1 // Auto-generated file. Do not edit!
2 // Template: src/f32-raddstoreexpminusmax/neon-p5.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <arm_neon.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16
17
xnn_f32_raddstoreexpminusmax_ukernel__neon_p5_x12(size_t elements,const float * input,float * output,float * sum,float max)18 void xnn_f32_raddstoreexpminusmax_ukernel__neon_p5_x12(
19 size_t elements,
20 const float* input,
21 float* output,
22 float* sum,
23 float max) XNN_DISABLE_TSAN
24 {
25 assert(elements % sizeof(float) == 0);
26
27 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f);
28 // The smallest x for which expf(x) is normalized.
29 const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep6f);
30 const float32x4_t vlog2e = vmovq_n_f32(0x1.715476p+0f);
31 // Last 7 bits are zeroes
32 const float32x4_t vminus_ln2_hi = vmovq_n_f32(-0x1.62E400p-1f);
33 const float32x4_t vminus_ln2_lo = vmovq_n_f32(-0x1.7F7D1Cp-20f);
34
35 const float32x4_t vc1 = vmovq_n_f32(0x1.FFFFF6p-1f);
36 const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f);
37 const float32x4_t vc3 = vmovq_n_f32(0x1.555A80p-3f);
38 const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f);
39 const float32x4_t vc5 = vmovq_n_f32(0x1.0F9F9Cp-7f);
40
41 const float32x4_t vi_max = vdupq_n_f32(max);
42
43 float32x4_t vacc0 = vmovq_n_f32(0.0f);
44 for (; elements >= 12 * sizeof(float); elements -= 12 * sizeof(float)) {
45 // Load 12 (3x4) inputs at a time.
46 const float32x4_t vi0123 = vld1q_f32(input); input += 4;
47 const float32x4_t vi4567 = vld1q_f32(input); input += 4;
48 const float32x4_t vi89AB = vld1q_f32(input); input += 4;
49
50 // Subtract maximum input x := i - i_max. This implies x <= 0.
51 const float32x4_t vx0123 = vsubq_f32(vi0123, vi_max);
52 const float32x4_t vx4567 = vsubq_f32(vi4567, vi_max);
53 const float32x4_t vx89AB = vsubq_f32(vi89AB, vi_max);
54
55 // Compute reduced argument n := round(x / log(2)).
56 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
57 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
58 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
59 // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
60 // of the algorithm.
61 float32x4_t vn0123 = vmlaq_f32(vmagic_bias, vx0123, vlog2e);
62 float32x4_t vn4567 = vmlaq_f32(vmagic_bias, vx4567, vlog2e);
63 float32x4_t vn89AB = vmlaq_f32(vmagic_bias, vx89AB, vlog2e);
64
65 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
66 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
67 const float32x4_t vs0123 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 23));
68 const float32x4_t vs4567 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 23));
69 const float32x4_t vs89AB = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn89AB), 23));
70
71 // Subtract the large number back to get final n := round(x / log(2)).
72 vn0123 = vsubq_f32(vn0123, vmagic_bias);
73 vn4567 = vsubq_f32(vn4567, vmagic_bias);
74 vn89AB = vsubq_f32(vn89AB, vmagic_bias);
75
76 // Compute reduced argument t := z - n * log(2).
77 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
78 float32x4_t vt0123 = vmlaq_f32(vx0123, vn0123, vminus_ln2_hi);
79 float32x4_t vt4567 = vmlaq_f32(vx4567, vn4567, vminus_ln2_hi);
80 float32x4_t vt89AB = vmlaq_f32(vx89AB, vn89AB, vminus_ln2_hi);
81
82 vt0123 = vmlaq_f32(vt0123, vn0123, vminus_ln2_lo);
83 vt4567 = vmlaq_f32(vt4567, vn4567, vminus_ln2_lo);
84 vt89AB = vmlaq_f32(vt89AB, vn89AB, vminus_ln2_lo);
85
86 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
87 float32x4_t vp0123 = vmlaq_f32(vc4, vc5, vt0123);
88 float32x4_t vp4567 = vmlaq_f32(vc4, vc5, vt4567);
89 float32x4_t vp89AB = vmlaq_f32(vc4, vc5, vt89AB);
90
91 vp0123 = vmlaq_f32(vc3, vp0123, vt0123);
92 vp4567 = vmlaq_f32(vc3, vp4567, vt4567);
93 vp89AB = vmlaq_f32(vc3, vp89AB, vt89AB);
94
95 vp0123 = vmlaq_f32(vc2, vp0123, vt0123);
96 vp4567 = vmlaq_f32(vc2, vp4567, vt4567);
97 vp89AB = vmlaq_f32(vc2, vp89AB, vt89AB);
98
99 vp0123 = vmlaq_f32(vc1, vp0123, vt0123);
100 vp4567 = vmlaq_f32(vc1, vp4567, vt4567);
101 vp89AB = vmlaq_f32(vc1, vp89AB, vt89AB);
102
103 // Reconstruct the final f value:
104 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
105 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
106 // = s + (t * s) * p
107 vt0123 = vmulq_f32(vt0123, vs0123);
108 vt4567 = vmulq_f32(vt4567, vs4567);
109 vt89AB = vmulq_f32(vt89AB, vs89AB);
110
111 float32x4_t vf0123 = vmlaq_f32(vs0123, vp0123, vt0123);
112 float32x4_t vf4567 = vmlaq_f32(vs4567, vp4567, vt4567);
113 float32x4_t vf89AB = vmlaq_f32(vs89AB, vp89AB, vt89AB);
114
115 // For inputs below denormal cutoff, replace output with +0.0f.
