• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/neon-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <arm_neon.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16 
17 
xnn_f32_raddstoreexpminusmax_ukernel__neon_p5_x20_acc2(size_t elements,const float * input,float * output,float * sum,float max)18 void xnn_f32_raddstoreexpminusmax_ukernel__neon_p5_x20_acc2(
19     size_t elements,
20     const float* input,
21     float* output,
22     float* sum,
23     float max) XNN_DISABLE_TSAN
24 {
25   assert(elements % sizeof(float) == 0);
26 
27   const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f);
28   // The smallest x for which expf(x) is normalized.
29   const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep6f);
30   const float32x4_t vlog2e = vmovq_n_f32(0x1.715476p+0f);
31   // Last 7 bits are zeroes
32   const float32x4_t vminus_ln2_hi = vmovq_n_f32(-0x1.62E400p-1f);
33   const float32x4_t vminus_ln2_lo = vmovq_n_f32(-0x1.7F7D1Cp-20f);
34 
35   const float32x4_t vc1 = vmovq_n_f32(0x1.FFFFF6p-1f);
36   const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f);
37   const float32x4_t vc3 = vmovq_n_f32(0x1.555A80p-3f);
38   const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f);
39   const float32x4_t vc5 = vmovq_n_f32(0x1.0F9F9Cp-7f);
40 
41   const float32x4_t vi_max = vdupq_n_f32(max);
42 
43   float32x4_t vacc0 = vmovq_n_f32(0.0f);
44   float32x4_t vacc1 = vmovq_n_f32(0.0f);
45   for (; elements >= 20 * sizeof(float); elements -= 20 * sizeof(float)) {
46     // Load 20 (5x4) inputs at a time.
47     const float32x4_t vi0123 = vld1q_f32(input); input += 4;
48     const float32x4_t vi4567 = vld1q_f32(input); input += 4;
49     const float32x4_t vi89AB = vld1q_f32(input); input += 4;
50     const float32x4_t viCDEF = vld1q_f32(input); input += 4;
51     const float32x4_t viGHIJ = vld1q_f32(input); input += 4;
52 
53     // Subtract maximum input x := i - i_max. This implies x <= 0.
54     const float32x4_t vx0123 = vsubq_f32(vi0123, vi_max);
55     const float32x4_t vx4567 = vsubq_f32(vi4567, vi_max);
56     const float32x4_t vx89AB = vsubq_f32(vi89AB, vi_max);
57     const float32x4_t vxCDEF = vsubq_f32(viCDEF, vi_max);
58     const float32x4_t vxGHIJ = vsubq_f32(viGHIJ, vi_max);
59 
60     // Compute reduced argument n := round(x / log(2)).
61     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
62     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
63     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
64     // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
65     // of the algorithm.
66     float32x4_t vn0123 = vmlaq_f32(vmagic_bias, vx0123, vlog2e);
67     float32x4_t vn4567 = vmlaq_f32(vmagic_bias, vx4567, vlog2e);
68     float32x4_t vn89AB = vmlaq_f32(vmagic_bias, vx89AB, vlog2e);
69     float32x4_t vnCDEF = vmlaq_f32(vmagic_bias, vxCDEF, vlog2e);
70     float32x4_t vnGHIJ = vmlaq_f32(vmagic_bias, vxGHIJ, vlog2e);
71 
72     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
73     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
74     const float32x4_t vs0123 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 23));
75     const float32x4_t vs4567 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 23));
76     const float32x4_t vs89AB = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn89AB), 23));
77     const float32x4_t vsCDEF = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vnCDEF), 23));
78     const float32x4_t vsGHIJ = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vnGHIJ), 23));
79 
80     // Subtract the large number back to get final n := round(x / log(2)).
81     vn0123 = vsubq_f32(vn0123, vmagic_bias);
82     vn4567 = vsubq_f32(vn4567, vmagic_bias);
83     vn89AB = vsubq_f32(vn89AB, vmagic_bias);
84     vnCDEF = vsubq_f32(vnCDEF, vmagic_bias);
85     vnGHIJ = vsubq_f32(vnGHIJ, vmagic_bias);
86 
87     // Compute reduced argument t := z - n * log(2).
