• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-vscaleexpminusmax/avx2-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <immintrin.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/vscaleexpminusmax.h>
16 
17 
18 static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
19 
xnn_f32_vscaleexpminusmax_ukernel__avx2_p5_x72(size_t elements,const float * input,float * output,float scale,float max)20 void xnn_f32_vscaleexpminusmax_ukernel__avx2_p5_x72(
21     size_t elements,
22     const float* input,
23     float* output,
24     float scale,
25     float max)
26 {
27   assert(elements % sizeof(float) == 0);
28 
29   const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
30   // The smallest x for which expf(x) is normalized.
31   const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f);
32   const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
33   const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f);
34   const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f);
35 
36   const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
37   const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
38   const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
39   const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
40   const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
41 
42   const __m256 vscale = _mm256_set1_ps(scale);
43   const __m256 vi_max = _mm256_set1_ps(max);
44 
45   for (; elements >= 72 * sizeof(float); elements -= 72 * sizeof(float)) {
46     // Load 72 (9x8) inputs at a time.
47     const __m256 vi0 = _mm256_loadu_ps(input);
48     const __m256 vi1 = _mm256_loadu_ps(input + 8);
49     const __m256 vi2 = _mm256_loadu_ps(input + 16);
50     const __m256 vi3 = _mm256_loadu_ps(input + 24);
51     const __m256 vi4 = _mm256_loadu_ps(input + 32);
52     const __m256 vi5 = _mm256_loadu_ps(input + 40);
53     const __m256 vi6 = _mm256_loadu_ps(input + 48);
54     const __m256 vi7 = _mm256_loadu_ps(input + 56);
55     const __m256 vi8 = _mm256_loadu_ps(input + 64);
56     input += 72;
57 
58     // Subtract maximum input x := i - i_max. This implies x <= 0.
59     const __m256 vx0 = _mm256_sub_ps(vi0, vi_max);
60     const __m256 vx1 = _mm256_sub_ps(vi1, vi_max);
61     const __m256 vx2 = _mm256_sub_ps(vi2, vi_max);
62     const __m256 vx3 = _mm256_sub_ps(vi3, vi_max);
63     const __m256 vx4 = _mm256_sub_ps(vi4, vi_max);
64     const __m256 vx5 = _mm256_sub_ps(vi5, vi_max);
65     const __m256 vx6 = _mm256_sub_ps(vi6, vi_max);
66     const __m256 vx7 = _mm256_sub_ps(vi7, vi_max);
67     const __m256 vx8 = _mm256_sub_ps(vi8, vi_max);
68 
69     // Compute reduced argument elements := round(x / log(2)).
70     __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias);
71     __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias);
72     __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias);
73     __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias);
74     __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias);
75     __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias);
76     __m256 vn6 = _mm256_fmadd_ps(vx6, vlog2e, vmagic_bias);
77     __m256 vn7 = _mm256_fmadd_ps(vx7, vlog2e, vmagic_bias);
78     __m256 vn8 = _mm256_fmadd_ps(vx8, vlog2e, vmagic_bias);
79 
80     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
81     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
82     const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
83     const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
84     const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
85     const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23));
86     const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23));
87     const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23));
88     const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23));
89     const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23));
90     const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn8), 23));
91 
92     // Subtract the large number back to get final elements := round(x / log(2)).
93     vn0 = _mm256_sub_ps(vn0, vmagic_bias);
94     vn1 = _mm256_sub_ps(vn1, vmagic_bias);
95     vn2 = _mm256_sub_ps(vn2, vmagic_bias);
96     vn3 = _mm256_sub_ps(vn3, vmagic_bias);
97     vn4 = _mm256_sub_ps(vn4, vmagic_bias);
98     vn5 = _mm256_sub_ps(vn5, vmagic_bias);
99     vn6 = _mm256_sub_ps(vn6, vmagic_bias);
100     vn7 = _mm256_sub_ps(vn7, vmagic_bias);
101     vn8 = _mm256_sub_ps(vn8, vmagic_bias);
102 
103     // Compute reduced argument t := x - elements * log(2).
