• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/sse2-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <emmintrin.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16 
17 
xnn_f32_raddstoreexpminusmax_ukernel__sse2_p5_x8(size_t elements,const float * input,float * output,float * sum,float max)18 void xnn_f32_raddstoreexpminusmax_ukernel__sse2_p5_x8(
19     size_t elements,
20     const float* input,
21     float* output,
22     float* sum,
23     float max) XNN_DISABLE_TSAN
24 {
25   assert(elements % sizeof(float) == 0);
26 
27   const __m128 vmagic_bias = _mm_set1_ps(0x1.8000FEp23f);
28   // The smallest x for which expf(x) is normalized.
29   const __m128 vdenorm_cutoff = _mm_set1_ps(-0x1.5D589Ep6f);
30   const __m128 vlog2e = _mm_set1_ps(0x1.715476p+0f);
31   // Last 7 bits are zeroes
32   const __m128 vminus_ln2_hi = _mm_set1_ps(-0x1.62E400p-1f);
33   const __m128 vminus_ln2_lo = _mm_set1_ps(-0x1.7F7D1Cp-20f);
34 
35   const __m128 vc1 = _mm_set1_ps(0x1.FFFFF6p-1f);
36   const __m128 vc2 = _mm_set1_ps(0x1.FFFDC6p-2f);
37   const __m128 vc3 = _mm_set1_ps(0x1.555A80p-3f);
38   const __m128 vc4 = _mm_set1_ps(0x1.573A1Ap-5f);
39   const __m128 vc5 = _mm_set1_ps(0x1.0F9F9Cp-7f);
40 
41   const __m128 vi_max = _mm_set1_ps(max);
42 
43   __m128 vacc0 = _mm_setzero_ps();
44   for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) {
45     // Load 8 (2x4) inputs at a time.
46     const __m128 vi0123 = _mm_loadu_ps(input);
47     const __m128 vi4567 = _mm_loadu_ps(input + 4);
48     input += 8;
49 
50     // Subtract maximum input x := i - i_max. This implies x <= 0.
51     const __m128 vx0123 = _mm_sub_ps(vi0123, vi_max);
52     const __m128 vx4567 = _mm_sub_ps(vi4567, vi_max);
53 
54     // Compute reduced argument elements := round(x / log(2)).
55     __m128 vn0123 = _mm_add_ps(_mm_mul_ps(vx0123, vlog2e), vmagic_bias);
56     __m128 vn4567 = _mm_add_ps(_mm_mul_ps(vx4567, vlog2e), vmagic_bias);
57 
58     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
59     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
60     const __m128 vs0123 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn0123), 23));
61     const __m128 vs4567 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn4567), 23));
62 
63     // Subtract the large number back to get final elements := round(x / log(2)).
64     vn0123 = _mm_sub_ps(vn0123, vmagic_bias);
65     vn4567 = _mm_sub_ps(vn4567, vmagic_bias);
66 
67     // Compute reduced argument t := x - elements * log(2).
68     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
69     __m128 vt0123 = _mm_add_ps(_mm_mul_ps(vn0123, vminus_ln2_hi), vx0123);
70     __m128 vt4567 = _mm_add_ps(_mm_mul_ps(vn4567, vminus_ln2_hi), vx4567);
71 
72     vt0123 = _mm_add_ps(_mm_mul_ps(vn0123, vminus_ln2_lo), vt0123);
73     vt4567 = _mm_add_ps(_mm_mul_ps(vn4567, vminus_ln2_lo), vt4567);
74 
75     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
76     __m128 vp0123 = _mm_add_ps(_mm_mul_ps(vc5, vt0123), vc4);
77     __m128 vp4567 = _mm_add_ps(_mm_mul_ps(vc5, vt4567), vc4);
78 
79     vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc3);
80     vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc3);
81 
82     vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc2);
83     vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc2);
84 
85     vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc1);
86     vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc1);
87 
88     // Reconstruct the final f value:
89     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
90     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
91     //     = s + (t * s) * p
92     vt0123 = _mm_mul_ps(vt0123, vs0123);
93     vt4567 = _mm_mul_ps(vt4567, vs4567);
94 
95     __m128 vf0123 = _mm_add_ps(_mm_mul_ps(vt0123, vp0123), vs0123);
96     __m128 vf4567 = _mm_add_ps(_mm_mul_ps(vt4567, vp4567), vs4567);
97 
98     // For inputs below zero cutoff, replace output with +0.0f.
