• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/wasmsimd-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <wasm_simd128.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16 
17 
xnn_f32_raddstoreexpminusmax_ukernel__wasmsimd_p5_x20_acc2(size_t elements,const float * input,float * output,float * sum,float max)18 void xnn_f32_raddstoreexpminusmax_ukernel__wasmsimd_p5_x20_acc2(
19     size_t elements,
20     const float* input,
21     float* output,
22     float* sum,
23     float max) XNN_DISABLE_TSAN
24 {
25   assert(elements % sizeof(float) == 0);
26 
27   const v128_t vmagic_bias = wasm_f32x4_splat(0x1.8000FEp23f);
28   // The smallest x for which expf(x) is normalized.
29   const v128_t vdenorm_cutoff = wasm_f32x4_splat(-0x1.5D589Ep6f);
30   const v128_t vlog2e = wasm_f32x4_splat(0x1.715476p+0f);
31   // Last 7 bits are zeroes
32   const v128_t vminus_ln2_hi = wasm_f32x4_splat(-0x1.62E400p-1f);
33   const v128_t vminus_ln2_lo = wasm_f32x4_splat(-0x1.7F7D1Cp-20f);
34 
35   const v128_t vc1 = wasm_f32x4_splat(0x1.FFFFF6p-1f);
36   const v128_t vc2 = wasm_f32x4_splat(0x1.FFFDC6p-2f);
37   const v128_t vc3 = wasm_f32x4_splat(0x1.555A80p-3f);
38   const v128_t vc4 = wasm_f32x4_splat(0x1.573A1Ap-5f);
39   const v128_t vc5 = wasm_f32x4_splat(0x1.0F9F9Cp-7f);
40 
41   const v128_t vi_max = wasm_f32x4_splat(max);
42 
43   v128_t vacc0 = wasm_f32x4_splat(0.0f);
44   v128_t vacc1 = vacc0;
45   for (; elements >= 20 * sizeof(float); elements -= 20 * sizeof(float)) {
46     // Load 20 (5x4) inputs at a time.
47     const v128_t vi0123 = wasm_v128_load(input);
48     const v128_t vi4567 = wasm_v128_load(input + 4);
49     const v128_t vi89AB = wasm_v128_load(input + 8);
50     const v128_t viCDEF = wasm_v128_load(input + 12);
51     const v128_t viGHIJ = wasm_v128_load(input + 16);
52     input += 20;
53 
54     // Subtract maximum input x := i - i_max. This implies x <= 0.
55     const v128_t vx0123 = wasm_f32x4_sub(vi0123, vi_max);
56     const v128_t vx4567 = wasm_f32x4_sub(vi4567, vi_max);
57     const v128_t vx89AB = wasm_f32x4_sub(vi89AB, vi_max);
58     const v128_t vxCDEF = wasm_f32x4_sub(viCDEF, vi_max);
59     const v128_t vxGHIJ = wasm_f32x4_sub(viGHIJ, vi_max);
60 
61     // Compute reduced argument elements := round(x / log(2)).
62     v128_t vn0123 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx0123, vlog2e));
63     v128_t vn4567 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx4567, vlog2e));
64     v128_t vn89AB = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx89AB, vlog2e));
65     v128_t vnCDEF = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vxCDEF, vlog2e));
66     v128_t vnGHIJ = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vxGHIJ, vlog2e));
67 
68     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
69     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
70     const v128_t vs0123 = wasm_i32x4_shl(vn0123, 23);
71     const v128_t vs4567 = wasm_i32x4_shl(vn4567, 23);
72     const v128_t vs89AB = wasm_i32x4_shl(vn89AB, 23);
73     const v128_t vsCDEF = wasm_i32x4_shl(vnCDEF, 23);
74     const v128_t vsGHIJ = wasm_i32x4_shl(vnGHIJ, 23);
75 
76     // Subtract the large number back to get final elements := round(x / log(2)).
77     vn0123 = wasm_f32x4_sub(vn0123, vmagic_bias);
78     vn4567 = wasm_f32x4_sub(vn4567, vmagic_bias);
79     vn89AB = wasm_f32x4_sub(vn89AB, vmagic_bias);
80     vnCDEF = wasm_f32x4_sub(vnCDEF, vmagic_bias);
81     vnGHIJ = wasm_f32x4_sub(vnGHIJ, vmagic_bias);
82 
83     // Compute reduced argument t := x - elements * log(2).
