• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/wasmsimd-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <wasm_simd128.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16 
17 
xnn_f32_raddstoreexpminusmax_ukernel__wasmsimd_p5_x12_acc3(size_t elements,const float * input,float * output,float * sum,float max)18 void xnn_f32_raddstoreexpminusmax_ukernel__wasmsimd_p5_x12_acc3(
19     size_t elements,
20     const float* input,
21     float* output,
22     float* sum,
23     float max) XNN_DISABLE_TSAN
24 {
25   assert(elements % sizeof(float) == 0);
26 
27   const v128_t vmagic_bias = wasm_f32x4_splat(0x1.8000FEp23f);
28   // The smallest x for which expf(x) is normalized.
29   const v128_t vdenorm_cutoff = wasm_f32x4_splat(-0x1.5D589Ep6f);
30   const v128_t vlog2e = wasm_f32x4_splat(0x1.715476p+0f);
31   // Last 7 bits are zeroes
32   const v128_t vminus_ln2_hi = wasm_f32x4_splat(-0x1.62E400p-1f);
33   const v128_t vminus_ln2_lo = wasm_f32x4_splat(-0x1.7F7D1Cp-20f);
34 
35   const v128_t vc1 = wasm_f32x4_splat(0x1.FFFFF6p-1f);
36   const v128_t vc2 = wasm_f32x4_splat(0x1.FFFDC6p-2f);
37   const v128_t vc3 = wasm_f32x4_splat(0x1.555A80p-3f);
38   const v128_t vc4 = wasm_f32x4_splat(0x1.573A1Ap-5f);
39   const v128_t vc5 = wasm_f32x4_splat(0x1.0F9F9Cp-7f);
40 
41   const v128_t vi_max = wasm_f32x4_splat(max);
42 
43   v128_t vacc0 = wasm_f32x4_splat(0.0f);
44   v128_t vacc1 = vacc0;
45   v128_t vacc2 = vacc0;
46   for (; elements >= 12 * sizeof(float); elements -= 12 * sizeof(float)) {
47     // Load 12 (3x4) inputs at a time.
48     const v128_t vi0123 = wasm_v128_load(input);
49     const v128_t vi4567 = wasm_v128_load(input + 4);
50     const v128_t vi89AB = wasm_v128_load(input + 8);
51     input += 12;
52 
53     // Subtract maximum input x := i - i_max. This implies x <= 0.
54     const v128_t vx0123 = wasm_f32x4_sub(vi0123, vi_max);
55     const v128_t vx4567 = wasm_f32x4_sub(vi4567, vi_max);
56     const v128_t vx89AB = wasm_f32x4_sub(vi89AB, vi_max);
57 
58     // Compute reduced argument elements := round(x / log(2)).
59     v128_t vn0123 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx0123, vlog2e));
60     v128_t vn4567 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx4567, vlog2e));
61     v128_t vn89AB = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx89AB, vlog2e));
62 
63     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
64     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
65     const v128_t vs0123 = wasm_i32x4_shl(vn0123, 23);
66     const v128_t vs4567 = wasm_i32x4_shl(vn4567, 23);
67     const v128_t vs89AB = wasm_i32x4_shl(vn89AB, 23);
68 
69     // Subtract the large number back to get final elements := round(x / log(2)).
70     vn0123 = wasm_f32x4_sub(vn0123, vmagic_bias);
71     vn4567 = wasm_f32x4_sub(vn4567, vmagic_bias);
72     vn89AB = wasm_f32x4_sub(vn89AB, vmagic_bias);
73 
74     // Compute reduced argument t := x - elements * log(2).
75     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
76     v128_t vt0123 = wasm_f32x4_add(vx0123, wasm_f32x4_mul(vn0123, vminus_ln2_hi));
77     v128_t vt4567 = wasm_f32x4_add(vx4567, wasm_f32x4_mul(vn4567, vminus_ln2_hi));
78     v128_t vt89AB = wasm_f32x4_add(vx89AB, wasm_f32x4_mul(vn89AB, vminus_ln2_hi));
79 
80     vt0123 = wasm_f32x4_add(vt0123, wasm_f32x4_mul(vn0123, vminus_ln2_lo));
81     vt4567 = wasm_f32x4_add(vt4567, wasm_f32x4_mul(vn4567, vminus_ln2_lo));
82     vt89AB = wasm_f32x4_add(vt89AB, wasm_f32x4_mul(vn89AB, vminus_ln2_lo));
83 
84     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
85     v128_t vp0123 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt0123));
86     v128_t vp4567 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt4567));
87     v128_t vp89AB = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt89AB));
88 
89     vp0123 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp0123, vt0123));
90     vp4567 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp4567, vt4567));
91     vp89AB = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp89AB, vt89AB));
92 
93     vp0123 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp0123, vt0123));
94     vp4567 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp4567, vt4567));
95     vp89AB = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp89AB, vt89AB));
96 
97     vp0123 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp0123, vt0123));
98     vp4567 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp4567, vt4567));
99     vp89AB = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp89AB, vt89AB));
100 
101     // Reconstruct the final f value:
102     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
103     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
104     //     = s + (t * s) * p
105     vt0123 = wasm_f32x4_mul(vt0123, vs0123);
106     vt4567 = wasm_f32x4_mul(vt4567, vs4567);
107     vt89AB = wasm_f32x4_mul(vt89AB, vs89AB);
108 
109     v128_t vf0123 = wasm_f32x4_add(vs0123, wasm_f32x4_mul(vt0123, vp0123));
110     v128_t vf4567 = wasm_f32x4_add(vs4567, wasm_f32x4_mul(vt4567, vp4567));
111     v128_t vf89AB = wasm_f32x4_add(vs89AB, wasm_f32x4_mul(vt89AB, vp89AB));
112 
113     // For inputs below zero cutoff, replace output with +0.0f.
