• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/sse2-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <emmintrin.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16 
17 
xnn_f32_raddstoreexpminusmax_ukernel__sse2_p5_x16(size_t elements,const float * input,float * output,float * sum,float max)18 void xnn_f32_raddstoreexpminusmax_ukernel__sse2_p5_x16(
19     size_t elements,
20     const float* input,
21     float* output,
22     float* sum,
23     float max) XNN_DISABLE_TSAN
24 {
25   assert(elements % sizeof(float) == 0);
26 
27   const __m128 vmagic_bias = _mm_set1_ps(0x1.8000FEp23f);
28   // The smallest x for which expf(x) is normalized.
29   const __m128 vdenorm_cutoff = _mm_set1_ps(-0x1.5D589Ep6f);
30   const __m128 vlog2e = _mm_set1_ps(0x1.715476p+0f);
31   // Last 7 bits are zeroes
32   const __m128 vminus_ln2_hi = _mm_set1_ps(-0x1.62E400p-1f);
33   const __m128 vminus_ln2_lo = _mm_set1_ps(-0x1.7F7D1Cp-20f);
34 
35   const __m128 vc1 = _mm_set1_ps(0x1.FFFFF6p-1f);
36   const __m128 vc2 = _mm_set1_ps(0x1.FFFDC6p-2f);
37   const __m128 vc3 = _mm_set1_ps(0x1.555A80p-3f);
38   const __m128 vc4 = _mm_set1_ps(0x1.573A1Ap-5f);
39   const __m128 vc5 = _mm_set1_ps(0x1.0F9F9Cp-7f);
40 
41   const __m128 vi_max = _mm_set1_ps(max);
42 
43   __m128 vacc0 = _mm_setzero_ps();
44   for (; elements >= 16 * sizeof(float); elements -= 16 * sizeof(float)) {
45     // Load 16 (4x4) inputs at a time.
46     const __m128 vi0123 = _mm_loadu_ps(input);
47     const __m128 vi4567 = _mm_loadu_ps(input + 4);
48     const __m128 vi89AB = _mm_loadu_ps(input + 8);
49     const __m128 viCDEF = _mm_loadu_ps(input + 12);
50     input += 16;
51 
52     // Subtract maximum input x := i - i_max. This implies x <= 0.
53     const __m128 vx0123 = _mm_sub_ps(vi0123, vi_max);
54     const __m128 vx4567 = _mm_sub_ps(vi4567, vi_max);
55     const __m128 vx89AB = _mm_sub_ps(vi89AB, vi_max);
56     const __m128 vxCDEF = _mm_sub_ps(viCDEF, vi_max);
57 
58     // Compute reduced argument elements := round(x / log(2)).
59     __m128 vn0123 = _mm_add_ps(_mm_mul_ps(vx0123, vlog2e), vmagic_bias);
60     __m128 vn4567 = _mm_add_ps(_mm_mul_ps(vx4567, vlog2e), vmagic_bias);
61     __m128 vn89AB = _mm_add_ps(_mm_mul_ps(vx89AB, vlog2e), vmagic_bias);
62     __m128 vnCDEF = _mm_add_ps(_mm_mul_ps(vxCDEF, vlog2e), vmagic_bias);
63 
64     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
65     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
66     const __m128 vs0123 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn0123), 23));
67     const __m128 vs4567 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn4567), 23));
68     const __m128 vs89AB = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn89AB), 23));
69     const __m128 vsCDEF = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vnCDEF), 23));
70 
71     // Subtract the large number back to get final elements := round(x / log(2)).
72     vn0123 = _mm_sub_ps(vn0123, vmagic_bias);
73     vn4567 = _mm_sub_ps(vn4567, vmagic_bias);
74     vn89AB = _mm_sub_ps(vn89AB, vmagic_bias);
75     vnCDEF = _mm_sub_ps(vnCDEF, vmagic_bias);
76 
77     // Compute reduced argument t := x - elements * log(2).