84     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
85     v128_t vt0123 = wasm_f32x4_add(vx0123, wasm_f32x4_mul(vn0123, vminus_ln2_hi));
86     v128_t vt4567 = wasm_f32x4_add(vx4567, wasm_f32x4_mul(vn4567, vminus_ln2_hi));
87     v128_t vt89AB = wasm_f32x4_add(vx89AB, wasm_f32x4_mul(vn89AB, vminus_ln2_hi));
88     v128_t vtCDEF = wasm_f32x4_add(vxCDEF, wasm_f32x4_mul(vnCDEF, vminus_ln2_hi));
89     v128_t vtGHIJ = wasm_f32x4_add(vxGHIJ, wasm_f32x4_mul(vnGHIJ, vminus_ln2_hi));
90 
91     vt0123 = wasm_f32x4_add(vt0123, wasm_f32x4_mul(vn0123, vminus_ln2_lo));
92     vt4567 = wasm_f32x4_add(vt4567, wasm_f32x4_mul(vn4567, vminus_ln2_lo));
93     vt89AB = wasm_f32x4_add(vt89AB, wasm_f32x4_mul(vn89AB, vminus_ln2_lo));
94     vtCDEF = wasm_f32x4_add(vtCDEF, wasm_f32x4_mul(vnCDEF, vminus_ln2_lo));
95     vtGHIJ = wasm_f32x4_add(vtGHIJ, wasm_f32x4_mul(vnGHIJ, vminus_ln2_lo));
96 
97     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
98     v128_t vp0123 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt0123));
99     v128_t vp4567 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt4567));
100     v128_t vp89AB = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt89AB));
101     v128_t vpCDEF = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vtCDEF));
102     v128_t vpGHIJ = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vtGHIJ));
103 
104     vp0123 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp0123, vt0123));
105     vp4567 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp4567, vt4567));
106     vp89AB = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp89AB, vt89AB));
107     vpCDEF = wasm_f32x4_add(vc3, wasm_f32x4_mul(vpCDEF, vtCDEF));
108     vpGHIJ = wasm_f32x4_add(vc3, wasm_f32x4_mul(vpGHIJ, vtGHIJ));
109 
110     vp0123 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp0123, vt0123));
111     vp4567 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp4567, vt4567));
112     vp89AB = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp89AB, vt89AB));
113     vpCDEF = wasm_f32x4_add(vc2, wasm_f32x4_mul(vpCDEF, vtCDEF));
114     vpGHIJ = wasm_f32x4_add(vc2, wasm_f32x4_mul(vpGHIJ, vtGHIJ));
115 
116     vp0123 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp0123, vt0123));
117     vp4567 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp4567, vt4567));
118     vp89AB = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp89AB, vt89AB));
119     vpCDEF = wasm_f32x4_add(vc1, wasm_f32x4_mul(vpCDEF, vtCDEF));
120     vpGHIJ = wasm_f32x4_add(vc1, wasm_f32x4_mul(vpGHIJ, vtGHIJ));
121 
122     // Reconstruct the final f value:
123     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
124     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
125     //     = s + (t * s) * p
126     vt0123 = wasm_f32x4_mul(vt0123, vs0123);
127     vt4567 = wasm_f32x4_mul(vt4567, vs4567);
128     vt89AB = wasm_f32x4_mul(vt89AB, vs89AB);
129     vtCDEF = wasm_f32x4_mul(vtCDEF, vsCDEF);
130     vtGHIJ = wasm_f32x4_mul(vtGHIJ, vsGHIJ);
131 
132     v128_t vf0123 = wasm_f32x4_add(vs0123, wasm_f32x4_mul(vt0123, vp0123));
133     v128_t vf4567 = wasm_f32x4_add(vs4567, wasm_f32x4_mul(vt4567, vp4567));
134     v128_t vf89AB = wasm_f32x4_add(vs89AB, wasm_f32x4_mul(vt89AB, vp89AB));
135     v128_t vfCDEF = wasm_f32x4_add(vsCDEF, wasm_f32x4_mul(vtCDEF, vpCDEF));
136     v128_t vfGHIJ = wasm_f32x4_add(vsGHIJ, wasm_f32x4_mul(vtGHIJ, vpGHIJ));
137 
138     // For inputs below zero cutoff, replace output with +0.0f.
139     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
140     vf0123 = wasm_v128_andnot(vf0123, wasm_f32x4_lt(vx0123, vdenorm_cutoff));
141     vf4567 = wasm_v128_andnot(vf4567, wasm_f32x4_lt(vx4567, vdenorm_cutoff));
142     vf89AB = wasm_v128_andnot(vf89AB, wasm_f32x4_lt(vx89AB, vdenorm_cutoff));
143     vfCDEF = wasm_v128_andnot(vfCDEF, wasm_f32x4_lt(vxCDEF, vdenorm_cutoff));
144     vfGHIJ = wasm_v128_andnot(vfGHIJ, wasm_f32x4_lt(vxGHIJ, vdenorm_cutoff));
145 
146     // Store 20 (5x4) outputs at a time.