99     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
100     vf0123 = _mm_andnot_ps(_mm_cmplt_ps(vx0123, vdenorm_cutoff), vf0123);
101     vf4567 = _mm_andnot_ps(_mm_cmplt_ps(vx4567, vdenorm_cutoff), vf4567);
102 
103     // Store 8 (2x4) outputs at a time.
104     _mm_storeu_ps(output, vf0123);
105     _mm_storeu_ps(output + 4, vf4567);
106     output += 8;
107 
108     // Accumulate computed exponents.
109     vacc0 = _mm_add_ps(vacc0, vf0123);
110     vacc0 = _mm_add_ps(vacc0, vf4567);
111   }
112 
113   __m128 vacc = vacc0;
114   for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
115     // Load 4 inputs at a time.
116     const __m128 vi = _mm_loadu_ps(input);
117     input += 4;
118 
119     // Subtract maximum input x := i - i_max. This implies x <= 0.
120     const __m128 vx = _mm_sub_ps(vi, vi_max);
121 
122     // Compute reduced argument elements := round(x / log(2)).
123     __m128 vn = _mm_add_ps(_mm_mul_ps(vx, vlog2e), vmagic_bias);
124 
125     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
126     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
127     const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
128 
129     // Subtract the large number back to get final elements := round(x / log(2)).
130     vn = _mm_sub_ps(vn, vmagic_bias);
131 
132     // Compute reduced argument t := x - elements * log(2).
133     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
134     __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vx);
135     vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
136 
137     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
138     __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
139     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
140     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
141     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1);
142 
143     // Reconstruct the final f value:
144     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
145     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
146     //     = s + (t * s) * p
147     vt = _mm_mul_ps(vt, vs);
148     __m128 vf = _mm_add_ps(_mm_mul_ps(vt, vp), vs);
149 
150     // For inputs below zero cutoff, replace output with +0.0f.
151     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
152     vf = _mm_andnot_ps(_mm_cmplt_ps(vx, vdenorm_cutoff), vf);
153 
154     // Store 4 outputs at a time.
155     _mm_storeu_ps(output, vf);
156     output += 4;
157 
158     // Accumulate computed exponents.
159     vacc = _mm_add_ps(vacc, vf);
160   }
161   if (elements != 0) {
162     assert(elements >= 1 * sizeof(float));
163     assert(elements <= 3 * sizeof(float));
164     // Load 4 inputs at a time.
165     const __m128 vi = _mm_loadu_ps(input);
166 
167     // Subtract maximum input x := i - i_max. This implies x <= 0.
168     const __m128 vx = _mm_sub_ps(vi, vi_max);
169 
170     // Compute reduced argument elements := round(x / log(2)).
171     __m128 vn = _mm_add_ps(_mm_mul_ps(vx, vlog2e), vmagic_bias);
172 
173     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
174     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
175     const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
176 
177     // Subtract the large number back to get final elements := round(x / log(2)).
178     vn = _mm_sub_ps(vn, vmagic_bias);
179 
180     // Compute reduced argument t := x - elements * log(2).
181     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
182     __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vx);
183     vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
184 
185     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
186     __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
187     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
188     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
189     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1);
190 
191     // Reconstruct the final f value:
192     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
193     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
194     //     = s + (t * s) * p
195     vt = _mm_mul_ps(vt, vs);
196     __m128 vf = _mm_add_ps(_mm_mul_ps(vt, vp), vs);
197 
198     // For inputs below zero cutoff, replace output with +0.0f.
199     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
200     vf = _mm_andnot_ps(_mm_cmplt_ps(vx, vdenorm_cutoff), vf);
201 
202     if (elements & (2 * sizeof(float))) {
203       // Store 2 outputs at a time.
204       _mm_storel_pi((__m64*) output, vf);
205       output += 2;
206 
207       // Accumulate 2 computed exponents.
208       vacc = _mm_add_ps(vacc, _mm_movelh_ps(vf, _mm_setzero_ps()));
209 
210       vf = _mm_movehl_ps(vf, vf);
211     }
212     if (elements & (1 * sizeof(float))) {
213       // Store 1 output at a time.
214       _mm_store_ss(output, vf);
215 
216       // Accumulate 1 computed exponent.
217       vacc = _mm_add_ss(vacc, vf);
218     }
219   }
220   // Reduce 4 elements in the SIMD register
221   vacc = _mm_add_ps(vacc, _mm_movehl_ps(vacc, vacc));
222   vacc = _mm_add_ss(vacc, _mm_shuffle_ps(vacc, vacc, _MM_SHUFFLE(2, 3, 0, 1)));
223   _mm_store_ss(sum, vacc);
224 }
225