• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/sse2-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <emmintrin.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16 
17 
xnn_f32_raddstoreexpminusmax_ukernel__sse2_p5_x12_acc2(size_t elements,const float * input,float * output,float * sum,float max)18 void xnn_f32_raddstoreexpminusmax_ukernel__sse2_p5_x12_acc2(
19     size_t elements,
20     const float* input,
21     float* output,
22     float* sum,
23     float max) XNN_DISABLE_TSAN
24 {
25   assert(elements % sizeof(float) == 0);
26 
27   const __m128 vmagic_bias = _mm_set1_ps(0x1.8000FEp23f);
28   // The smallest x for which expf(x) is normalized.
29   const __m128 vdenorm_cutoff = _mm_set1_ps(-0x1.5D589Ep6f);
30   const __m128 vlog2e = _mm_set1_ps(0x1.715476p+0f);
31   // Last 7 bits are zeroes
32   const __m128 vminus_ln2_hi = _mm_set1_ps(-0x1.62E400p-1f);
33   const __m128 vminus_ln2_lo = _mm_set1_ps(-0x1.7F7D1Cp-20f);
34 
35   const __m128 vc1 = _mm_set1_ps(0x1.FFFFF6p-1f);
36   const __m128 vc2 = _mm_set1_ps(0x1.FFFDC6p-2f);
37   const __m128 vc3 = _mm_set1_ps(0x1.555A80p-3f);
38   const __m128 vc4 = _mm_set1_ps(0x1.573A1Ap-5f);
39   const __m128 vc5 = _mm_set1_ps(0x1.0F9F9Cp-7f);
40 
41   const __m128 vi_max = _mm_set1_ps(max);
42 
43   __m128 vacc0 = _mm_setzero_ps();
44   __m128 vacc1 = _mm_setzero_ps();
45   for (; elements >= 12 * sizeof(float); elements -= 12 * sizeof(float)) {
46     // Load 12 (3x4) inputs at a time.
47     const __m128 vi0123 = _mm_loadu_ps(input);
48     const __m128 vi4567 = _mm_loadu_ps(input + 4);
49     const __m128 vi89AB = _mm_loadu_ps(input + 8);
50     input += 12;
51 
52     // Subtract maximum input x := i - i_max. This implies x <= 0.
53     const __m128 vx0123 = _mm_sub_ps(vi0123, vi_max);
54     const __m128 vx4567 = _mm_sub_ps(vi4567, vi_max);
55     const __m128 vx89AB = _mm_sub_ps(vi89AB, vi_max);
56 
57     // Compute reduced argument elements := round(x / log(2)).
58     __m128 vn0123 = _mm_add_ps(_mm_mul_ps(vx0123, vlog2e), vmagic_bias);
59     __m128 vn4567 = _mm_add_ps(_mm_mul_ps(vx4567, vlog2e), vmagic_bias);
60     __m128 vn89AB = _mm_add_ps(_mm_mul_ps(vx89AB, vlog2e), vmagic_bias);
61 
62     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
63     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
64     const __m128 vs0123 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn0123), 23));
65     const __m128 vs4567 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn4567), 23));
66     const __m128 vs89AB = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn89AB), 23));
67 
68     // Subtract the large number back to get final elements := round(x / log(2)).
69     vn0123 = _mm_sub_ps(vn0123, vmagic_bias);
70     vn4567 = _mm_sub_ps(vn4567, vmagic_bias);
71     vn89AB = _mm_sub_ps(vn89AB, vmagic_bias);
72 
73     // Compute reduced argument t := x - elements * log(2).
74     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
75     __m128 vt0123 = _mm_add_ps(_mm_mul_ps(vn0123, vminus_ln2_hi), vx0123);
76     __m128 vt4567 = _mm_add_ps(_mm_mul_ps(vn4567, vminus_ln2_hi), vx4567);
77     __m128 vt89AB = _mm_add_ps(_mm_mul_ps(vn89AB, vminus_ln2_hi), vx89AB);
78 
79     vt0123 = _mm_add_ps(_mm_mul_ps(vn0123, vminus_ln2_lo), vt0123);
80     vt4567 = _mm_add_ps(_mm_mul_ps(vn4567, vminus_ln2_lo), vt4567);
81     vt89AB = _mm_add_ps(_mm_mul_ps(vn89AB, vminus_ln2_lo), vt89AB);
82 
83     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
84     __m128 vp0123 = _mm_add_ps(_mm_mul_ps(vc5, vt0123), vc4);
85     __m128 vp4567 = _mm_add_ps(_mm_mul_ps(vc5, vt4567), vc4);
86     __m128 vp89AB = _mm_add_ps(_mm_mul_ps(vc5, vt89AB), vc4);
87 
88     vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc3);
89     vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc3);
90     vp89AB = _mm_add_ps(_mm_mul_ps(vp89AB, vt89AB), vc3);
91 
92     vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc2);
93     vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc2);
94     vp89AB = _mm_add_ps(_mm_mul_ps(vp89AB, vt89AB), vc2);
95 
96     vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc1);
97     vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc1);
98     vp89AB = _mm_add_ps(_mm_mul_ps(vp89AB, vt89AB), vc1);
99 
100     // Reconstruct the final f value:
101     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
102     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
103     //     = s + (t * s) * p
104     vt0123 = _mm_mul_ps(vt0123, vs0123);
105     vt4567 = _mm_mul_ps(vt4567, vs4567);
106     vt89AB = _mm_mul_ps(vt89AB, vs89AB);
107 
108     __m128 vf0123 = _mm_add_ps(_mm_mul_ps(vt0123, vp0123), vs0123);
109     __m128 vf4567 = _mm_add_ps(_mm_mul_ps(vt4567, vp4567), vs4567);
110     __m128 vf89AB = _mm_add_ps(_mm_mul_ps(vt89AB, vp89AB), vs89AB);
111 
112     // For inputs below zero cutoff, replace output with +0.0f.