114     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
115     vf0123 = wasm_v128_andnot(vf0123, wasm_f32x4_lt(vx0123, vdenorm_cutoff));
116     vf4567 = wasm_v128_andnot(vf4567, wasm_f32x4_lt(vx4567, vdenorm_cutoff));
117     vf89AB = wasm_v128_andnot(vf89AB, wasm_f32x4_lt(vx89AB, vdenorm_cutoff));
118 
119     // Store 12 (3x4) outputs at a time.
120     wasm_v128_store(output, vf0123);
121     wasm_v128_store(output + 4, vf4567);
122     wasm_v128_store(output + 8, vf89AB);
123     output += 12;
124 
125     // Accumulate computed exponents.
126     vacc0 = wasm_f32x4_add(vacc0, vf0123);
127     vacc1 = wasm_f32x4_add(vacc1, vf4567);
128     vacc2 = wasm_f32x4_add(vacc2, vf89AB);
129   }
130   // Add up all accumulators to vacc0
131   vacc0 = wasm_f32x4_add(vacc0, vacc1);
132   vacc0 = wasm_f32x4_add(vacc0, vacc2);
133 
134   v128_t vacc = vacc0;
135   for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
136     // Load 4 inputs at a time.
137     const v128_t vi = wasm_v128_load(input);
138     input += 4;
139 
140     // Subtract maximum input x := i - i_max. This implies x <= 0.
141     const v128_t vx = wasm_f32x4_sub(vi, vi_max);
142 
143     // Compute reduced argument elements := round(x / log(2)).
144     v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
145 
146     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
147     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
148     const v128_t vs = wasm_i32x4_shl(vn, 23);
149 
150     // Subtract the large number back to get final elements := round(x / log(2)).
151     vn = wasm_f32x4_sub(vn, vmagic_bias);
152 
153     // Compute reduced argument t := x - elements * log(2).
154     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
155     v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
156     vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
157 
158     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
159     v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
160     vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
161     vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
162     vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
163 
164     // Reconstruct the final f value:
165     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
166     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
167     //     = s + (t * s) * p
168     vt = wasm_f32x4_mul(vt, vs);
169     v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
170 
171     // For inputs below zero cutoff, replace output with +0.0f.
172     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
173     vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
174 
175     // Store 4 outputs at a time.
176     wasm_v128_store(output, vf);
177     output += 4;
178 
179     // Accumulate computed exponents.
180     vacc = wasm_f32x4_add(vacc, vf);
181   }
182   vacc = wasm_f32x4_add(vacc, wasm_v32x4_shuffle(vacc, vacc, 2, 3, 2, 3));
183   float vsum = wasm_f32x4_extract_lane(vacc, 0) + wasm_f32x4_extract_lane(vacc, 1);
184   if (elements != 0) {
185     assert(elements >= 1 * sizeof(float));
186     assert(elements <= 3 * sizeof(float));
187     // Load 4 inputs at a time.
188     const v128_t vi = wasm_v128_load(input);
189 
190     // Subtract maximum input x := i - i_max. This implies x <= 0.
191     const v128_t vx = wasm_f32x4_sub(vi, vi_max);
192 
193     // Compute reduced argument elements := round(x / log(2)).
194     v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
195 
196     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
197     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
198     const v128_t vs = wasm_i32x4_shl(vn, 23);
199 
200     // Subtract the large number back to get final elements := round(x / log(2)).
201     vn = wasm_f32x4_sub(vn, vmagic_bias);
202 
203     // Compute reduced argument t := x - elements * log(2).
204     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
205     v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
206     vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
207 
208     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
209     v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
210     vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
211     vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
212     vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
213 
214     // Reconstruct the final f value:
215     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
216     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
217     //     = s + (t * s) * p
218     vt = wasm_f32x4_mul(vt, vs);
219     v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
220 
221     // For inputs below zero cutoff, replace output with +0.0f.
222     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
223     vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
224 
225     if (elements & (2 * sizeof(float))) {
226       // Store and accumulate 2 outputs at a time.
227       const float vf0 = wasm_f32x4_extract_lane(vf, 0);
228       output[0] = vf0;
229       vsum += vf0;
230 
231       const float vf1 = wasm_f32x4_extract_lane(vf, 1);
232       output[1] = vf1;
233       vsum += vf1;
234 
235       vf = wasm_v32x4_shuffle(vf, vf, 2, 3, 2, 3);
236       output += 2;
237     }
238     if (elements & (1 * sizeof(float))) {
239       // Store 1 output at a time.
240       const float vf0 = wasm_f32x4_extract_lane(vf, 0);
241       *output = vf0;
242       vsum += vf0;
243     }
244   }
245   // Reduce 4 elements in the SIMD register
246   *sum = vsum;
247 }
248