• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/neon-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <arm_neon.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16 
17 
xnn_f32_raddstoreexpminusmax_ukernel__neon_p5_x16(size_t elements,const float * input,float * output,float * sum,float max)18 void xnn_f32_raddstoreexpminusmax_ukernel__neon_p5_x16(
19     size_t elements,
20     const float* input,
21     float* output,
22     float* sum,
23     float max) XNN_DISABLE_TSAN
24 {
25   assert(elements % sizeof(float) == 0);
26 
27   const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f);
28   // The smallest x for which expf(x) is normalized.
29   const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep6f);
30   const float32x4_t vlog2e = vmovq_n_f32(0x1.715476p+0f);
31   // Last 7 bits are zeroes
32   const float32x4_t vminus_ln2_hi = vmovq_n_f32(-0x1.62E400p-1f);
33   const float32x4_t vminus_ln2_lo = vmovq_n_f32(-0x1.7F7D1Cp-20f);
34 
35   const float32x4_t vc1 = vmovq_n_f32(0x1.FFFFF6p-1f);
36   const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f);
37   const float32x4_t vc3 = vmovq_n_f32(0x1.555A80p-3f);
38   const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f);
39   const float32x4_t vc5 = vmovq_n_f32(0x1.0F9F9Cp-7f);
40 
41   const float32x4_t vi_max = vdupq_n_f32(max);
42 
43   float32x4_t vacc0 = vmovq_n_f32(0.0f);
44   for (; elements >= 16 * sizeof(float); elements -= 16 * sizeof(float)) {
45     // Load 16 (4x4) inputs at a time.
46     const float32x4_t vi0123 = vld1q_f32(input); input += 4;
47     const float32x4_t vi4567 = vld1q_f32(input); input += 4;
48     const float32x4_t vi89AB = vld1q_f32(input); input += 4;
49     const float32x4_t viCDEF = vld1q_f32(input); input += 4;
50 
51     // Subtract maximum input x := i - i_max. This implies x <= 0.
52     const float32x4_t vx0123 = vsubq_f32(vi0123, vi_max);
53     const float32x4_t vx4567 = vsubq_f32(vi4567, vi_max);
54     const float32x4_t vx89AB = vsubq_f32(vi89AB, vi_max);
55     const float32x4_t vxCDEF = vsubq_f32(viCDEF, vi_max);
56 
57     // Compute reduced argument n := round(x / log(2)).
58     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
59     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
60     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
61     // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
62     // of the algorithm.
63     float32x4_t vn0123 = vmlaq_f32(vmagic_bias, vx0123, vlog2e);
64     float32x4_t vn4567 = vmlaq_f32(vmagic_bias, vx4567, vlog2e);
65     float32x4_t vn89AB = vmlaq_f32(vmagic_bias, vx89AB, vlog2e);
66     float32x4_t vnCDEF = vmlaq_f32(vmagic_bias, vxCDEF, vlog2e);
67 
68     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
69     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
70     const float32x4_t vs0123 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 23));
71     const float32x4_t vs4567 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 23));
72     const float32x4_t vs89AB = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn89AB), 23));
73     const float32x4_t vsCDEF = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vnCDEF), 23));
74 
75     // Subtract the large number back to get final n := round(x / log(2)).
76     vn0123 = vsubq_f32(vn0123, vmagic_bias);
77     vn4567 = vsubq_f32(vn4567, vmagic_bias);
78     vn89AB = vsubq_f32(vn89AB, vmagic_bias);
79     vnCDEF = vsubq_f32(vnCDEF, vmagic_bias);
80 
81     // Compute reduced argument t := z - n * log(2).
