• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-vscaleexpminusmax/avx2-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <immintrin.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/vscaleexpminusmax.h>
16 
17 
18 static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
19 
xnn_f32_vscaleexpminusmax_ukernel__avx2_p5_x56(size_t elements,const float * input,float * output,float scale,float max)20 void xnn_f32_vscaleexpminusmax_ukernel__avx2_p5_x56(
21     size_t elements,
22     const float* input,
23     float* output,
24     float scale,
25     float max)
26 {
27   assert(elements % sizeof(float) == 0);
28 
29   const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
30   // The smallest x for which expf(x) is normalized.
31   const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f);
32   const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
33   const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f);
34   const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f);
35 
36   const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
37   const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
38   const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
39   const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
40   const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
41 
42   const __m256 vscale = _mm256_set1_ps(scale);
43   const __m256 vi_max = _mm256_set1_ps(max);
44 
45   for (; elements >= 56 * sizeof(float); elements -= 56 * sizeof(float)) {
46     // Load 56 (7x8) inputs at a time.
47     const __m256 vi0 = _mm256_loadu_ps(input);
48     const __m256 vi1 = _mm256_loadu_ps(input + 8);
49     const __m256 vi2 = _mm256_loadu_ps(input + 16);
50     const __m256 vi3 = _mm256_loadu_ps(input + 24);
51     const __m256 vi4 = _mm256_loadu_ps(input + 32);
52     const __m256 vi5 = _mm256_loadu_ps(input + 40);
53     const __m256 vi6 = _mm256_loadu_ps(input + 48);
54     input += 56;
55 
56     // Subtract maximum input x := i - i_max. This implies x <= 0.
57     const __m256 vx0 = _mm256_sub_ps(vi0, vi_max);
58     const __m256 vx1 = _mm256_sub_ps(vi1, vi_max);
59     const __m256 vx2 = _mm256_sub_ps(vi2, vi_max);
60     const __m256 vx3 = _mm256_sub_ps(vi3, vi_max);
61     const __m256 vx4 = _mm256_sub_ps(vi4, vi_max);
62     const __m256 vx5 = _mm256_sub_ps(vi5, vi_max);
63     const __m256 vx6 = _mm256_sub_ps(vi6, vi_max);
64 
65     // Compute reduced argument elements := round(x / log(2)).
66     __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias);
67     __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias);
68     __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias);
69     __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias);
70     __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias);
71     __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias);
72     __m256 vn6 = _mm256_fmadd_ps(vx6, vlog2e, vmagic_bias);
73 
74     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
75     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
76     const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
77     const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
78     const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
79     const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23));
80     const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23));
81     const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23));
82     const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23));
83 
84     // Subtract the large number back to get final elements := round(x / log(2)).
85     vn0 = _mm256_sub_ps(vn0, vmagic_bias);
86     vn1 = _mm256_sub_ps(vn1, vmagic_bias);
87     vn2 = _mm256_sub_ps(vn2, vmagic_bias);
88     vn3 = _mm256_sub_ps(vn3, vmagic_bias);
89     vn4 = _mm256_sub_ps(vn4, vmagic_bias);
90     vn5 = _mm256_sub_ps(vn5, vmagic_bias);
91     vn6 = _mm256_sub_ps(vn6, vmagic_bias);
92 
93     // Compute reduced argument t := x - elements * log(2).
94     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
95     __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0);
96     __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1);
97     __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2);
98     __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3);
99     __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4);
100     __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5);
101     __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6);
102 
103     vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0);
104     vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1);
105     vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2);
106     vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3);
107     vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4);
108     vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5);
109     vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6);
110 
111     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
112     __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
113     __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
114     __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
115     __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
116     __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4);
117     __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4);
118     __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4);
119 
120     vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
121     vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
122     vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
123     vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
124     vp4 = _mm256_fmadd_ps(vp4, vt4, vc3);
125     vp5 = _mm256_fmadd_ps(vp5, vt5, vc3);
126     vp6 = _mm256_fmadd_ps(vp6, vt6, vc3);
127 
128     vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
129     vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
130     vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
131     vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
132     vp4 = _mm256_fmadd_ps(vp4, vt4, vc2);
133     vp5 = _mm256_fmadd_ps(vp5, vt5, vc2);
134     vp6 = _mm256_fmadd_ps(vp6, vt6, vc2);
135 
136     vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
137     vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
138     vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
139     vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
140     vp4 = _mm256_fmadd_ps(vp4, vt4, vc1);
141     vp5 = _mm256_fmadd_ps(vp5, vt5, vc1);
142     vp6 = _mm256_fmadd_ps(vp6, vt6, vc1);
143 
144     // Reconstruct the final f value:
145     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
146     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
147     //     = s + (t * s) * p
148     vt0 = _mm256_mul_ps(vt0, vs0);
149     vt1 = _mm256_mul_ps(vt1, vs1);
150     vt2 = _mm256_mul_ps(vt2, vs2);
151     vt3 = _mm256_mul_ps(vt3, vs3);
152     vt4 = _mm256_mul_ps(vt4, vs4);
153     vt5 = _mm256_mul_ps(vt5, vs5);
154     vt6 = _mm256_mul_ps(vt6, vs6);
155 
156     __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0);
157     __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1);
158     __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2);
159     __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3);
160     __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4);
161     __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5);
162     __m256 vf6 = _mm256_fmadd_ps(vt6, vp6, vs6);
163 
164     // For inputs below zero cutoff, replace output with +0.0f.