78     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
79     __m128 vt0123 = _mm_add_ps(_mm_mul_ps(vn0123, vminus_ln2_hi), vx0123);
80     __m128 vt4567 = _mm_add_ps(_mm_mul_ps(vn4567, vminus_ln2_hi), vx4567);
81     __m128 vt89AB = _mm_add_ps(_mm_mul_ps(vn89AB, vminus_ln2_hi), vx89AB);
82     __m128 vtCDEF = _mm_add_ps(_mm_mul_ps(vnCDEF, vminus_ln2_hi), vxCDEF);
83 
84     vt0123 = _mm_add_ps(_mm_mul_ps(vn0123, vminus_ln2_lo), vt0123);
85     vt4567 = _mm_add_ps(_mm_mul_ps(vn4567, vminus_ln2_lo), vt4567);
86     vt89AB = _mm_add_ps(_mm_mul_ps(vn89AB, vminus_ln2_lo), vt89AB);
87     vtCDEF = _mm_add_ps(_mm_mul_ps(vnCDEF, vminus_ln2_lo), vtCDEF);
88 
89     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
90     __m128 vp0123 = _mm_add_ps(_mm_mul_ps(vc5, vt0123), vc4);
91     __m128 vp4567 = _mm_add_ps(_mm_mul_ps(vc5, vt4567), vc4);
92     __m128 vp89AB = _mm_add_ps(_mm_mul_ps(vc5, vt89AB), vc4);
93     __m128 vpCDEF = _mm_add_ps(_mm_mul_ps(vc5, vtCDEF), vc4);
94 
95     vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc3);
96     vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc3);
97     vp89AB = _mm_add_ps(_mm_mul_ps(vp89AB, vt89AB), vc3);
98     vpCDEF = _mm_add_ps(_mm_mul_ps(vpCDEF, vtCDEF), vc3);
99 
100     vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc2);
101     vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc2);
102     vp89AB = _mm_add_ps(_mm_mul_ps(vp89AB, vt89AB), vc2);
103     vpCDEF = _mm_add_ps(_mm_mul_ps(vpCDEF, vtCDEF), vc2);
104 
105     vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc1);
106     vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc1);
107     vp89AB = _mm_add_ps(_mm_mul_ps(vp89AB, vt89AB), vc1);
108     vpCDEF = _mm_add_ps(_mm_mul_ps(vpCDEF, vtCDEF), vc1);
109 
110     // Reconstruct the final f value:
111     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
112     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
113     //     = s + (t * s) * p
114     vt0123 = _mm_mul_ps(vt0123, vs0123);
115     vt4567 = _mm_mul_ps(vt4567, vs4567);
116     vt89AB = _mm_mul_ps(vt89AB, vs89AB);
117     vtCDEF = _mm_mul_ps(vtCDEF, vsCDEF);
118 
119     __m128 vf0123 = _mm_add_ps(_mm_mul_ps(vt0123, vp0123), vs0123);
120     __m128 vf4567 = _mm_add_ps(_mm_mul_ps(vt4567, vp4567), vs4567);
121     __m128 vf89AB = _mm_add_ps(_mm_mul_ps(vt89AB, vp89AB), vs89AB);
122     __m128 vfCDEF = _mm_add_ps(_mm_mul_ps(vtCDEF, vpCDEF), vsCDEF);
123 
124     // For inputs below zero cutoff, replace output with +0.0f.
125     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
126     vf0123 = _mm_andnot_ps(_mm_cmplt_ps(vx0123, vdenorm_cutoff), vf0123);
127     vf4567 = _mm_andnot_ps(_mm_cmplt_ps(vx4567, vdenorm_cutoff), vf4567);
128     vf89AB = _mm_andnot_ps(_mm_cmplt_ps(vx89AB, vdenorm_cutoff), vf89AB);
129     vfCDEF = _mm_andnot_ps(_mm_cmplt_ps(vxCDEF, vdenorm_cutoff), vfCDEF);
130 
131     // Store 16 (4x4) outputs at a time.
132     _mm_storeu_ps(output, vf0123);
133     _mm_storeu_ps(output + 4, vf4567);
134     _mm_storeu_ps(output + 8, vf89AB);
135     _mm_storeu_ps(output + 12, vfCDEF);
136     output += 16;
137 
138     // Accumulate computed exponents.
