• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-vscaleexpminusmax/avx2-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <immintrin.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/vscaleexpminusmax.h>
16 
17 
18 static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
19 
xnn_f32_vscaleexpminusmax_ukernel__avx2_p5_x96(size_t elements,const float * input,float * output,float scale,float max)20 void xnn_f32_vscaleexpminusmax_ukernel__avx2_p5_x96(
21     size_t elements,
22     const float* input,
23     float* output,
24     float scale,
25     float max)
26 {
27   assert(elements % sizeof(float) == 0);
28 
29   const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
30   // The smallest x for which expf(x) is normalized.
31   const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f);
32   const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
33   const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f);
34   const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f);
35 
36   const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
37   const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
38   const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
39   const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
40   const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
41 
42   const __m256 vscale = _mm256_set1_ps(scale);
43   const __m256 vi_max = _mm256_set1_ps(max);
44 
45   for (; elements >= 96 * sizeof(float); elements -= 96 * sizeof(float)) {
46     // Load 96 (12x8) inputs at a time.
47     const __m256 vi0 = _mm256_loadu_ps(input);
48     const __m256 vi1 = _mm256_loadu_ps(input + 8);
49     const __m256 vi2 = _mm256_loadu_ps(input + 16);
50     const __m256 vi3 = _mm256_loadu_ps(input + 24);
51     const __m256 vi4 = _mm256_loadu_ps(input + 32);
52     const __m256 vi5 = _mm256_loadu_ps(input + 40);
53     const __m256 vi6 = _mm256_loadu_ps(input + 48);
54     const __m256 vi7 = _mm256_loadu_ps(input + 56);
55     const __m256 vi8 = _mm256_loadu_ps(input + 64);
56     const __m256 vi9 = _mm256_loadu_ps(input + 72);
57     const __m256 vi10 = _mm256_loadu_ps(input + 80);
58     const __m256 vi11 = _mm256_loadu_ps(input + 88);
59     input += 96;
60 
61     // Subtract maximum input x := i - i_max. This implies x <= 0.
62     const __m256 vx0 = _mm256_sub_ps(vi0, vi_max);
63     const __m256 vx1 = _mm256_sub_ps(vi1, vi_max);
64     const __m256 vx2 = _mm256_sub_ps(vi2, vi_max);
65     const __m256 vx3 = _mm256_sub_ps(vi3, vi_max);
66     const __m256 vx4 = _mm256_sub_ps(vi4, vi_max);
67     const __m256 vx5 = _mm256_sub_ps(vi5, vi_max);
68     const __m256 vx6 = _mm256_sub_ps(vi6, vi_max);
69     const __m256 vx7 = _mm256_sub_ps(vi7, vi_max);
70     const __m256 vx8 = _mm256_sub_ps(vi8, vi_max);
71     const __m256 vx9 = _mm256_sub_ps(vi9, vi_max);
72     const __m256 vx10 = _mm256_sub_ps(vi10, vi_max);
73     const __m256 vx11 = _mm256_sub_ps(vi11, vi_max);
74 
75     // Compute reduced argument elements := round(x / log(2)).
76     __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias);
77     __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias);
78     __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias);
79     __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias);
80     __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias);
81     __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias);
82     __m256 vn6 = _mm256_fmadd_ps(vx6, vlog2e, vmagic_bias);
83     __m256 vn7 = _mm256_fmadd_ps(vx7, vlog2e, vmagic_bias);
84     __m256 vn8 = _mm256_fmadd_ps(vx8, vlog2e, vmagic_bias);
85     __m256 vn9 = _mm256_fmadd_ps(vx9, vlog2e, vmagic_bias);
86     __m256 vn10 = _mm256_fmadd_ps(vx10, vlog2e, vmagic_bias);
87     __m256 vn11 = _mm256_fmadd_ps(vx11, vlog2e, vmagic_bias);
88 
89     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
90     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
91     const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
92     const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
93     const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
94     const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23));
95     const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23));
96     const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23));
97     const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23));
98     const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23));
99     const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn8), 23));
100     const __m256 vs9 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn9), 23));
101     const __m256 vs10 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn10), 23));
102     const __m256 vs11 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn11), 23));
103 
104     // Subtract the large number back to get final elements := round(x / log(2)).
