• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddextexp/avx2-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 #include <math.h>
12 
13 #include <immintrin.h>
14 
15 #include <xnnpack/raddextexp.h>
16 
17 
18 static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
19 
xnn_f32_raddextexp_ukernel__avx2_p5_x64_acc2(size_t elements,const float * x,float * sum)20 void xnn_f32_raddextexp_ukernel__avx2_p5_x64_acc2(
21     size_t elements,
22     const float* x,
23     float* sum)
24 {
25   assert(elements % sizeof(float) == 0);
26 
27   const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
28   const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f);
29   const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f);
30 
31   // The smallest elements such that 2**elements is considered non-negligible.
32   // For smaller elements, 2**elements is replaced with zero.
33   const __m256 vmin_exponent = _mm256_set1_ps(-127.0f);
34   const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
35   const __m256 vminus_inf = _mm256_set1_ps(-INFINITY);
36 
37   const __m256 vc0 = _mm256_set1_ps(1.0f);
38   const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
39   const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
40   const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
41   const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
42   const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
43 
44   __m256 vaccv0 = _mm256_setzero_ps();
45   __m256 vaccv1 = _mm256_setzero_ps();
46   __m256 vacce0 = vminus_inf;
47   __m256 vacce1 = vminus_inf;
48   for (; elements >= 64 * sizeof(float); elements -= 64 * sizeof(float)) {
49     // Load 64 (8x8) inputs at a time.
50     const __m256 vx0 = _mm256_loadu_ps(x);
51     const __m256 vx1 = _mm256_loadu_ps(x + 8);
52     const __m256 vx2 = _mm256_loadu_ps(x + 16);
53     const __m256 vx3 = _mm256_loadu_ps(x + 24);
54     const __m256 vx4 = _mm256_loadu_ps(x + 32);
55     const __m256 vx5 = _mm256_loadu_ps(x + 40);
56     const __m256 vx6 = _mm256_loadu_ps(x + 48);
57     const __m256 vx7 = _mm256_loadu_ps(x + 56);
58     x += 64;
59 
60     // Compute reduced argument elements := round(x / log(2)).
61     const __m256 vn0 = _mm256_round_ps(_mm256_mul_ps(vx0, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
62     const __m256 vn1 = _mm256_round_ps(_mm256_mul_ps(vx1, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
63     const __m256 vn2 = _mm256_round_ps(_mm256_mul_ps(vx2, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
64     const __m256 vn3 = _mm256_round_ps(_mm256_mul_ps(vx3, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
65     const __m256 vn4 = _mm256_round_ps(_mm256_mul_ps(vx4, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
66     const __m256 vn5 = _mm256_round_ps(_mm256_mul_ps(vx5, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
67     const __m256 vn6 = _mm256_round_ps(_mm256_mul_ps(vx6, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
68     const __m256 vn7 = _mm256_round_ps(_mm256_mul_ps(vx7, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
69 
70     // Compute reduced argument t := x - elements * log(2).