88     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
89     float32x4_t vt0123 = vmlaq_f32(vx0123, vn0123, vminus_ln2_hi);
90     float32x4_t vt4567 = vmlaq_f32(vx4567, vn4567, vminus_ln2_hi);
91     float32x4_t vt89AB = vmlaq_f32(vx89AB, vn89AB, vminus_ln2_hi);
92     float32x4_t vtCDEF = vmlaq_f32(vxCDEF, vnCDEF, vminus_ln2_hi);
93     float32x4_t vtGHIJ = vmlaq_f32(vxGHIJ, vnGHIJ, vminus_ln2_hi);
94 
95     vt0123 = vmlaq_f32(vt0123, vn0123, vminus_ln2_lo);
96     vt4567 = vmlaq_f32(vt4567, vn4567, vminus_ln2_lo);
97     vt89AB = vmlaq_f32(vt89AB, vn89AB, vminus_ln2_lo);
98     vtCDEF = vmlaq_f32(vtCDEF, vnCDEF, vminus_ln2_lo);
99     vtGHIJ = vmlaq_f32(vtGHIJ, vnGHIJ, vminus_ln2_lo);
100 
101     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
102     float32x4_t vp0123 = vmlaq_f32(vc4, vc5, vt0123);
103     float32x4_t vp4567 = vmlaq_f32(vc4, vc5, vt4567);
104     float32x4_t vp89AB = vmlaq_f32(vc4, vc5, vt89AB);
105     float32x4_t vpCDEF = vmlaq_f32(vc4, vc5, vtCDEF);
106     float32x4_t vpGHIJ = vmlaq_f32(vc4, vc5, vtGHIJ);
107 
108     vp0123 = vmlaq_f32(vc3, vp0123, vt0123);
109     vp4567 = vmlaq_f32(vc3, vp4567, vt4567);
110     vp89AB = vmlaq_f32(vc3, vp89AB, vt89AB);
111     vpCDEF = vmlaq_f32(vc3, vpCDEF, vtCDEF);
112     vpGHIJ = vmlaq_f32(vc3, vpGHIJ, vtGHIJ);
113 
114     vp0123 = vmlaq_f32(vc2, vp0123, vt0123);
115     vp4567 = vmlaq_f32(vc2, vp4567, vt4567);
116     vp89AB = vmlaq_f32(vc2, vp89AB, vt89AB);
117     vpCDEF = vmlaq_f32(vc2, vpCDEF, vtCDEF);
118     vpGHIJ = vmlaq_f32(vc2, vpGHIJ, vtGHIJ);
119 
120     vp0123 = vmlaq_f32(vc1, vp0123, vt0123);
121     vp4567 = vmlaq_f32(vc1, vp4567, vt4567);
122     vp89AB = vmlaq_f32(vc1, vp89AB, vt89AB);
123     vpCDEF = vmlaq_f32(vc1, vpCDEF, vtCDEF);
124     vpGHIJ = vmlaq_f32(vc1, vpGHIJ, vtGHIJ);
125 
126     // Reconstruct the final f value:
127     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
128     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
129     //     = s + (t * s) * p
130     vt0123 = vmulq_f32(vt0123, vs0123);
131     vt4567 = vmulq_f32(vt4567, vs4567);
132     vt89AB = vmulq_f32(vt89AB, vs89AB);
133     vtCDEF = vmulq_f32(vtCDEF, vsCDEF);
134     vtGHIJ = vmulq_f32(vtGHIJ, vsGHIJ);
135 
136     float32x4_t vf0123 = vmlaq_f32(vs0123, vp0123, vt0123);
137     float32x4_t vf4567 = vmlaq_f32(vs4567, vp4567, vt4567);
138     float32x4_t vf89AB = vmlaq_f32(vs89AB, vp89AB, vt89AB);
139     float32x4_t vfCDEF = vmlaq_f32(vsCDEF, vpCDEF, vtCDEF);
140     float32x4_t vfGHIJ = vmlaq_f32(vsGHIJ, vpGHIJ, vtGHIJ);
141 
142     // For inputs below denormal cutoff, replace output with +0.0f.
143     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
144     vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcltq_f32(vx0123, vdenorm_cutoff)));
145     vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcltq_f32(vx4567, vdenorm_cutoff)));
146     vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcltq_f32(vx89AB, vdenorm_cutoff)));
147     vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcltq_f32(vxCDEF, vdenorm_cutoff)));
148     vfGHIJ = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfGHIJ), vcltq_f32(vxGHIJ, vdenorm_cutoff)));
149 
150     // Store 20 (5x4) outputs at a time.
151     vst1q_f32(output, vf0123); output += 4;
152     vst1q_f32(output, vf4567); output += 4;
153     vst1q_f32(output, vf89AB); output += 4;
154     vst1q_f32(output, vfCDEF); output += 4;
155     vst1q_f32(output, vfGHIJ); output += 4;
156 
157     // Accumulate computed exponents.
158     vacc0 = vaddq_f32(vacc0, vf0123);
159     vacc0 = vaddq_f32(vacc0, vf4567);
160     vacc0 = vaddq_f32(vacc0, vf89AB);
161     vacc0 = vaddq_f32(vacc0, vfCDEF);
162     vacc0 = vaddq_f32(vacc0, vfGHIJ);
163   }
164   // Add up all accumulators to vacc0
165   vacc0 = vaddq_f32(vacc0, vacc1);
166 
167   float32x4_t vacc = vacc0;
168   for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
169     // Load 4 inputs at a time.
170     const float32x4_t vi = vld1q_f32(input); input += 4;
171 
172     // Subtract maximum input x := i - i_max. This implies x <= 0.