82     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
83     float32x4_t vt0123 = vmlaq_f32(vx0123, vn0123, vminus_ln2_hi);
84     float32x4_t vt4567 = vmlaq_f32(vx4567, vn4567, vminus_ln2_hi);
85     float32x4_t vt89AB = vmlaq_f32(vx89AB, vn89AB, vminus_ln2_hi);
86     float32x4_t vtCDEF = vmlaq_f32(vxCDEF, vnCDEF, vminus_ln2_hi);
87 
88     vt0123 = vmlaq_f32(vt0123, vn0123, vminus_ln2_lo);
89     vt4567 = vmlaq_f32(vt4567, vn4567, vminus_ln2_lo);
90     vt89AB = vmlaq_f32(vt89AB, vn89AB, vminus_ln2_lo);
91     vtCDEF = vmlaq_f32(vtCDEF, vnCDEF, vminus_ln2_lo);
92 
93     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
94     float32x4_t vp0123 = vmlaq_f32(vc4, vc5, vt0123);
95     float32x4_t vp4567 = vmlaq_f32(vc4, vc5, vt4567);
96     float32x4_t vp89AB = vmlaq_f32(vc4, vc5, vt89AB);
97     float32x4_t vpCDEF = vmlaq_f32(vc4, vc5, vtCDEF);
98 
99     vp0123 = vmlaq_f32(vc3, vp0123, vt0123);
100     vp4567 = vmlaq_f32(vc3, vp4567, vt4567);
101     vp89AB = vmlaq_f32(vc3, vp89AB, vt89AB);
102     vpCDEF = vmlaq_f32(vc3, vpCDEF, vtCDEF);
103 
104     vp0123 = vmlaq_f32(vc2, vp0123, vt0123);
105     vp4567 = vmlaq_f32(vc2, vp4567, vt4567);
106     vp89AB = vmlaq_f32(vc2, vp89AB, vt89AB);
107     vpCDEF = vmlaq_f32(vc2, vpCDEF, vtCDEF);
108 
109     vp0123 = vmlaq_f32(vc1, vp0123, vt0123);
110     vp4567 = vmlaq_f32(vc1, vp4567, vt4567);
111     vp89AB = vmlaq_f32(vc1, vp89AB, vt89AB);
112     vpCDEF = vmlaq_f32(vc1, vpCDEF, vtCDEF);
113 
114     // Reconstruct the final f value:
115     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
116     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
117     //     = s + (t * s) * p
118     vt0123 = vmulq_f32(vt0123, vs0123);
119     vt4567 = vmulq_f32(vt4567, vs4567);
120     vt89AB = vmulq_f32(vt89AB, vs89AB);
121     vtCDEF = vmulq_f32(vtCDEF, vsCDEF);
122 
123     float32x4_t vf0123 = vmlaq_f32(vs0123, vp0123, vt0123);
124     float32x4_t vf4567 = vmlaq_f32(vs4567, vp4567, vt4567);
125     float32x4_t vf89AB = vmlaq_f32(vs89AB, vp89AB, vt89AB);
126     float32x4_t vfCDEF = vmlaq_f32(vsCDEF, vpCDEF, vtCDEF);
127 
128     // For inputs below denormal cutoff, replace output with +0.0f.
129     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
130     vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcltq_f32(vx0123, vdenorm_cutoff)));
131     vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcltq_f32(vx4567, vdenorm_cutoff)));
132     vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcltq_f32(vx89AB, vdenorm_cutoff)));
133     vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcltq_f32(vxCDEF, vdenorm_cutoff)));
134 
135     // Store 16 (4x4) outputs at a time.
136     vst1q_f32(output, vf0123); output += 4;
137     vst1q_f32(output, vf4567); output += 4;
138     vst1q_f32(output, vf89AB); output += 4;
139     vst1q_f32(output, vfCDEF); output += 4;
140 
141     // Accumulate computed exponents.
142     vacc0 = vaddq_f32(vacc0, vf0123);
143     vacc0 = vaddq_f32(vacc0, vf4567);
144     vacc0 = vaddq_f32(vacc0, vf89AB);
145     vacc0 = vaddq_f32(vacc0, vfCDEF);
146   }
147 
148   float32x4_t vacc = vacc0;
149   for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
150     // Load 4 inputs at a time.
151     const float32x4_t vi = vld1q_f32(input); input += 4;
152 
153     // Subtract maximum input x := i - i_max. This implies x <= 0.
154     const float32x4_t vx = vsubq_f32(vi, vi_max);
155 
156     // Compute reduced argument n := round(x / log(2)).
157     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
158     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
159     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
160     // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
161     // of the algorithm.
162     float32x4_t vn = vmlaq_f32(vmagic_bias, vx, vlog2e);
163 
164     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
165     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
166     const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
167 
168     // Subtract the large number back to get final n := round(x / log(2)).
169     vn = vsubq_f32(vn, vmagic_bias);
170 
171     // Compute reduced argument t := z - n * log(2).
