• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/neon-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <arm_neon.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16 
17 
xnn_f32_raddstoreexpminusmax_ukernel__neonfma_p5_x4(size_t elements,const float * input,float * output,float * sum,float max)18 void xnn_f32_raddstoreexpminusmax_ukernel__neonfma_p5_x4(
19     size_t elements,
20     const float* input,
21     float* output,
22     float* sum,
23     float max) XNN_DISABLE_TSAN
24 {
25   assert(elements % sizeof(float) == 0);
26 
27   const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f);
28   // The smallest x for which expf(x) is normalized.
29   const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep6f);
30   const float32x4_t vlog2e = vmovq_n_f32(0x1.715476p+0f);
31   const float32x4_t vminus_ln2_hi = vmovq_n_f32(-0x1.62E43p-1f);
32   const float32x4_t vminus_ln2_lo = vmovq_n_f32(0x1.05C61p-29f);
33 
34   const float32x4_t vc1 = vmovq_n_f32(0x1.FFFFF6p-1f);
35   const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f);
36   const float32x4_t vc3 = vmovq_n_f32(0x1.555A80p-3f);
37   const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f);
38   const float32x4_t vc5 = vmovq_n_f32(0x1.0F9F9Cp-7f);
39 
40   const float32x4_t vi_max = vdupq_n_f32(max);
41 
42   float32x4_t vacc = vmovq_n_f32(0.0f);
43   for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
44     // Load 4 inputs at a time.
45     const float32x4_t vi = vld1q_f32(input); input += 4;
46 
47     // Subtract maximum input x := i - i_max. This implies x <= 0.
48     const float32x4_t vx = vsubq_f32(vi, vi_max);
49 
50     // Compute reduced argument n := round(x / log(2)).
51     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
52     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
53     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
54     // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
55     // of the algorithm.
56     float32x4_t vn = vfmaq_f32(vmagic_bias, vx, vlog2e);
57 
58     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
59     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
60     const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
61 
62     // Subtract the large number back to get final n := round(x / log(2)).
63     vn = vsubq_f32(vn, vmagic_bias);
64 
65     // Compute reduced argument t := z - n * log(2).
66     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
67     float32x4_t vt = vfmaq_f32(vx, vn, vminus_ln2_hi);
68     vt = vfmaq_f32(vt, vn, vminus_ln2_lo);
69 
70     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
71     float32x4_t vp = vfmaq_f32(vc4, vc5, vt);
72     vp = vfmaq_f32(vc3, vp, vt);
73     vp = vfmaq_f32(vc2, vp, vt);
74     vp = vfmaq_f32(vc1, vp, vt);
75 
76     // Reconstruct the final f value:
77     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
78     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
79     //     = s + (t * s) * p
80     vt = vmulq_f32(vt, vs);
81     float32x4_t vf = vfmaq_f32(vs, vp, vt);
82 
83     // For inputs below denormal cutoff, replace output with +0.0f.
84     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
85     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
86 
87     // Store 4 outputs at a time.
88     vst1q_f32(output, vf); output += 4;
89 
90     // Accumulate computed exponents.
91     vacc = vaddq_f32(vacc, vf);
92   }
93 #if XNN_ARCH_ARM64
94   float vacc_lo = vaddvq_f32(vacc);
95 #else
96   float32x2_t vacc_lo = vadd_f32(vget_high_f32(vacc), vget_low_f32(vacc));
97 #endif
98   if (elements != 0) {
99     assert(elements >= 1 * sizeof(float));
100     assert(elements <= 3 * sizeof(float));
101     // Load 4 inputs at a time.
102     const float32x4_t vi = vld1q_f32(input); input += 4;
103 
104     // Subtract maximum input x := i - i_max. This implies x <= 0.
105     const float32x4_t vx = vsubq_f32(vi, vi_max);
106 
107     // Compute reduced argument n := round(x / log(2)).
108     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
109     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
110     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
111     // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
112     // of the algorithm.
113     float32x4_t vn = vfmaq_f32(vmagic_bias, vx, vlog2e);
114 
115     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
116     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
117     const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
118 
119     // Subtract the large number back to get final n := round(x / log(2)).
120     vn = vsubq_f32(vn, vmagic_bias);
121 
122     // Compute reduced argument t := z - n * log(2).
123     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
124     float32x4_t vt = vfmaq_f32(vx, vn, vminus_ln2_hi);
125     vt = vfmaq_f32(vt, vn, vminus_ln2_lo);
126 
127     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
128     float32x4_t vp = vfmaq_f32(vc4, vc5, vt);
129     vp = vfmaq_f32(vc3, vp, vt);
130     vp = vfmaq_f32(vc2, vp, vt);
131     vp = vfmaq_f32(vc1, vp, vt);
132 
133     // Reconstruct the final f value:
134     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
135     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
136     //     = s + (t * s) * p
137     vt = vmulq_f32(vt, vs);
138     float32x4_t vf = vfmaq_f32(vs, vp, vt);
139 
140     // For inputs below denormal cutoff, replace output with +0.0f.
141     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
142     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
143 
144     float32x2_t vf_lo = vget_low_f32(vf);
145     if (elements & (2 * sizeof(float))) {
146       // Store 2 outputs at a time.
147       vst1_f32(output, vf_lo); output += 2;
148 
149       // Accumulate 2 computed exponents.
150       #if XNN_ARCH_ARM64
151         vacc_lo += vaddv_f32(vf_lo);
152       #else
153         vacc_lo = vadd_f32(vacc_lo, vf_lo);
154       #endif
155 
156       vf_lo = vget_high_f32(vf);
157     }
158     if (elements & (1 * sizeof(float))) {
159       // Store 1 output at a time.
160       vst1_lane_f32(output, vf_lo, 0);
161 
162       // Accumulate 1 computed exponent.
163       #if XNN_ARCH_ARM64
164         vacc_lo += vget_lane_f32(vf_lo, 0);
165       #else
166         vacc_lo = vadd_f32(vacc_lo, vreinterpret_f32_u64(vshl_n_u64(vreinterpret_u64_f32(vf_lo), 32)));
167       #endif
168     }
169   }
170   // Reduce 4 elements in the SIMD register
171 #if XNN_ARCH_ARM64
172   *sum = vacc_lo;
173 #else
174   vst1_lane_f32(sum, vpadd_f32(vacc_lo, vacc_lo), 0);
175 #endif
176 }
177