmax_e0 = _mm256_max_ps(vmax_e0, vn7);
152 
153     // For computational efficiency, replace exp2(delta_e) with 0.0f when delta_e <= -127.0.
154     // This replacement is done in two steps:
155     // 1. Clamp minimum delta_e at -127.0.
156     // 2. Map delta_e to scale factor 0.0 when delta_e == -127.0
157     const __m256 vdelta_acce0 = _mm256_max_ps(_mm256_sub_ps(vacce0, vmax_e0), vmin_exponent);
158     const __m256 vdelta_e0 = _mm256_max_ps(_mm256_sub_ps(vn0, vmax_e0), vmin_exponent);
159     const __m256 vdelta_e1 = _mm256_max_ps(_mm256_sub_ps(vn1, vmax_e0), vmin_exponent);
160     const __m256 vdelta_e2 = _mm256_max_ps(_mm256_sub_ps(vn2, vmax_e0), vmin_exponent);
161     const __m256 vdelta_e3 = _mm256_max_ps(_mm256_sub_ps(vn3, vmax_e0), vmin_exponent);
162     const __m256 vdelta_e4 = _mm256_max_ps(_mm256_sub_ps(vn4, vmax_e0), vmin_exponent);
163     const __m256 vdelta_e5 = _mm256_max_ps(_mm256_sub_ps(vn5, vmax_e0), vmin_exponent);
164     const __m256 vdelta_e6 = _mm256_max_ps(_mm256_sub_ps(vn6, vmax_e0), vmin_exponent);
165     const __m256 vdelta_e7 = _mm256_max_ps(_mm256_sub_ps(vn7, vmax_e0), vmin_exponent);
166 
167     // Convert delta-exponents into scale factors:
168     // - s = exp2(delta_e) when delta_e > -127.0
169     // - s = 0.0 when delta_e <= -127.0
170     //
171     // Note: delta-exponents can not exceed 0.0, thus scale factors can not exceed 1.0.
172     const __m256 vaccs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce0, vmagic_bias)), 23));
173     const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e0, vmagic_bias)), 23));
174     const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e1, vmagic_bias)), 23));
175     const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e2, vmagic_bias)), 23));
176     const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e3, vmagic_bias)), 23));
177     const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e4, vmagic_bias)), 23));
178     const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e5, vmagic_bias)), 23));
179     const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e6, vmagic_bias)), 23));
180     const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e7, vmagic_bias)), 23));
181 
182     // Update accumulated "mantissa" and "exponent" values
183     vaccv0 = _mm256_mul_ps(vaccv0, vaccs0);
184     vaccv0 = _mm256_fmadd_ps(vp0, vs0, vaccv0);
185     vaccv0 = _mm256_fmadd_ps(vp1, vs1, vaccv0);
186     vaccv0 = _mm256_fmadd_ps(vp2, vs2, vaccv0);
187     vaccv0 = _mm256_fmadd_ps(vp3, vs3, vaccv0);
188     vaccv0 = _mm256_fmadd_ps(vp4, vs4, vaccv0);
189     vaccv0 = _mm256_fmadd_ps(vp5, vs5, vaccv0);
190     vaccv0 = _mm256_fmadd_ps(vp6, vs6, vaccv0);
191     vaccv0 = _mm256_fmadd_ps(vp7, vs7, vaccv0);
192 
193     vacce0 = vmax_e0;
194   }
195 
196   // Reduce partial sums of "extended" floating-point numbers into a single "extended" SIMD vector of sums.
197   __m256 vaccv = vaccv0;
198   __m256 vacce = vacce0;
199 
200   for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) {
201     // Load 8 inputs at a time.
202     const __m256 vx = _mm256_loadu_ps(x);
203     x += 8;
204 
205     // Compute reduced argument elements := round(x / log(2)).
206     const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
207 
208     // Compute reduced argument t := x - elements * log(2).
209     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
210     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
211     vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
212 
213     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
214     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
215     vp = _mm256_fmadd_ps(vp, vt, vc3);
216     vp = _mm256_fmadd_ps(vp, vt, vc2);
217     vp = _mm256_fmadd_ps(vp, vt, vc1);
218     vp = _mm256_fmadd_ps(vp, vt, vc0);
219 
220     // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation.