139     vacc0 = _mm_add_ps(vacc0, vf0123);
140     vacc0 = _mm_add_ps(vacc0, vf4567);
141     vacc0 = _mm_add_ps(vacc0, vf89AB);
142     vacc0 = _mm_add_ps(vacc0, vfCDEF);
143   }
144 
145   __m128 vacc = vacc0;
146   for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
147     // Load 4 inputs at a time.
148     const __m128 vi = _mm_loadu_ps(input);
149     input += 4;
150 
151     // Subtract maximum input x := i - i_max. This implies x <= 0.
152     const __m128 vx = _mm_sub_ps(vi, vi_max);
153 
154     // Compute reduced argument elements := round(x / log(2)).
155     __m128 vn = _mm_add_ps(_mm_mul_ps(vx, vlog2e), vmagic_bias);
156 
157     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
158     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
159     const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
160 
161     // Subtract the large number back to get final elements := round(x / log(2)).
162     vn = _mm_sub_ps(vn, vmagic_bias);
163 
164     // Compute reduced argument t := x - elements * log(2).
165     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
166     __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vx);
167     vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
168 
169     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
170     __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
171     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
172     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
173     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1);
174 
175     // Reconstruct the final f value:
176     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
177     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
178     //     = s + (t * s) * p
179     vt = _mm_mul_ps(vt, vs);
180     __m128 vf = _mm_add_ps(_mm_mul_ps(vt, vp), vs);
181 
182     // For inputs below zero cutoff, replace output with +0.0f.
183     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
184     vf = _mm_andnot_ps(_mm_cmplt_ps(vx, vdenorm_cutoff), vf);
185 
186     // Store 4 outputs at a time.
187     _mm_storeu_ps(output, vf);
188     output += 4;
189 
190     // Accumulate computed exponents.
191     vacc = _mm_add_ps(vacc, vf);
192   }
193   if (elements != 0) {
194     assert(elements >= 1 * sizeof(float));
195     assert(elements <= 3 * sizeof(float));
196     // Load 4 inputs at a time.
197     const __m128 vi = _mm_loadu_ps(input);
198 
199     // Subtract maximum input x := i - i_max. This implies x <= 0.
200     const __m128 vx = _mm_sub_ps(vi, vi_max);
201 
202     // Compute reduced argument elements := round(x / log(2)).
203     __m128 vn = _mm_add_ps(_mm_mul_ps(vx, vlog2e), vmagic_bias);
204 
205     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
206     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
207     const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
208 
209     // Subtract the large number back to get final elements := round(x / log(2)).
210     vn = _mm_sub_ps(vn, vmagic_bias);
211 
212     // Compute reduced argument t := x - elements * log(2).
213     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
214     __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vx);
215     vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
216 
217     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
218     __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
219     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
220     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
221     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1);
222 
223     // Reconstruct the final f value:
224     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
225     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
226     //     = s + (t * s) * p
227     vt = _mm_mul_ps(vt, vs);
228     __m128 vf = _mm_add_ps(_mm_mul_ps(vt, vp), vs);
229 
230     // For inputs below zero cutoff, replace output with +0.0f.
231     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
232     vf = _mm_andnot_ps(_mm_cmplt_ps(vx, vdenorm_cutoff), vf);
233 
234     if (elements & (2 * sizeof(float))) {
235       // Store 2 outputs at a time.
236       _mm_storel_pi((__m64*) output, vf);
237       output += 2;
238 
239       // Accumulate 2 computed exponents.
240       vacc = _mm_add_ps(vacc, _mm_movelh_ps(vf, _mm_setzero_ps()));
241 
242       vf = _mm_movehl_ps(vf, vf);
243     }
244     if (elements & (1 * sizeof(float))) {
245       // Store 1 output at a time.
246       _mm_store_ss(output, vf);
247 
248       // Accumulate 1 computed exponent.
249       vacc = _mm_add_ss(vacc, vf);
250     }
251   }
252   // Reduce 4 elements in the SIMD register
253   vacc = _mm_add_ps(vacc, _mm_movehl_ps(vacc, vacc));
254   vacc = _mm_add_ss(vacc, _mm_shuffle_ps(vacc, vacc, _MM_SHUFFLE(2, 3, 0, 1)));
255   _mm_store_ss(sum, vacc);
256 }
257