147     wasm_v128_store(output, vf0123);
148     wasm_v128_store(output + 4, vf4567);
149     wasm_v128_store(output + 8, vf89AB);
150     wasm_v128_store(output + 12, vfCDEF);
151     wasm_v128_store(output + 16, vfGHIJ);
152     output += 20;
153 
154     // Accumulate computed exponents.
155     vacc0 = wasm_f32x4_add(vacc0, vf0123);
156     vacc0 = wasm_f32x4_add(vacc0, vf4567);
157     vacc0 = wasm_f32x4_add(vacc0, vf89AB);
158     vacc0 = wasm_f32x4_add(vacc0, vfCDEF);
159     vacc0 = wasm_f32x4_add(vacc0, vfGHIJ);
160   }
161   // Add up all accumulators to vacc0
162   vacc0 = wasm_f32x4_add(vacc0, vacc1);
163 
164   v128_t vacc = vacc0;
165   for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
166     // Load 4 inputs at a time.
167     const v128_t vi = wasm_v128_load(input);
168     input += 4;
169 
170     // Subtract maximum input x := i - i_max. This implies x <= 0.
171     const v128_t vx = wasm_f32x4_sub(vi, vi_max);
172 
173     // Compute reduced argument elements := round(x / log(2)).
174     v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
175 
176     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
177     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
178     const v128_t vs = wasm_i32x4_shl(vn, 23);
179 
180     // Subtract the large number back to get final elements := round(x / log(2)).
181     vn = wasm_f32x4_sub(vn, vmagic_bias);
182 
183     // Compute reduced argument t := x - elements * log(2).
184     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
185     v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
186     vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
187 
188     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
189     v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
190     vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
191     vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
192     vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
193 
194     // Reconstruct the final f value:
195     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
196     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
197     //     = s + (t * s) * p
198     vt = wasm_f32x4_mul(vt, vs);
199     v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
200 
201     // For inputs below zero cutoff, replace output with +0.0f.
202     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
203     vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
204 
205     // Store 4 outputs at a time.
206     wasm_v128_store(output, vf);
207     output += 4;
208 
209     // Accumulate computed exponents.
210     vacc = wasm_f32x4_add(vacc, vf);
211   }
212   vacc = wasm_f32x4_add(vacc, wasm_v32x4_shuffle(vacc, vacc, 2, 3, 2, 3));
213   float vsum = wasm_f32x4_extract_lane(vacc, 0) + wasm_f32x4_extract_lane(vacc, 1);
214   if (elements != 0) {
215     assert(elements >= 1 * sizeof(float));
216     assert(elements <= 3 * sizeof(float));
217     // Load 4 inputs at a time.
218     const v128_t vi = wasm_v128_load(input);
219 
220     // Subtract maximum input x := i - i_max. This implies x <= 0.
221     const v128_t vx = wasm_f32x4_sub(vi, vi_max);
222 
223     // Compute reduced argument elements := round(x / log(2)).
224     v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
225 
226     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
227     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
228     const v128_t vs = wasm_i32x4_shl(vn, 23);
229 
230     // Subtract the large number back to get final elements := round(x / log(2)).
231     vn = wasm_f32x4_sub(vn, vmagic_bias);
232 
233     // Compute reduced argument t := x - elements * log(2).
234     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
235     v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
236     vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
237 
238     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
239     v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
240     vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
241     vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
242     vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
243 
244     // Reconstruct the final f value:
245     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
246     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
247     //     = s + (t * s) * p
248     vt = wasm_f32x4_mul(vt, vs);
249     v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
250 
251     // For inputs below zero cutoff, replace output with +0.0f.
252     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
253     vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
254 
255     if (elements & (2 * sizeof(float))) {
256       // Store and accumulate 2 outputs at a time.
257       const float vf0 = wasm_f32x4_extract_lane(vf, 0);
258       output[0] = vf0;
259       vsum += vf0;
260 
261       const float vf1 = wasm_f32x4_extract_lane(vf, 1);
262       output[1] = vf1;
263       vsum += vf1;
264 
265       vf = wasm_v32x4_shuffle(vf, vf, 2, 3, 2, 3);
266       output += 2;
267     }
268     if (elements & (1 * sizeof(float))) {
269       // Store 1 output at a time.
270       const float vf0 = wasm_f32x4_extract_lane(vf, 0);
271       *output = vf0;
272       vsum += vf0;
273     }
274   }
275   // Reduce 4 elements in the SIMD register
276   *sum = vsum;
277 }
278