113     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
114     vf0123 = _mm_andnot_ps(_mm_cmplt_ps(vx0123, vdenorm_cutoff), vf0123);
115     vf4567 = _mm_andnot_ps(_mm_cmplt_ps(vx4567, vdenorm_cutoff), vf4567);
116     vf89AB = _mm_andnot_ps(_mm_cmplt_ps(vx89AB, vdenorm_cutoff), vf89AB);
117 
118     // Store 12 (3x4) outputs at a time.
119     _mm_storeu_ps(output, vf0123);
120     _mm_storeu_ps(output + 4, vf4567);
121     _mm_storeu_ps(output + 8, vf89AB);
122     output += 12;
123 
124     // Accumulate computed exponents.
125     vacc0 = _mm_add_ps(vacc0, vf0123);
126     vacc0 = _mm_add_ps(vacc0, vf4567);
127     vacc0 = _mm_add_ps(vacc0, vf89AB);
128   }
129   // Add up all accumulators to vacc0
130   vacc0 = _mm_add_ps(vacc0, vacc1);
131 
132   __m128 vacc = vacc0;
133   for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
134     // Load 4 inputs at a time.
135     const __m128 vi = _mm_loadu_ps(input);
136     input += 4;
137 
138     // Subtract maximum input x := i - i_max. This implies x <= 0.
139     const __m128 vx = _mm_sub_ps(vi, vi_max);
140 
141     // Compute reduced argument elements := round(x / log(2)).
142     __m128 vn = _mm_add_ps(_mm_mul_ps(vx, vlog2e), vmagic_bias);
143 
144     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
145     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
146     const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
147 
148     // Subtract the large number back to get final elements := round(x / log(2)).
149     vn = _mm_sub_ps(vn, vmagic_bias);
150 
151     // Compute reduced argument t := x - elements * log(2).
152     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
153     __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vx);
154     vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
155 
156     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
157     __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
158     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
159     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
160     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1);
161 
162     // Reconstruct the final f value:
163     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
164     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
165     //     = s + (t * s) * p
166     vt = _mm_mul_ps(vt, vs);
167     __m128 vf = _mm_add_ps(_mm_mul_ps(vt, vp), vs);
168 
169     // For inputs below zero cutoff, replace output with +0.0f.
170     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
171     vf = _mm_andnot_ps(_mm_cmplt_ps(vx, vdenorm_cutoff), vf);
172 
173     // Store 4 outputs at a time.
174     _mm_storeu_ps(output, vf);
175     output += 4;
176 
177     // Accumulate computed exponents.
178     vacc = _mm_add_ps(vacc, vf);
179   }
180   if (elements != 0) {
181     assert(elements >= 1 * sizeof(float));
182     assert(elements <= 3 * sizeof(float));
183     // Load 4 inputs at a time.
184     const __m128 vi = _mm_loadu_ps(input);
185 
186     // Subtract maximum input x := i - i_max. This implies x <= 0.
187     const __m128 vx = _mm_sub_ps(vi, vi_max);
188 
189     // Compute reduced argument elements := round(x / log(2)).
190     __m128 vn = _mm_add_ps(_mm_mul_ps(vx, vlog2e), vmagic_bias);
191 
192     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
193     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
194     const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
195 
196     // Subtract the large number back to get final elements := round(x / log(2)).
197     vn = _mm_sub_ps(vn, vmagic_bias);
198 
199     // Compute reduced argument t := x - elements * log(2).
200     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
201     __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vx);
202     vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
203 
204     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
205     __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
206     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
207     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
208     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1);
209 
210     // Reconstruct the final f value:
211     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
212     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
213     //     = s + (t * s) * p
214     vt = _mm_mul_ps(vt, vs);
215     __m128 vf = _mm_add_ps(_mm_mul_ps(vt, vp), vs);
216 
217     // For inputs below zero cutoff, replace output with +0.0f.
218     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
219     vf = _mm_andnot_ps(_mm_cmplt_ps(vx, vdenorm_cutoff), vf);
220 
221     if (elements & (2 * sizeof(float))) {
222       // Store 2 outputs at a time.
223       _mm_storel_pi((__m64*) output, vf);
224       output += 2;
225 
226       // Accumulate 2 computed exponents.
227       vacc = _mm_add_ps(vacc, _mm_movelh_ps(vf, _mm_setzero_ps()));
228 
229       vf = _mm_movehl_ps(vf, vf);
230     }
231     if (elements & (1 * sizeof(float))) {
232       // Store 1 output at a time.
233       _mm_store_ss(output, vf);
234 
235       // Accumulate 1 computed exponent.
236       vacc = _mm_add_ss(vacc, vf);
237     }
238   }
239   // Reduce 4 elements in the SIMD register
240   vacc = _mm_add_ps(vacc, _mm_movehl_ps(vacc, vacc));
241   vacc = _mm_add_ss(vacc, _mm_shuffle_ps(vacc, vacc, _MM_SHUFFLE(2, 3, 0, 1)));
242   _mm_store_ss(sum, vacc);
243 }
244