221     const __m256 vmax_e = _mm256_max_ps(vacce, vn);
222 
223     // For computational efficiency, clamp minimum exp2(delta_e) at -127.0. It will be mapped to 0.0 scale factor later.
224     const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_e), vmin_exponent);
225     const __m256 vdelta_e = _mm256_max_ps(_mm256_sub_ps(vn, vmax_e), vmin_exponent);
226 
227     // Convert exponents into scale factors.
228     const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23));
229     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e, vmagic_bias)), 23));
230 
231     // Update accumulated "mantissa" and "exponent" values.
232     vaccv = _mm256_mul_ps(vaccv, vaccs);
233     vaccv = _mm256_fmadd_ps(vp, vs, vaccv);
234 
235     vacce = vmax_e;
236   }
237   if XNN_UNLIKELY(elements != 0) {
238     assert(elements >= 1 * sizeof(float));
239     assert(elements <= 7 * sizeof(float));
240     const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - elements));
241 
242     // Load up to 7 inputs at a time.
243     const __m256 vx = _mm256_maskload_ps(x, vmask);
244 
245     // Compute reduced argument elements := round(x / log(2)).
246     __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
247 
248     // Compute reduced argument t := x - elements * log(2).
249     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
250     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
251     vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
252 
253     // Correct reduced argument elements for masked out elements.
254     vn = _mm256_blendv_ps(vacce, vn, _mm256_castsi256_ps(vmask));
255 
256     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
257     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
258     vp = _mm256_fmadd_ps(vp, vt, vc3);
259     vp = _mm256_fmadd_ps(vp, vt, vc2);
260     vp = _mm256_fmadd_ps(vp, vt, vc1);
261     vp = _mm256_fmadd_ps(vp, vt, vc0);
262     vp = _mm256_and_ps(vp, _mm256_castsi256_ps(vmask));
263 
264     // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation.
265     const __m256 vmax_e = _mm256_max_ps(vacce, vn);
266 
267     // For computational efficiency, clamp minimum exp2(delta_e) at -127.0. It will be mapped to 0.0 scale factor later.
268     const __m256 vdelta_e = _mm256_max_ps(_mm256_sub_ps(vn, vmax_e), vmin_exponent);
269     const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_e), vmin_exponent);
270 
271     // Convert exponents into scale factors.
272     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e, vmagic_bias)), 23));
273     const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23));
274 
275     // Update accumulated "mantissa" and "exponent" values.
276     vaccv = _mm256_mul_ps(vaccv, vaccs);
277     vaccv = _mm256_fmadd_ps(vp, vs, vaccv);
278 
279     vacce = vmax_e;
280   }
281 
282   // Reduce partial sums of "extended" floating-point numbers into a single "extended" floating-point sum.
283   __m256 vmax_acce = _mm256_max_ps(vacce, _mm256_permute2f128_ps(vacce, vacce, 1));
284   vmax_acce = _mm256_max_ps(vmax_acce, _mm256_shuffle_ps(vmax_acce, vmax_acce, _MM_SHUFFLE(1, 0, 3, 2)));
285   vmax_acce = _mm256_max_ps(vmax_acce, _mm256_shuffle_ps(vmax_acce, vmax_acce, _MM_SHUFFLE(2, 3, 0, 1)));
286   const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_acce), vmin_exponent);
287   const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23));
288 
289   vaccv = _mm256_mul_ps(vaccv, vaccs);
290   __m128 vaccv_sum = _mm_add_ps(_mm256_castps256_ps128(vaccv), _mm256_extractf128_ps(vaccv, 1));
291   vaccv_sum = _mm_add_ps(vaccv_sum, _mm_movehl_ps(vaccv_sum, vaccv_sum));
292   vaccv_sum = _mm_add_ss(vaccv_sum, _mm_movehdup_ps(vaccv_sum));
293 
294   _mm_store_ss(&sum[0], vaccv_sum);
295   _mm_store_ss(&sum[1], _mm256_castps256_ps128(vmax_acce));
296 
297   _mm256_zeroupper();
298 }
299