105     vn0 = _mm256_sub_ps(vn0, vmagic_bias);
106     vn1 = _mm256_sub_ps(vn1, vmagic_bias);
107     vn2 = _mm256_sub_ps(vn2, vmagic_bias);
108     vn3 = _mm256_sub_ps(vn3, vmagic_bias);
109     vn4 = _mm256_sub_ps(vn4, vmagic_bias);
110     vn5 = _mm256_sub_ps(vn5, vmagic_bias);
111     vn6 = _mm256_sub_ps(vn6, vmagic_bias);
112     vn7 = _mm256_sub_ps(vn7, vmagic_bias);
113     vn8 = _mm256_sub_ps(vn8, vmagic_bias);
114     vn9 = _mm256_sub_ps(vn9, vmagic_bias);
115     vn10 = _mm256_sub_ps(vn10, vmagic_bias);
116     vn11 = _mm256_sub_ps(vn11, vmagic_bias);
117 
118     // Compute reduced argument t := x - elements * log(2).
119     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
120     __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0);
121     __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1);
122     __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2);
123     __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3);
124     __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4);
125     __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5);
126     __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6);
127     __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7);
128     __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_hi, vx8);
129     __m256 vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_hi, vx9);
130     __m256 vt10 = _mm256_fmadd_ps(vn10, vminus_ln2_hi, vx10);
131     __m256 vt11 = _mm256_fmadd_ps(vn11, vminus_ln2_hi, vx11);
132 
133     vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0);
134     vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1);
135     vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2);
136     vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3);
137     vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4);
138     vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5);
139     vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6);
140     vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7);
141     vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_lo, vt8);
142     vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_lo, vt9);
143     vt10 = _mm256_fmadd_ps(vn10, vminus_ln2_lo, vt10);
144     vt11 = _mm256_fmadd_ps(vn11, vminus_ln2_lo, vt11);
145 
146     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
147     __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
148     __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
149     __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
150     __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
151     __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4);
152     __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4);
153     __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4);
154     __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4);
155     __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4);
156     __m256 vp9 = _mm256_fmadd_ps(vc5, vt9, vc4);
157     __m256 vp10 = _mm256_fmadd_ps(vc5, vt10, vc4);
158     __m256 vp11 = _mm256_fmadd_ps(vc5, vt11, vc4);
159 
160     vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
161     vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
162     vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
163     vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
164     vp4 = _mm256_fmadd_ps(vp4, vt4, vc3);
165     vp5 = _mm256_fmadd_ps(vp5, vt5, vc3);
166     vp6 = _mm256_fmadd_ps(vp6, vt6, vc3);
167     vp7 = _mm256_fmadd_ps(vp7, vt7, vc3);
168     vp8 = _mm256_fmadd_ps(vp8, vt8, vc3);
169     vp9 = _mm256_fmadd_ps(vp9, vt9, vc3);
170     vp10 = _mm256_fmadd_ps(vp10, vt10, vc3);
171     vp11 = _mm256_fmadd_ps(vp11, vt11, vc3);
172 
173     vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
174     vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
175     vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
176     vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
177     vp4 = _mm256_fmadd_ps(vp4, vt4, vc2);
