1 // Auto-generated file. Do not edit!
2 // Template: src/f32-raddstoreexpminusmax/wasmsimd-p5.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <wasm_simd128.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16
17
xnn_f32_raddstoreexpminusmax_ukernel__wasmsimd_p5_x12_acc3(size_t elements,const float * input,float * output,float * sum,float max)18 void xnn_f32_raddstoreexpminusmax_ukernel__wasmsimd_p5_x12_acc3(
19 size_t elements,
20 const float* input,
21 float* output,
22 float* sum,
23 float max) XNN_DISABLE_TSAN
24 {
25 assert(elements % sizeof(float) == 0);
26
27 const v128_t vmagic_bias = wasm_f32x4_splat(0x1.8000FEp23f);
28 // The smallest x for which expf(x) is normalized.
29 const v128_t vdenorm_cutoff = wasm_f32x4_splat(-0x1.5D589Ep6f);
30 const v128_t vlog2e = wasm_f32x4_splat(0x1.715476p+0f);
31 // Last 7 bits are zeroes
32 const v128_t vminus_ln2_hi = wasm_f32x4_splat(-0x1.62E400p-1f);
33 const v128_t vminus_ln2_lo = wasm_f32x4_splat(-0x1.7F7D1Cp-20f);
34
35 const v128_t vc1 = wasm_f32x4_splat(0x1.FFFFF6p-1f);
36 const v128_t vc2 = wasm_f32x4_splat(0x1.FFFDC6p-2f);
37 const v128_t vc3 = wasm_f32x4_splat(0x1.555A80p-3f);
38 const v128_t vc4 = wasm_f32x4_splat(0x1.573A1Ap-5f);
39 const v128_t vc5 = wasm_f32x4_splat(0x1.0F9F9Cp-7f);
40
41 const v128_t vi_max = wasm_f32x4_splat(max);
42
43 v128_t vacc0 = wasm_f32x4_splat(0.0f);
44 v128_t vacc1 = vacc0;
45 v128_t vacc2 = vacc0;
46 for (; elements >= 12 * sizeof(float); elements -= 12 * sizeof(float)) {
47 // Load 12 (3x4) inputs at a time.
48 const v128_t vi0123 = wasm_v128_load(input);
49 const v128_t vi4567 = wasm_v128_load(input + 4);
50 const v128_t vi89AB = wasm_v128_load(input + 8);
51 input += 12;
52
53 // Subtract maximum input x := i - i_max. This implies x <= 0.
54 const v128_t vx0123 = wasm_f32x4_sub(vi0123, vi_max);
55 const v128_t vx4567 = wasm_f32x4_sub(vi4567, vi_max);
56 const v128_t vx89AB = wasm_f32x4_sub(vi89AB, vi_max);
57
58 // Compute reduced argument elements := round(x / log(2)).
59 v128_t vn0123 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx0123, vlog2e));
60 v128_t vn4567 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx4567, vlog2e));
61 v128_t vn89AB = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx89AB, vlog2e));
62
63 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
64 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
65 const v128_t vs0123 = wasm_i32x4_shl(vn0123, 23);
66 const v128_t vs4567 = wasm_i32x4_shl(vn4567, 23);
67 const v128_t vs89AB = wasm_i32x4_shl(vn89AB, 23);
68
69 // Subtract the large number back to get final elements := round(x / log(2)).
70 vn0123 = wasm_f32x4_sub(vn0123, vmagic_bias);
71 vn4567 = wasm_f32x4_sub(vn4567, vmagic_bias);
72 vn89AB = wasm_f32x4_sub(vn89AB, vmagic_bias);
73
74 // Compute reduced argument t := x - elements * log(2).
75 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
76 v128_t vt0123 = wasm_f32x4_add(vx0123, wasm_f32x4_mul(vn0123, vminus_ln2_hi));
77 v128_t vt4567 = wasm_f32x4_add(vx4567, wasm_f32x4_mul(vn4567, vminus_ln2_hi));
78 v128_t vt89AB = wasm_f32x4_add(vx89AB, wasm_f32x4_mul(vn89AB, vminus_ln2_hi));
79
80 vt0123 = wasm_f32x4_add(vt0123, wasm_f32x4_mul(vn0123, vminus_ln2_lo));
81 vt4567 = wasm_f32x4_add(vt4567, wasm_f32x4_mul(vn4567, vminus_ln2_lo));
82 vt89AB = wasm_f32x4_add(vt89AB, wasm_f32x4_mul(vn89AB, vminus_ln2_lo));
83
84 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
85 v128_t vp0123 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt0123));
86 v128_t vp4567 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt4567));
87 v128_t vp89AB = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt89AB));
88
89 vp0123 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp0123, vt0123));
90 vp4567 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp4567, vt4567));
91 vp89AB = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp89AB, vt89AB));
92
93 vp0123 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp0123, vt0123));
94 vp4567 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp4567, vt4567));
95 vp89AB = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp89AB, vt89AB));
96
97 vp0123 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp0123, vt0123));
98 vp4567 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp4567, vt4567));
99 vp89AB = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp89AB, vt89AB));
100
101 // Reconstruct the final f value:
102 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
103 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
104 // = s + (t * s) * p
105 vt0123 = wasm_f32x4_mul(vt0123, vs0123);
106 vt4567 = wasm_f32x4_mul(vt4567, vs4567);
107 vt89AB = wasm_f32x4_mul(vt89AB, vs89AB);
108
109 v128_t vf0123 = wasm_f32x4_add(vs0123, wasm_f32x4_mul(vt0123, vp0123));
110 v128_t vf4567 = wasm_f32x4_add(vs4567, wasm_f32x4_mul(vt4567, vp4567));
111 v128_t vf89AB = wasm_f32x4_add(vs89AB, wasm_f32x4_mul(vt89AB, vp89AB));
112
113 // For inputs below zero cutoff, replace output with +0.0f.