165     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
166     vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0);
167     vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1);
168     vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2);
169     vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3);
170     vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4);
171     vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5);
172     vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vx6, vdenorm_cutoff, _CMP_LT_OS), vf6);
173 
174     // Multiply by scale.
175     vf0 = _mm256_mul_ps(vf0, vscale);
176     vf1 = _mm256_mul_ps(vf1, vscale);
177     vf2 = _mm256_mul_ps(vf2, vscale);
178     vf3 = _mm256_mul_ps(vf3, vscale);
179     vf4 = _mm256_mul_ps(vf4, vscale);
180     vf5 = _mm256_mul_ps(vf5, vscale);
181     vf6 = _mm256_mul_ps(vf6, vscale);
182 
183     // Store 56 (7x8) outputs at a time.
184     _mm256_storeu_ps(output, vf0);
185     _mm256_storeu_ps(output + 8, vf1);
186     _mm256_storeu_ps(output + 16, vf2);
187     _mm256_storeu_ps(output + 24, vf3);
188     _mm256_storeu_ps(output + 32, vf4);
189     _mm256_storeu_ps(output + 40, vf5);
190     _mm256_storeu_ps(output + 48, vf6);
191     output += 56;
192   }
193   for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) {
194     // Load 8 inputs at a time.
195     const __m256 vi = _mm256_loadu_ps(input);
196     input += 8;
197 
198     // Subtract maximum input x := i - i_max. This implies x <= 0.
199     const __m256 vx = _mm256_sub_ps(vi, vi_max);
200 
201     // Compute reduced argument elements := round(x / log(2)).
202     __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias);
203 
204     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
205     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
206     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
207 
208     // Subtract the large number back to get final elements := round(x / log(2)).
209     vn = _mm256_sub_ps(vn, vmagic_bias);
210 
211     // Compute reduced argument t := x - elements * log(2).
212     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
213     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
214     vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
215 
216     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
217     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
218     vp = _mm256_fmadd_ps(vp, vt, vc3);
219     vp = _mm256_fmadd_ps(vp, vt, vc2);
220     vp = _mm256_fmadd_ps(vp, vt, vc1);
221 
222     // Reconstruct the final f value:
223     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
224     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
225     //     = s + (t * s) * p
226     vt = _mm256_mul_ps(vt, vs);
227     __m256 vf = _mm256_fmadd_ps(vt, vp, vs);
228 
229     // For inputs below zero cutoff, replace output with +0.0f.
230     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
231     vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf);
232 
233     // Multiply by scale.
234     vf = _mm256_mul_ps(vf, vscale);
235 
236     // Store 64 (8x8) outputs at a time.
237     _mm256_storeu_ps(output, vf);
238     output += 8;
239   }
240   if (elements != 0) {
241     assert(elements >= 1 * sizeof(float));
242     assert(elements <= 7 * sizeof(float));
243     const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - elements));
244 
245     // Load up to 7 inputs at a time.
246     const __m256 vi = _mm256_maskload_ps(input, vmask);
247 
248     // Subtract maximum input x := i - i_max. This implies x <= 0.
249     const __m256 vx = _mm256_sub_ps(vi, vi_max);
250 
251     // Compute reduced argument elements := round(x / log(2)).
252     __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias);
253 
254     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
255     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
256     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
257 
258     // Subtract the large number back to get final elements := round(x / log(2)).
259     vn = _mm256_sub_ps(vn, vmagic_bias);
260 
261     // Compute reduced argument t := x - elements * log(2).
262     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
263     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
264     vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
265 
266     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
267     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
268     vp = _mm256_fmadd_ps(vp, vt, vc3);
269     vp = _mm256_fmadd_ps(vp, vt, vc2);
270     vp = _mm256_fmadd_ps(vp, vt, vc1);
271 
272     // Reconstruct the final f value:
273     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
274     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
275     //     = s + (t * s) * p
276     vt = _mm256_mul_ps(vt, vs);
277     __m256 vf = _mm256_fmadd_ps(vt, vp, vs);
278 
279     // For inputs below zero cutoff, replace output with +0.0f.
280     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
281     vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf);
282 
283     // Multiply by scale.
284     vf = _mm256_mul_ps(vf, vscale);
285 
286     // Store up to 7 outputs at a time.
287     _mm256_maskstore_ps(output, vmask, vf);
288   }
289 }
290