71     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
72     __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0);
73     __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1);
74     __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2);
75     __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3);
76     __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4);
77     __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5);
78     __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6);
79     __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7);
80 
81     vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0);
82     vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1);
83     vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2);
84     vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3);
85     vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4);
86     vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5);
87     vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6);
88     vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7);
89 
90     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
91     __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
92     __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
93     __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
94     __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
95     __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4);
96     __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4);
97     __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4);
98     __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4);
99 
100     vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
101     vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
102     vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
103     vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
104     vp4 = _mm256_fmadd_ps(vp4, vt4, vc3);
105     vp5 = _mm256_fmadd_ps(vp5, vt5, vc3);
106     vp6 = _mm256_fmadd_ps(vp6, vt6, vc3);
107     vp7 = _mm256_fmadd_ps(vp7, vt7, vc3);
108 
109     vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
110     vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
111     vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
112     vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
113     vp4 = _mm256_fmadd_ps(vp4, vt4, vc2);
114     vp5 = _mm256_fmadd_ps(vp5, vt5, vc2);
115     vp6 = _mm256_fmadd_ps(vp6, vt6, vc2);
116     vp7 = _mm256_fmadd_ps(vp7, vt7, vc2);
117 
118     vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
119     vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
120     vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
121     vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
122     vp4 = _mm256_fmadd_ps(vp4, vt4, vc1);
123     vp5 = _mm256_fmadd_ps(vp5, vt5, vc1);
124     vp6 = _mm256_fmadd_ps(vp6, vt6, vc1);
125     vp7 = _mm256_fmadd_ps(vp7, vt7, vc1);
126 
127     vp0 = _mm256_fmadd_ps(vp0, vt0, vc0);
128     vp1 = _mm256_fmadd_ps(vp1, vt1, vc0);
129     vp2 = _mm256_fmadd_ps(vp2, vt2, vc0);
130     vp3 = _mm256_fmadd_ps(vp3, vt3, vc0);
131     vp4 = _mm256_fmadd_ps(vp4, vt4, vc0);
132     vp5 = _mm256_fmadd_ps(vp5, vt5, vc0);
133     vp6 = _mm256_fmadd_ps(vp6, vt6, vc0);
134     vp7 = _mm256_fmadd_ps(vp7, vt7, vc0);
135 
136     // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation where
137     //  - vnX is "exponent"
138     //  - vpX is "mantissa"
139     //
140     // exp2(ae) * av + exp2(be) * bv =
141     //   = exp2(max(ae, be)) * exp2(ae - max(ae, be)) * av + exp2(max(ae, be)) * exp2(be - max(ae, be)) * bv
142     //   = exp2(max_e) * (exp2(ae - max_e) * av + exp2(be - max_e) * bv)
143     //   = exp2(max_e) * (exp2(delta_ae) * av + exp2(delta_be) * bv)
144     //
145     // For computational efficiency we may add several "extended" floating-point numbers at a time.
146     __m256 vmax_e0 = _mm256_max_ps(vacce0, vn0);
147     __m256 vmax_e1 = _mm256_max_ps(vacce1, vn1);
148     vmax_e0 = _mm256_max_ps(vmax_e0, vn2);
149     vmax_e1 = _mm256_max_ps(vmax_e1, vn3);
150     vmax_e0 = _mm256_max_ps(vmax_e0, vn4);
151     vmax_e1 = _mm256_max_ps(vmax_e1, vn5);
152     vmax_e0 = _mm256_max_ps(vmax_e0, vn6);
153     vmax_e1 = _mm256_max_ps(vmax_e1, vn7);
154 
155     // For computational efficiency, replace exp2(delta_e) with 0.0f when delta_e <= -127.0.
156     // This replacement is done in two steps:
157     // 1. Clamp minimum delta_e at -127.0.
158     // 2. Map delta_e to scale factor 0.0 when delta_e == -127.0
159     const __m256 vdelta_acce0 = _mm256_max_ps(_mm256_sub_ps(vacce0, vmax_e0), vmin_exponent);
160     const __m256 vdelta_acce1 = _mm256_max_ps(_mm256_sub_ps(vacce1, vmax_e1), vmin_exponent);
161     const __m256 vdelta_e0 = _mm256_max_ps(_mm256_sub_ps(vn0, vmax_e0), vmin_exponent);
162     const __m256 vdelta_e1 = _mm256_max_ps(_mm256_sub_ps(vn1, vmax_e1), vmin_exponent);
163     const __m256 vdelta_e2 = _mm256_max_ps(_mm256_sub_ps(vn2, vmax_e0), vmin_exponent);
164     const __m256 vdelta_e3 = _mm256_max_ps(_mm256_sub_ps(vn3, vmax_e1), vmin_exponent);
165     const __m256 vdelta_e4 = _mm256_max_ps(_mm256_sub_ps(vn4, vmax_e0), vmin_exponent);
166     const __m256 vdelta_e5 = _mm256_max_ps(_mm256_sub_ps(vn5, vmax_e1), vmin_exponent);
167     const __m256 vdelta_e6 = _mm256_max_ps(_mm256_sub_ps(vn6, vmax_e0), vmin_exponent);
168     const __m256 vdelta_e7 = _mm256_max_ps(_mm256_sub_ps(vn7, vmax_e1), vmin_exponent);
169 
170     // Convert delta-exponents into scale factors:
171     // - s = exp2(delta_e) when delta_e > -127.0
172     // - s = 0.0 when delta_e <= -127.0
173     //
174     // Note: delta-exponents can not exceed 0.0, thus scale factors can not exceed 1.0.
