• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/neon-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <arm_neon.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16 
17 
xnn_f32_raddstoreexpminusmax_ukernel__neon_p5_x8_acc2(size_t elements,const float * input,float * output,float * sum,float max)18 void xnn_f32_raddstoreexpminusmax_ukernel__neon_p5_x8_acc2(
19     size_t elements,
20     const float* input,
21     float* output,
22     float* sum,
23     float max) XNN_DISABLE_TSAN
24 {
25   assert(elements % sizeof(float) == 0);
26 
27   const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f);
28   // The smallest x for which expf(x) is normalized.
29   const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep6f);
30   const float32x4_t vlog2e = vmovq_n_f32(0x1.715476p+0f);
31   // Last 7 bits are zeroes
32   const float32x4_t vminus_ln2_hi = vmovq_n_f32(-0x1.62E400p-1f);
33   const float32x4_t vminus_ln2_lo = vmovq_n_f32(-0x1.7F7D1Cp-20f);
34 
35   const float32x4_t vc1 = vmovq_n_f32(0x1.FFFFF6p-1f);
36   const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f);
37   const float32x4_t vc3 = vmovq_n_f32(0x1.555A80p-3f);
38   const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f);
39   const float32x4_t vc5 = vmovq_n_f32(0x1.0F9F9Cp-7f);
40 
41   const float32x4_t vi_max = vdupq_n_f32(max);
42 
43   float32x4_t vacc0 = vmovq_n_f32(0.0f);
44   float32x4_t vacc1 = vmovq_n_f32(0.0f);
45   for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) {
46     // Load 8 (2x4) inputs at a time.
47     const float32x4_t vi0123 = vld1q_f32(input); input += 4;
48     const float32x4_t vi4567 = vld1q_f32(input); input += 4;
49 
50     // Subtract maximum input x := i - i_max. This implies x <= 0.
51     const float32x4_t vx0123 = vsubq_f32(vi0123, vi_max);
52     const float32x4_t vx4567 = vsubq_f32(vi4567, vi_max);
53 
54     // Compute reduced argument n := round(x / log(2)).
55     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
56     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
57     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
58     // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
59     // of the algorithm.
60     float32x4_t vn0123 = vmlaq_f32(vmagic_bias, vx0123, vlog2e);
61     float32x4_t vn4567 = vmlaq_f32(vmagic_bias, vx4567, vlog2e);
62 
63     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
64     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
65     const float32x4_t vs0123 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 23));
66     const float32x4_t vs4567 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 23));
67 
68     // Subtract the large number back to get final n := round(x / log(2)).
69     vn0123 = vsubq_f32(vn0123, vmagic_bias);
70     vn4567 = vsubq_f32(vn4567, vmagic_bias);
71 
72     // Compute reduced argument t := z - n * log(2).
73     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
74     float32x4_t vt0123 = vmlaq_f32(vx0123, vn0123, vminus_ln2_hi);
75     float32x4_t vt4567 = vmlaq_f32(vx4567, vn4567, vminus_ln2_hi);
76 
77     vt0123 = vmlaq_f32(vt0123, vn0123, vminus_ln2_lo);
78     vt4567 = vmlaq_f32(vt4567, vn4567, vminus_ln2_lo);
79 
80     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
81     float32x4_t vp0123 = vmlaq_f32(vc4, vc5, vt0123);
82     float32x4_t vp4567 = vmlaq_f32(vc4, vc5, vt4567);
83 
84     vp0123 = vmlaq_f32(vc3, vp0123, vt0123);
85     vp4567 = vmlaq_f32(vc3, vp4567, vt4567);
86 
87     vp0123 = vmlaq_f32(vc2, vp0123, vt0123);
88     vp4567 = vmlaq_f32(vc2, vp4567, vt4567);
89 
90     vp0123 = vmlaq_f32(vc1, vp0123, vt0123);
91     vp4567 = vmlaq_f32(vc1, vp4567, vt4567);
92 
93     // Reconstruct the final f value:
94     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
95     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
96     //     = s + (t * s) * p
97     vt0123 = vmulq_f32(vt0123, vs0123);
98     vt4567 = vmulq_f32(vt4567, vs4567);
99 
100     float32x4_t vf0123 = vmlaq_f32(vs0123, vp0123, vt0123);
101     float32x4_t vf4567 = vmlaq_f32(vs4567, vp4567, vt4567);
102 
103     // For inputs below denormal cutoff, replace output with +0.0f.
104     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
105     vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcltq_f32(vx0123, vdenorm_cutoff)));
106     vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcltq_f32(vx4567, vdenorm_cutoff)));
107 
108     // Store 8 (2x4) outputs at a time.
109     vst1q_f32(output, vf0123); output += 4;
110     vst1q_f32(output, vf4567); output += 4;
111 
112     // Accumulate computed exponents.
113     vacc0 = vaddq_f32(vacc0, vf0123);
114     vacc0 = vaddq_f32(vacc0, vf4567);
115   }
116   // Add up all accumulators to vacc0
117   vacc0 = vaddq_f32(vacc0, vacc1);
118 
119   float32x4_t vacc = vacc0;
120   for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
121     // Load 4 inputs at a time.