116 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
117 vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcltq_f32(vx0123, vdenorm_cutoff)));
118 vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcltq_f32(vx4567, vdenorm_cutoff)));
119 vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcltq_f32(vx89AB, vdenorm_cutoff)));
120
121 // Store 12 (3x4) outputs at a time.
122 vst1q_f32(output, vf0123); output += 4;
123 vst1q_f32(output, vf4567); output += 4;
124 vst1q_f32(output, vf89AB); output += 4;
125
126 // Accumulate computed exponents.
127 vacc0 = vaddq_f32(vacc0, vf0123);
128 vacc0 = vaddq_f32(vacc0, vf4567);
129 vacc0 = vaddq_f32(vacc0, vf89AB);
130 }
131
132 float32x4_t vacc = vacc0;
133 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
134 // Load 4 inputs at a time.
135 const float32x4_t vi = vld1q_f32(input); input += 4;
136
137 // Subtract maximum input x := i - i_max. This implies x <= 0.
138 const float32x4_t vx = vsubq_f32(vi, vi_max);
139
140 // Compute reduced argument n := round(x / log(2)).
141 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
142 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
143 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
144 // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
145 // of the algorithm.
146 float32x4_t vn = vmlaq_f32(vmagic_bias, vx, vlog2e);
147
148 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
149 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
150 const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
151
152 // Subtract the large number back to get final n := round(x / log(2)).
153 vn = vsubq_f32(vn, vmagic_bias);
154
155 // Compute reduced argument t := z - n * log(2).
156 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
157 float32x4_t vt = vmlaq_f32(vx, vn, vminus_ln2_hi);
158 vt = vmlaq_f32(vt, vn, vminus_ln2_lo);
159
160 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
161 float32x4_t vp = vmlaq_f32(vc4, vc5, vt);
162 vp = vmlaq_f32(vc3, vp, vt);
163 vp = vmlaq_f32(vc2, vp, vt);
164 vp = vmlaq_f32(vc1, vp, vt);
165
166 // Reconstruct the final f value:
167 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
168 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
169 // = s + (t * s) * p
170 vt = vmulq_f32(vt, vs);
171 float32x4_t vf = vmlaq_f32(vs, vp, vt);
172
173 // For inputs below denormal cutoff, replace output with +0.0f.
174 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
175 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
176
177 // Store 4 outputs at a time.
178 vst1q_f32(output, vf); output += 4;
179
180 // Accumulate computed exponents.
181 vacc = vaddq_f32(vacc, vf);
182 }
183 #if XNN_ARCH_ARM64
184 float vacc_lo = vaddvq_f32(vacc);
185 #else
186 float32x2_t vacc_lo = vadd_f32(vget_high_f32(vacc), vget_low_f32(vacc));
187 #endif
188 if (elements != 0) {
189 assert(elements >= 1 * sizeof(float));
190 assert(elements <= 3 * sizeof(float));
191 // Load 4 inputs at a time.
192 const float32x4_t vi = vld1q_f32(input); input += 4;
193
194 // Subtract maximum input x := i - i_max. This implies x <= 0.
195 const float32x4_t vx = vsubq_f32(vi, vi_max);
196
197 // Compute reduced argument n := round(x / log(2)).
198 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
199 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
200 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
201 // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
202 // of the algorithm.
203 float32x4_t vn = vmlaq_f32(vmagic_bias, vx, vlog2e);
204
205 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
206 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
207 const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
208
209 // Subtract the large number back to get final n := round(x / log(2)).
210 vn = vsubq_f32(vn, vmagic_bias);
211
212 // Compute reduced argument t := z - n * log(2).
213 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
214 float32x4_t vt = vmlaq_f32(vx, vn, vminus_ln2_hi);
215 vt = vmlaq_f32(vt, vn, vminus_ln2_lo);
216
217 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
218 float32x4_t vp = vmlaq_f32(vc4, vc5, vt);
219 vp = vmlaq_f32(vc3, vp, vt);
220 vp = vmlaq_f32(vc2, vp, vt);
221 vp = vmlaq_f32(vc1, vp, vt);
222
223 // Reconstruct the final f value:
224 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
225 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
226 // = s + (t * s) * p
227 vt = vmulq_f32(vt, vs);
228 float32x4_t vf = vmlaq_f32(vs, vp, vt);
229
230 // For inputs below denormal cutoff, replace output with +0.0f.
231 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
232 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
233
234 float32x2_t vf_lo = vget_low_f32(vf);
235 if (elements & (2 * sizeof(float))) {
236 // Store 2 outputs at a time.
237 vst1_f32(output, vf_lo); output += 2;
238
239 // Accumulate 2 computed exponents.
240 #if XNN_ARCH_ARM64
241 vacc_lo += vaddv_f32(vf_lo);
242 #else
243 vacc_lo = vadd_f32(vacc_lo, vf_lo);
244 #endif
245
246 vf_lo = vget_high_f32(vf);
247 }
248 if (elements & (1 * sizeof(float))) {
249 // Store 1 output at a time.
250 vst1_lane_f32(output, vf_lo, 0);
251
252 // Accumulate 1 computed exponent.
253 #if XNN_ARCH_ARM64
254 vacc_lo += vget_lane_f32(vf_lo, 0);
255 #else
256 vacc_lo = vadd_f32(vacc_lo, vreinterpret_f32_u64(vshl_n_u64(vreinterpret_u64_f32(vf_lo), 32)));
257 #endif
258 }
259 }
260 // Reduce 4 elements in the SIMD register
261 #if XNN_ARCH_ARM64
262 *sum = vacc_lo;
263 #else
264 vst1_lane_f32(sum, vpadd_f32(vacc_lo, vacc_lo), 0);
265 #endif
266 }
267