104     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
105     __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0);
106     __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1);
107     __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2);
108     __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3);
109     __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4);
110     __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5);
111     __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6);
112     __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7);
113     __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_hi, vx8);
114 
115     vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0);
116     vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1);
117     vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2);
118     vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3);
119     vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4);
120     vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5);
121     vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6);
122     vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7);
123     vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_lo, vt8);
124 
125     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
126     __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
127     __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
128     __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
129     __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
130     __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4);
131     __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4);
132     __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4);
133     __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4);
134     __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4);
135 
136     vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
137     vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
138     vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
139     vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
140     vp4 = _mm256_fmadd_ps(vp4, vt4, vc3);
141     vp5 = _mm256_fmadd_ps(vp5, vt5, vc3);
142     vp6 = _mm256_fmadd_ps(vp6, vt6, vc3);
143     vp7 = _mm256_fmadd_ps(vp7, vt7, vc3);
144     vp8 = _mm256_fmadd_ps(vp8, vt8, vc3);
145 
146     vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
147     vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
148     vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
149     vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
150     vp4 = _mm256_fmadd_ps(vp4, vt4, vc2);
151     vp5 = _mm256_fmadd_ps(vp5, vt5, vc2);
152     vp6 = _mm256_fmadd_ps(vp6, vt6, vc2);
153     vp7 = _mm256_fmadd_ps(vp7, vt7, vc2);
154     vp8 = _mm256_fmadd_ps(vp8, vt8, vc2);
155 
156     vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
157     vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
158     vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
159     vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
160     vp4 = _mm256_fmadd_ps(vp4, vt4, vc1);
161     vp5 = _mm256_fmadd_ps(vp5, vt5, vc1);
162     vp6 = _mm256_fmadd_ps(vp6, vt6, vc1);
163     vp7 = _mm256_fmadd_ps(vp7, vt7, vc1);
164     vp8 = _mm256_fmadd_ps(vp8, vt8, vc1);
165 
166     // Reconstruct the final f value:
167     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
168     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
169     //     = s + (t * s) * p
170     vt0 = _mm256_mul_ps(vt0, vs0);
171     vt1 = _mm256_mul_ps(vt1, vs1);
172     vt2 = _mm256_mul_ps(vt2, vs2);
173     vt3 = _mm256_mul_ps(vt3, vs3);
174     vt4 = _mm256_mul_ps(vt4, vs4);
175     vt5 = _mm256_mul_ps(vt5, vs5);
176     vt6 = _mm256_mul_ps(vt6, vs6);
177     vt7 = _mm256_mul_ps(vt7, vs7);
178     vt8 = _mm256_mul_ps(vt8, vs8);
179 
180     __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0);
181     __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1);
182     __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2);
183     __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3);
184     __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4);
185     __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5);
186     __m256 vf6 = _mm256_fmadd_ps(vt6, vp6, vs6);
187     __m256 vf7 = _mm256_fmadd_ps(vt7, vp7, vs7);
188     __m256 vf8 = _mm256_fmadd_ps(vt8, vp8, vs8);
189 
190     // For inputs below zero cutoff, replace output with +0.0f.
191     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
192     vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0);
193     vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1);
194     vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2);
195     vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3);
196     vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4);
197     vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5);
198     vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vx6, vdenorm_cutoff, _CMP_LT_OS), vf6);
199     vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vx7, vdenorm_cutoff, _CMP_LT_OS), vf7);
200     vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vx8, vdenorm_cutoff, _CMP_LT_OS), vf8);
201 
202     // Multiply by scale.
203     vf0 = _mm256_mul_ps(vf0, vscale);
204     vf1 = _mm256_mul_ps(vf1, vscale);
205     vf2 = _mm256_mul_ps(vf2, vscale);
206     vf3 = _mm256_mul_ps(vf3, vscale);
207     vf4 = _mm256_mul_ps(vf4, vscale);
208     vf5 = _mm256_mul_ps(vf5, vscale);
209     vf6 = _mm256_mul_ps(vf6, vscale);
210     vf7 = _mm256_mul_ps(vf7, vscale);
211     vf8 = _mm256_mul_ps(vf8, vscale);
212 
213     // Store 72 (9x8) outputs at a time.