178     vp5 = _mm256_fmadd_ps(vp5, vt5, vc2);
179     vp6 = _mm256_fmadd_ps(vp6, vt6, vc2);
180     vp7 = _mm256_fmadd_ps(vp7, vt7, vc2);
181     vp8 = _mm256_fmadd_ps(vp8, vt8, vc2);
182     vp9 = _mm256_fmadd_ps(vp9, vt9, vc2);
183     vp10 = _mm256_fmadd_ps(vp10, vt10, vc2);
184     vp11 = _mm256_fmadd_ps(vp11, vt11, vc2);
185 
186     vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
187     vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
188     vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
189     vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
190     vp4 = _mm256_fmadd_ps(vp4, vt4, vc1);
191     vp5 = _mm256_fmadd_ps(vp5, vt5, vc1);
192     vp6 = _mm256_fmadd_ps(vp6, vt6, vc1);
193     vp7 = _mm256_fmadd_ps(vp7, vt7, vc1);
194     vp8 = _mm256_fmadd_ps(vp8, vt8, vc1);
195     vp9 = _mm256_fmadd_ps(vp9, vt9, vc1);
196     vp10 = _mm256_fmadd_ps(vp10, vt10, vc1);
197     vp11 = _mm256_fmadd_ps(vp11, vt11, vc1);
198 
199     // Reconstruct the final f value:
200     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
201     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
202     //     = s + (t * s) * p
203     vt0 = _mm256_mul_ps(vt0, vs0);
204     vt1 = _mm256_mul_ps(vt1, vs1);
205     vt2 = _mm256_mul_ps(vt2, vs2);
206     vt3 = _mm256_mul_ps(vt3, vs3);
207     vt4 = _mm256_mul_ps(vt4, vs4);
208     vt5 = _mm256_mul_ps(vt5, vs5);
209     vt6 = _mm256_mul_ps(vt6, vs6);
210     vt7 = _mm256_mul_ps(vt7, vs7);
211     vt8 = _mm256_mul_ps(vt8, vs8);
212     vt9 = _mm256_mul_ps(vt9, vs9);
213     vt10 = _mm256_mul_ps(vt10, vs10);
214     vt11 = _mm256_mul_ps(vt11, vs11);
215 
216     __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0);
217     __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1);
218     __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2);
219     __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3);
220     __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4);
221     __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5);
222     __m256 vf6 = _mm256_fmadd_ps(vt6, vp6, vs6);
223     __m256 vf7 = _mm256_fmadd_ps(vt7, vp7, vs7);
224     __m256 vf8 = _mm256_fmadd_ps(vt8, vp8, vs8);
225     __m256 vf9 = _mm256_fmadd_ps(vt9, vp9, vs9);
226     __m256 vf10 = _mm256_fmadd_ps(vt10, vp10, vs10);
227     __m256 vf11 = _mm256_fmadd_ps(vt11, vp11, vs11);
228 
229     // For inputs below zero cutoff, replace output with +0.0f.
230     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
231     vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0);
232     vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1);
233     vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2);
234     vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3);
235     vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4);
236     vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5);
237     vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vx6, vdenorm_cutoff, _CMP_LT_OS), vf6);
238     vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vx7, vdenorm_cutoff, _CMP_LT_OS), vf7);
239     vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vx8, vdenorm_cutoff, _CMP_LT_OS), vf8);
240     vf9 = _mm256_andnot_ps(_mm256_cmp_ps(vx9, vdenorm_cutoff, _CMP_LT_OS), vf9);
241     vf10 = _mm256_andnot_ps(_mm256_cmp_ps(vx10, vdenorm_cutoff, _CMP_LT_OS), vf10);
242     vf11 = _mm256_andnot_ps(_mm256_cmp_ps(vx11, vdenorm_cutoff, _CMP_LT_OS), vf11);
243 
244     // Multiply by scale.
245     vf0 = _mm256_mul_ps(vf0, vscale);
246     vf1 = _mm256_mul_ps(vf1, vscale);
247     vf2 = _mm256_mul_ps(vf2, vscale);
248     vf3 = _mm256_mul_ps(vf3, vscale);
249     vf4 = _mm256_mul_ps(vf4, vscale);
250     vf5 = _mm256_mul_ps(vf5, vscale);
251     vf6 = _mm256_mul_ps(vf6, vscale);
252     vf7 = _mm256_mul_ps(vf7, vscale);
253     vf8 = _mm256_mul_ps(vf8, vscale);
254     vf9 = _mm256_mul_ps(vf9, vscale);
255     vf10 = _mm256_mul_ps(vf10, vscale);
256     vf11 = _mm256_mul_ps(vf11, vscale);
257 
258     // Store 96 (12x8) outputs at a time.