172     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
173     float32x4_t vt = vmlaq_f32(vx, vn, vminus_ln2_hi);
174     vt = vmlaq_f32(vt, vn, vminus_ln2_lo);
175 
176     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
177     float32x4_t vp = vmlaq_f32(vc4, vc5, vt);
178     vp = vmlaq_f32(vc3, vp, vt);
179     vp = vmlaq_f32(vc2, vp, vt);
180     vp = vmlaq_f32(vc1, vp, vt);
181 
182     // Reconstruct the final f value:
183     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
184     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
185     //     = s + (t * s) * p
186     vt = vmulq_f32(vt, vs);
187     float32x4_t vf = vmlaq_f32(vs, vp, vt);
188 
189     // For inputs below denormal cutoff, replace output with +0.0f.
190     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
191     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
192 
193     // Store 4 outputs at a time.
194     vst1q_f32(output, vf); output += 4;
195 
196     // Accumulate computed exponents.
197     vacc = vaddq_f32(vacc, vf);
198   }
199 #if XNN_ARCH_ARM64
200   float vacc_lo = vaddvq_f32(vacc);
201 #else
202   float32x2_t vacc_lo = vadd_f32(vget_high_f32(vacc), vget_low_f32(vacc));
203 #endif
204   if (elements != 0) {
205     assert(elements >= 1 * sizeof(float));
206     assert(elements <= 3 * sizeof(float));
207     // Load 4 inputs at a time.
208     const float32x4_t vi = vld1q_f32(input); input += 4;
209 
210     // Subtract maximum input x := i - i_max. This implies x <= 0.
211     const float32x4_t vx = vsubq_f32(vi, vi_max);
212 
213     // Compute reduced argument n := round(x / log(2)).
214     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
215     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
216     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
217     // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
218     // of the algorithm.
219     float32x4_t vn = vmlaq_f32(vmagic_bias, vx, vlog2e);
220 
221     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
222     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
223     const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
224 
225     // Subtract the large number back to get final n := round(x / log(2)).
226     vn = vsubq_f32(vn, vmagic_bias);
227 
228     // Compute reduced argument t := z - n * log(2).
229     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
230     float32x4_t vt = vmlaq_f32(vx, vn, vminus_ln2_hi);
231     vt = vmlaq_f32(vt, vn, vminus_ln2_lo);
232 
233     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
234     float32x4_t vp = vmlaq_f32(vc4, vc5, vt);
235     vp = vmlaq_f32(vc3, vp, vt);
236     vp = vmlaq_f32(vc2, vp, vt);
237     vp = vmlaq_f32(vc1, vp, vt);
238 
239     // Reconstruct the final f value:
240     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
241     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
242     //     = s + (t * s) * p
243     vt = vmulq_f32(vt, vs);
244     float32x4_t vf = vmlaq_f32(vs, vp, vt);
245 
246     // For inputs below denormal cutoff, replace output with +0.0f.
247     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
248     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
249 
250     float32x2_t vf_lo = vget_low_f32(vf);
251     if (elements & (2 * sizeof(float))) {
252       // Store 2 outputs at a time.
253       vst1_f32(output, vf_lo); output += 2;
254 
255       // Accumulate 2 computed exponents.
256       #if XNN_ARCH_ARM64
257         vacc_lo += vaddv_f32(vf_lo);
258       #else
259         vacc_lo = vadd_f32(vacc_lo, vf_lo);
260       #endif
261 
262       vf_lo = vget_high_f32(vf);
263     }
264     if (elements & (1 * sizeof(float))) {
265       // Store 1 output at a time.
266       vst1_lane_f32(output, vf_lo, 0);
267 
268       // Accumulate 1 computed exponent.
269       #if XNN_ARCH_ARM64
270         vacc_lo += vget_lane_f32(vf_lo, 0);
271       #else
272         vacc_lo = vadd_f32(vacc_lo, vreinterpret_f32_u64(vshl_n_u64(vreinterpret_u64_f32(vf_lo), 32)));
273       #endif
274     }
275   }
276   // Reduce 4 elements in the SIMD register
277 #if XNN_ARCH_ARM64
278   *sum = vacc_lo;
279 #else
280   vst1_lane_f32(sum, vpadd_f32(vacc_lo, vacc_lo), 0);
281 #endif
282 }
283