122     const float32x4_t vi = vld1q_f32(input); input += 4;
123 
124     // Subtract maximum input x := i - i_max. This implies x <= 0.
125     const float32x4_t vx = vsubq_f32(vi, vi_max);
126 
127     // Compute reduced argument n := round(x / log(2)).
128     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
129     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
130     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
131     // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
132     // of the algorithm.
133     float32x4_t vn = vmlaq_f32(vmagic_bias, vx, vlog2e);
134 
135     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
136     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
137     const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
138 
139     // Subtract the large number back to get final n := round(x / log(2)).
140     vn = vsubq_f32(vn, vmagic_bias);
141 
142     // Compute reduced argument t := z - n * log(2).
143     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
144     float32x4_t vt = vmlaq_f32(vx, vn, vminus_ln2_hi);
145     vt = vmlaq_f32(vt, vn, vminus_ln2_lo);
146 
147     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
148     float32x4_t vp = vmlaq_f32(vc4, vc5, vt);
149     vp = vmlaq_f32(vc3, vp, vt);
150     vp = vmlaq_f32(vc2, vp, vt);
151     vp = vmlaq_f32(vc1, vp, vt);
152 
153     // Reconstruct the final f value:
154     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
155     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
156     //     = s + (t * s) * p
157     vt = vmulq_f32(vt, vs);
158     float32x4_t vf = vmlaq_f32(vs, vp, vt);
159 
160     // For inputs below denormal cutoff, replace output with +0.0f.
161     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
162     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
163 
164     // Store 4 outputs at a time.
165     vst1q_f32(output, vf); output += 4;
166 
167     // Accumulate computed exponents.
168     vacc = vaddq_f32(vacc, vf);
169   }
170 #if XNN_ARCH_ARM64
171   float vacc_lo = vaddvq_f32(vacc);
172 #else
173   float32x2_t vacc_lo = vadd_f32(vget_high_f32(vacc), vget_low_f32(vacc));
174 #endif
175   if (elements != 0) {
176     assert(elements >= 1 * sizeof(float));
177     assert(elements <= 3 * sizeof(float));
178     // Load 4 inputs at a time.
179     const float32x4_t vi = vld1q_f32(input); input += 4;
180 
181     // Subtract maximum input x := i - i_max. This implies x <= 0.
182     const float32x4_t vx = vsubq_f32(vi, vi_max);
183 
184     // Compute reduced argument n := round(x / log(2)).
185     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
186     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
187     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
188     // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
189     // of the algorithm.
190     float32x4_t vn = vmlaq_f32(vmagic_bias, vx, vlog2e);
191 
192     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
193     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
194     const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
195 
196     // Subtract the large number back to get final n := round(x / log(2)).
197     vn = vsubq_f32(vn, vmagic_bias);
198 
199     // Compute reduced argument t := z - n * log(2).
200     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
201     float32x4_t vt = vmlaq_f32(vx, vn, vminus_ln2_hi);
202     vt = vmlaq_f32(vt, vn, vminus_ln2_lo);
203 
204     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
205     float32x4_t vp = vmlaq_f32(vc4, vc5, vt);
206     vp = vmlaq_f32(vc3, vp, vt);
207     vp = vmlaq_f32(vc2, vp, vt);
208     vp = vmlaq_f32(vc1, vp, vt);
209 
210     // Reconstruct the final f value:
211     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
212     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
213     //     = s + (t * s) * p
214     vt = vmulq_f32(vt, vs);
215     float32x4_t vf = vmlaq_f32(vs, vp, vt);
216 
217     // For inputs below denormal cutoff, replace output with +0.0f.
218     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
219     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
220 
221     float32x2_t vf_lo = vget_low_f32(vf);
222     if (elements & (2 * sizeof(float))) {
223       // Store 2 outputs at a time.
224       vst1_f32(output, vf_lo); output += 2;
225 
226       // Accumulate 2 computed exponents.
227       #if XNN_ARCH_ARM64
228         vacc_lo += vaddv_f32(vf_lo);
229       #else
230         vacc_lo = vadd_f32(vacc_lo, vf_lo);
231       #endif
232 
233       vf_lo = vget_high_f32(vf);
234     }
235     if (elements & (1 * sizeof(float))) {
236       // Store 1 output at a time.
237       vst1_lane_f32(output, vf_lo, 0);
238 
239       // Accumulate 1 computed exponent.
240       #if XNN_ARCH_ARM64
241         vacc_lo += vget_lane_f32(vf_lo, 0);
242       #else
243         vacc_lo = vadd_f32(vacc_lo, vreinterpret_f32_u64(vshl_n_u64(vreinterpret_u64_f32(vf_lo), 32)));
244       #endif
245     }
246   }
247   // Reduce 4 elements in the SIMD register
248 #if XNN_ARCH_ARM64
249   *sum = vacc_lo;
250 #else
251   vst1_lane_f32(sum, vpadd_f32(vacc_lo, vacc_lo), 0);
252 #endif
253 }
254