173     const float32x4_t vx = vsubq_f32(vi, vi_max);
174 
175     // Compute reduced argument n := round(x / log(2)).
176     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
177     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
178     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
179     // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
180     // of the algorithm.
181     float32x4_t vn = vmlaq_f32(vmagic_bias, vx, vlog2e);
182 
183     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
184     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
185     const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
186 
187     // Subtract the large number back to get final n := round(x / log(2)).
188     vn = vsubq_f32(vn, vmagic_bias);
189 
190     // Compute reduced argument t := z - n * log(2).
191     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
192     float32x4_t vt = vmlaq_f32(vx, vn, vminus_ln2_hi);
193     vt = vmlaq_f32(vt, vn, vminus_ln2_lo);
194 
195     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
196     float32x4_t vp = vmlaq_f32(vc4, vc5, vt);
197     vp = vmlaq_f32(vc3, vp, vt);
198     vp = vmlaq_f32(vc2, vp, vt);
199     vp = vmlaq_f32(vc1, vp, vt);
200 
201     // Reconstruct the final f value:
202     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
203     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
204     //     = s + (t * s) * p
205     vt = vmulq_f32(vt, vs);
206     float32x4_t vf = vmlaq_f32(vs, vp, vt);
207 
208     // For inputs below denormal cutoff, replace output with +0.0f.
209     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
210     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
211 
212     // Store 4 outputs at a time.
213     vst1q_f32(output, vf); output += 4;
214 
215     // Accumulate computed exponents.
216     vacc = vaddq_f32(vacc, vf);
217   }
218 #if XNN_ARCH_ARM64
219   float vacc_lo = vaddvq_f32(vacc);
220 #else
221   float32x2_t vacc_lo = vadd_f32(vget_high_f32(vacc), vget_low_f32(vacc));
222 #endif
223   if (elements != 0) {
224     assert(elements >= 1 * sizeof(float));
225     assert(elements <= 3 * sizeof(float));
226     // Load 4 inputs at a time.
227     const float32x4_t vi = vld1q_f32(input); input += 4;
228 
229     // Subtract maximum input x := i - i_max. This implies x <= 0.
230     const float32x4_t vx = vsubq_f32(vi, vi_max);
231 
232     // Compute reduced argument n := round(x / log(2)).
233     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
234     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
235     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
236     // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
237     // of the algorithm.
238     float32x4_t vn = vmlaq_f32(vmagic_bias, vx, vlog2e);
239 
240     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
241     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
242     const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
243 
244     // Subtract the large number back to get final n := round(x / log(2)).
245     vn = vsubq_f32(vn, vmagic_bias);
246 
247     // Compute reduced argument t := z - n * log(2).
248     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
249     float32x4_t vt = vmlaq_f32(vx, vn, vminus_ln2_hi);
250     vt = vmlaq_f32(vt, vn, vminus_ln2_lo);
251 
252     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
253     float32x4_t vp = vmlaq_f32(vc4, vc5, vt);
254     vp = vmlaq_f32(vc3, vp, vt);
255     vp = vmlaq_f32(vc2, vp, vt);
256     vp = vmlaq_f32(vc1, vp, vt);
257 
258     // Reconstruct the final f value:
259     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
260     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
261     //     = s + (t * s) * p
262     vt = vmulq_f32(vt, vs);
263     float32x4_t vf = vmlaq_f32(vs, vp, vt);
264 
265     // For inputs below denormal cutoff, replace output with +0.0f.
266     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
267     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
268 
269     float32x2_t vf_lo = vget_low_f32(vf);
270     if (elements & (2 * sizeof(float))) {
271       // Store 2 outputs at a time.
272       vst1_f32(output, vf_lo); output += 2;
273 
274       // Accumulate 2 computed exponents.
275       #if XNN_ARCH_ARM64
276         vacc_lo += vaddv_f32(vf_lo);
277       #else
278         vacc_lo = vadd_f32(vacc_lo, vf_lo);
279       #endif
280 
281       vf_lo = vget_high_f32(vf);
282     }
283     if (elements & (1 * sizeof(float))) {
284       // Store 1 output at a time.
285       vst1_lane_f32(output, vf_lo, 0);
286 
287       // Accumulate 1 computed exponent.
288       #if XNN_ARCH_ARM64
289         vacc_lo += vget_lane_f32(vf_lo, 0);
290       #else
291         vacc_lo = vadd_f32(vacc_lo, vreinterpret_f32_u64(vshl_n_u64(vreinterpret_u64_f32(vf_lo), 32)));
292       #endif
293     }
294   }
295   // Reduce 4 elements in the SIMD register
296 #if XNN_ARCH_ARM64
297   *sum = vacc_lo;
298 #else
299   vst1_lane_f32(sum, vpadd_f32(vacc_lo, vacc_lo), 0);
300 #endif
301 }
302