214     _mm256_storeu_ps(output, vf0);
215     _mm256_storeu_ps(output + 8, vf1);
216     _mm256_storeu_ps(output + 16, vf2);
217     _mm256_storeu_ps(output + 24, vf3);
218     _mm256_storeu_ps(output + 32, vf4);
219     _mm256_storeu_ps(output + 40, vf5);
220     _mm256_storeu_ps(output + 48, vf6);
221     _mm256_storeu_ps(output + 56, vf7);
222     _mm256_storeu_ps(output + 64, vf8);
223     output += 72;
224   }
225   for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) {
226     // Load 8 inputs at a time.
227     const __m256 vi = _mm256_loadu_ps(input);
228     input += 8;
229 
230     // Subtract maximum input x := i - i_max. This implies x <= 0.
231     const __m256 vx = _mm256_sub_ps(vi, vi_max);
232 
233     // Compute reduced argument elements := round(x / log(2)).
234     __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias);
235 
236     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
237     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
238     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
239 
240     // Subtract the large number back to get final elements := round(x / log(2)).
241     vn = _mm256_sub_ps(vn, vmagic_bias);
242 
243     // Compute reduced argument t := x - elements * log(2).
244     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
245     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
246     vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
247 
248     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
249     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
250     vp = _mm256_fmadd_ps(vp, vt, vc3);
251     vp = _mm256_fmadd_ps(vp, vt, vc2);
252     vp = _mm256_fmadd_ps(vp, vt, vc1);
253 
254     // Reconstruct the final f value:
255     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
256     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
257     //     = s + (t * s) * p
258     vt = _mm256_mul_ps(vt, vs);
259     __m256 vf = _mm256_fmadd_ps(vt, vp, vs);
260 
261     // For inputs below zero cutoff, replace output with +0.0f.
262     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
263     vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf);
264 
265     // Multiply by scale.
266     vf = _mm256_mul_ps(vf, vscale);
267 
268     // Store 64 (8x8) outputs at a time.
269     _mm256_storeu_ps(output, vf);
270     output += 8;
271   }
272   if (elements != 0) {
273     assert(elements >= 1 * sizeof(float));
274     assert(elements <= 7 * sizeof(float));
275     const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - elements));
276 
277     // Load up to 7 inputs at a time.
278     const __m256 vi = _mm256_maskload_ps(input, vmask);
279 
280     // Subtract maximum input x := i - i_max. This implies x <= 0.
281     const __m256 vx = _mm256_sub_ps(vi, vi_max);
282 
283     // Compute reduced argument elements := round(x / log(2)).
284     __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias);
285 
286     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
287     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
288     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
289 
290     // Subtract the large number back to get final elements := round(x / log(2)).
291     vn = _mm256_sub_ps(vn, vmagic_bias);
292 
293     // Compute reduced argument t := x - elements * log(2).
294     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
295     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
296     vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
297 
298     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
299     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
300     vp = _mm256_fmadd_ps(vp, vt, vc3);
301     vp = _mm256_fmadd_ps(vp, vt, vc2);
302     vp = _mm256_fmadd_ps(vp, vt, vc1);
303 
304     // Reconstruct the final f value:
305     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
306     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
307     //     = s + (t * s) * p
308     vt = _mm256_mul_ps(vt, vs);
309     __m256 vf = _mm256_fmadd_ps(vt, vp, vs);
310 
311     // For inputs below zero cutoff, replace output with +0.0f.
312     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
313     vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf);
314 
315     // Multiply by scale.
316     vf = _mm256_mul_ps(vf, vscale);
317 
318     // Store up to 7 outputs at a time.
319     _mm256_maskstore_ps(output, vmask, vf);
320   }
321 }
322