175     const __m256 vaccs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce0, vmagic_bias)), 23));
176     const __m256 vaccs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce1, vmagic_bias)), 23));
177     const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e0, vmagic_bias)), 23));
178     const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e1, vmagic_bias)), 23));
179     const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e2, vmagic_bias)), 23));
180     const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e3, vmagic_bias)), 23));
181     const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e4, vmagic_bias)), 23));
182     const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e5, vmagic_bias)), 23));
183     const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e6, vmagic_bias)), 23));
184     const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e7, vmagic_bias)), 23));
185 
186     // Update accumulated "mantissa" and "exponent" values
187     vaccv0 = _mm256_mul_ps(vaccv0, vaccs0);
188     vaccv1 = _mm256_mul_ps(vaccv1, vaccs1);
189     vaccv0 = _mm256_fmadd_ps(vp0, vs0, vaccv0);
190     vaccv1 = _mm256_fmadd_ps(vp1, vs1, vaccv1);
191     vaccv0 = _mm256_fmadd_ps(vp2, vs2, vaccv0);
192     vaccv1 = _mm256_fmadd_ps(vp3, vs3, vaccv1);
193     vaccv0 = _mm256_fmadd_ps(vp4, vs4, vaccv0);
194     vaccv1 = _mm256_fmadd_ps(vp5, vs5, vaccv1);
195     vaccv0 = _mm256_fmadd_ps(vp6, vs6, vaccv0);
196     vaccv1 = _mm256_fmadd_ps(vp7, vs7, vaccv1);
197 
198     vacce0 = vmax_e0;
199     vacce1 = vmax_e1;
200   }
201 
202   // Reduce partial sums of "extended" floating-point numbers into a single "extended" SIMD vector of sums.
203   const __m256 vmax_acce01 = _mm256_max_ps(vacce0, vacce1);
204 
205   const __m256 vdelta_acce0 = _mm256_max_ps(_mm256_sub_ps(vacce0, vmax_acce01), vmin_exponent);
206   const __m256 vdelta_acce1 = _mm256_max_ps(_mm256_sub_ps(vacce1, vmax_acce01), vmin_exponent);
207 
208   const __m256 vaccs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce0, vmagic_bias)), 23));
209   const __m256 vaccs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce1, vmagic_bias)), 23));
210 
211   __m256 vaccv = _mm256_mul_ps(vaccv0, vaccs0);
212   vaccv = _mm256_fmadd_ps(vaccv1, vaccs1, vaccv);
213   __m256 vacce = vmax_acce01;
214 
215   for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) {
216     // Load 8 inputs at a time.
217     const __m256 vx = _mm256_loadu_ps(x);
218     x += 8;
219 
220     // Compute reduced argument elements := round(x / log(2)).
221     const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
222 
223     // Compute reduced argument t := x - elements * log(2).
224     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
225     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
226     vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
227 
228     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
229     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
230     vp = _mm256_fmadd_ps(vp, vt, vc3);
231     vp = _mm256_fmadd_ps(vp, vt, vc2);
232     vp = _mm256_fmadd_ps(vp, vt, vc1);
233     vp = _mm256_fmadd_ps(vp, vt, vc0);
234 
235     // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation.