259     _mm256_storeu_ps(output, vf0);
260     _mm256_storeu_ps(output + 8, vf1);
261     _mm256_storeu_ps(output + 16, vf2);
262     _mm256_storeu_ps(output + 24, vf3);
263     _mm256_storeu_ps(output + 32, vf4);
264     _mm256_storeu_ps(output + 40, vf5);
265     _mm256_storeu_ps(output + 48, vf6);
266     _mm256_storeu_ps(output + 56, vf7);
267     _mm256_storeu_ps(output + 64, vf8);
268     _mm256_storeu_ps(output + 72, vf9);
269     _mm256_storeu_ps(output + 80, vf10);
270     _mm256_storeu_ps(output + 88, vf11);
271     output += 96;
272   }
273   for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) {
274     // Load 8 inputs at a time.
275     const __m256 vi = _mm256_loadu_ps(input);
276     input += 8;
277 
278     // Subtract maximum input x := i - i_max. This implies x <= 0.
279     const __m256 vx = _mm256_sub_ps(vi, vi_max);
280 
281     // Compute reduced argument elements := round(x / log(2)).
282     __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias);
283 
284     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
285     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
286     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
287 
288     // Subtract the large number back to get final elements := round(x / log(2)).
289     vn = _mm256_sub_ps(vn, vmagic_bias);
290 
291     // Compute reduced argument t := x - elements * log(2).
292     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
293     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
294     vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
295 
296     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
297     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
298     vp = _mm256_fmadd_ps(vp, vt, vc3);
299     vp = _mm256_fmadd_ps(vp, vt, vc2);
300     vp = _mm256_fmadd_ps(vp, vt, vc1);
301 
302     // Reconstruct the final f value:
303     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
304     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
305     //     = s + (t * s) * p
306     vt = _mm256_mul_ps(vt, vs);
307     __m256 vf = _mm256_fmadd_ps(vt, vp, vs);
308 
309     // For inputs below zero cutoff, replace output with +0.0f.
310     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
311     vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf);
312 
313     // Multiply by scale.
314     vf = _mm256_mul_ps(vf, vscale);
315 
316     // Store 64 (8x8) outputs at a time.
317     _mm256_storeu_ps(output, vf);
318     output += 8;
319   }
320   if (elements != 0) {
321     assert(elements >= 1 * sizeof(float));
322     assert(elements <= 7 * sizeof(float));
323     const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - elements));
324 
325     // Load up to 7 inputs at a time.
326     const __m256 vi = _mm256_maskload_ps(input, vmask);
327 
328     // Subtract maximum input x := i - i_max. This implies x <= 0.
329     const __m256 vx = _mm256_sub_ps(vi, vi_max);
330 
331     // Compute reduced argument elements := round(x / log(2)).
332     __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias);
333 
334     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
335     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
336     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
337 
338     // Subtract the large number back to get final elements := round(x / log(2)).
339     vn = _mm256_sub_ps(vn, vmagic_bias);
340 
341     // Compute reduced argument t := x - elements * log(2).
342     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
343     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
344     vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
345 
346     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
347     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
348     vp = _mm256_fmadd_ps(vp, vt, vc3);
349     vp = _mm256_fmadd_ps(vp, vt, vc2);
350     vp = _mm256_fmadd_ps(vp, vt, vc1);
351 
352     // Reconstruct the final f value:
353     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
354     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
355     //     = s + (t * s) * p
356     vt = _mm256_mul_ps(vt, vs);
357     __m256 vf = _mm256_fmadd_ps(vt, vp, vs);
358 
359     // For inputs below zero cutoff, replace output with +0.0f.
360     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
361     vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf);
362 
363     // Multiply by scale.
364     vf = _mm256_mul_ps(vf, vscale);
365 
366     // Store up to 7 outputs at a time.
367     _mm256_maskstore_ps(output, vmask, vf);
368   }
369 }
370