114 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
115 vf0123 = wasm_v128_andnot(vf0123, wasm_f32x4_lt(vx0123, vdenorm_cutoff));
116 vf4567 = wasm_v128_andnot(vf4567, wasm_f32x4_lt(vx4567, vdenorm_cutoff));
117 vf89AB = wasm_v128_andnot(vf89AB, wasm_f32x4_lt(vx89AB, vdenorm_cutoff));
118
119 // Store 12 (3x4) outputs at a time.
120 wasm_v128_store(output, vf0123);
121 wasm_v128_store(output + 4, vf4567);
122 wasm_v128_store(output + 8, vf89AB);
123 output += 12;
124
125 // Accumulate computed exponents.
126 vacc0 = wasm_f32x4_add(vacc0, vf0123);
127 vacc1 = wasm_f32x4_add(vacc1, vf4567);
128 vacc2 = wasm_f32x4_add(vacc2, vf89AB);
129 }
130 // Add up all accumulators to vacc0
131 vacc0 = wasm_f32x4_add(vacc0, vacc1);
132 vacc0 = wasm_f32x4_add(vacc0, vacc2);
133
134 v128_t vacc = vacc0;
135 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
136 // Load 4 inputs at a time.
137 const v128_t vi = wasm_v128_load(input);
138 input += 4;
139
140 // Subtract maximum input x := i - i_max. This implies x <= 0.
141 const v128_t vx = wasm_f32x4_sub(vi, vi_max);
142
143 // Compute reduced argument elements := round(x / log(2)).
144 v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
145
146 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
147 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
148 const v128_t vs = wasm_i32x4_shl(vn, 23);
149
150 // Subtract the large number back to get final elements := round(x / log(2)).
151 vn = wasm_f32x4_sub(vn, vmagic_bias);
152
153 // Compute reduced argument t := x - elements * log(2).
154 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
155 v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
156 vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
157
158 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
159 v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
160 vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
161 vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
162 vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
163
164 // Reconstruct the final f value:
165 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
166 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
167 // = s + (t * s) * p
168 vt = wasm_f32x4_mul(vt, vs);
169 v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
170
171 // For inputs below zero cutoff, replace output with +0.0f.
172 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
173 vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
174
175 // Store 4 outputs at a time.
176 wasm_v128_store(output, vf);
177 output += 4;
178
179 // Accumulate computed exponents.
180 vacc = wasm_f32x4_add(vacc, vf);
181 }
182 vacc = wasm_f32x4_add(vacc, wasm_v32x4_shuffle(vacc, vacc, 2, 3, 2, 3));
183 float vsum = wasm_f32x4_extract_lane(vacc, 0) + wasm_f32x4_extract_lane(vacc, 1);
184 if (elements != 0) {
185 assert(elements >= 1 * sizeof(float));
186 assert(elements <= 3 * sizeof(float));
187 // Load 4 inputs at a time.
188 const v128_t vi = wasm_v128_load(input);
189
190 // Subtract maximum input x := i - i_max. This implies x <= 0.
191 const v128_t vx = wasm_f32x4_sub(vi, vi_max);
192
193 // Compute reduced argument elements := round(x / log(2)).
194 v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
195
196 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
197 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
198 const v128_t vs = wasm_i32x4_shl(vn, 23);
199
200 // Subtract the large number back to get final elements := round(x / log(2)).
201 vn = wasm_f32x4_sub(vn, vmagic_bias);
202
203 // Compute reduced argument t := x - elements * log(2).
204 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
205 v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
206 vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
207
208 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
209 v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
210 vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
211 vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
212 vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
213
214 // Reconstruct the final f value:
215 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
216 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
217 // = s + (t * s) * p
218 vt = wasm_f32x4_mul(vt, vs);
219 v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
220
221 // For inputs below zero cutoff, replace output with +0.0f.
222 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
223 vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
224
225 if (elements & (2 * sizeof(float))) {
226 // Store and accumulate 2 outputs at a time.
227 const float vf0 = wasm_f32x4_extract_lane(vf, 0);
228 output[0] = vf0;
229 vsum += vf0;
230
231 const float vf1 = wasm_f32x4_extract_lane(vf, 1);
232 output[1] = vf1;
233 vsum += vf1;
234
235 vf = wasm_v32x4_shuffle(vf, vf, 2, 3, 2, 3);
236 output += 2;
237 }
238 if (elements & (1 * sizeof(float))) {
239 // Store 1 output at a time.
240 const float vf0 = wasm_f32x4_extract_lane(vf, 0);
241 *output = vf0;
242 vsum += vf0;
243 }
244 }
245 // Reduce 4 elements in the SIMD register
246 *sum = vsum;
247 }
248