236     const __m256 vmax_e = _mm256_max_ps(vacce, vn);
237 
238     // For computational efficiency, clamp minimum exp2(delta_e) at -127.0. It will be mapped to 0.0 scale factor later.
239     const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_e), vmin_exponent);
240     const __m256 vdelta_e = _mm256_max_ps(_mm256_sub_ps(vn, vmax_e), vmin_exponent);
241 
242     // Convert exponents into scale factors.
243     const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23));
244     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e, vmagic_bias)), 23));
245 
246     // Update accumulated "mantissa" and "exponent" values.
247     vaccv = _mm256_mul_ps(vaccv, vaccs);
248     vaccv = _mm256_fmadd_ps(vp, vs, vaccv);
249 
250     vacce = vmax_e;
251   }
252   if XNN_UNLIKELY(elements != 0) {
253     assert(elements >= 1 * sizeof(float));
254     assert(elements <= 7 * sizeof(float));
255     const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - elements));
256 
257     // Load up to 7 inputs at a time.
258     const __m256 vx = _mm256_maskload_ps(x, vmask);
259 
260     // Compute reduced argument elements := round(x / log(2)).
261     __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
262 
263     // Compute reduced argument t := x - elements * log(2).
264     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
265     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
266     vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
267 
268     // Correct reduced argument elements for masked out elements.
269     vn = _mm256_blendv_ps(vacce, vn, _mm256_castsi256_ps(vmask));
270 
271     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
272     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
273     vp = _mm256_fmadd_ps(vp, vt, vc3);
274     vp = _mm256_fmadd_ps(vp, vt, vc2);
275     vp = _mm256_fmadd_ps(vp, vt, vc1);
276     vp = _mm256_fmadd_ps(vp, vt, vc0);
277     vp = _mm256_and_ps(vp, _mm256_castsi256_ps(vmask));
278 
279     // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation.
280     const __m256 vmax_e = _mm256_max_ps(vacce, vn);
281 
282     // For computational efficiency, clamp minimum exp2(delta_e) at -127.0. It will be mapped to 0.0 scale factor later.
283     const __m256 vdelta_e = _mm256_max_ps(_mm256_sub_ps(vn, vmax_e), vmin_exponent);
284     const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_e), vmin_exponent);
285 
286     // Convert exponents into scale factors.
287     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e, vmagic_bias)), 23));
288     const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23));
289 
290     // Update accumulated "mantissa" and "exponent" values.
291     vaccv = _mm256_mul_ps(vaccv, vaccs);
292     vaccv = _mm256_fmadd_ps(vp, vs, vaccv);
293 
294     vacce = vmax_e;
295   }
296 
297   // Reduce partial sums of "extended" floating-point numbers into a single "extended" floating-point sum.
298   __m256 vmax_acce = _mm256_max_ps(vacce, _mm256_permute2f128_ps(vacce, vacce, 1));
299   vmax_acce = _mm256_max_ps(vmax_acce, _mm256_shuffle_ps(vmax_acce, vmax_acce, _MM_SHUFFLE(1, 0, 3, 2)));
300   vmax_acce = _mm256_max_ps(vmax_acce, _mm256_shuffle_ps(vmax_acce, vmax_acce, _MM_SHUFFLE(2, 3, 0, 1)));
301   const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_acce), vmin_exponent);
302   const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23));
303 
304   vaccv = _mm256_mul_ps(vaccv, vaccs);
305   __m128 vaccv_sum = _mm_add_ps(_mm256_castps256_ps128(vaccv), _mm256_extractf128_ps(vaccv, 1));
306   vaccv_sum = _mm_add_ps(vaccv_sum, _mm_movehl_ps(vaccv_sum, vaccv_sum));
307   vaccv_sum = _mm_add_ss(vaccv_sum, _mm_movehdup_ps(vaccv_sum));
308 
309   _mm_store_ss(&sum[0], vaccv_sum);
310   _mm_store_ss(&sum[1], _mm256_castps256_ps128(vmax_acce));
311 
312   _mm256_zeroupper();
313 }
314