• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-vscaleexpminusmax/avx512f-p5-scalef.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <immintrin.h>
13 
14 #include <xnnpack/intrinsics-polyfill.h>
15 #include <xnnpack/vscaleexpminusmax.h>
16 
17 
xnn_f32_vscaleexpminusmax_ukernel__avx512f_p5_scalef_x160(size_t elements,const float * input,float * output,float scale,float max)18 void xnn_f32_vscaleexpminusmax_ukernel__avx512f_p5_scalef_x160(
19     size_t elements,
20     const float* input,
21     float* output,
22     float scale,
23     float max)
24 {
25   assert(elements % sizeof(float) == 0);
26 
27   const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f);
28   const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f);
29   const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f);
30 
31   const __m512 vc0 = _mm512_set1_ps(1.0f);
32   const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f);
33   const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f);
34   const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f);
35   const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f);
36   const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f);
37 
38   const __m512 vscale = _mm512_set1_ps(scale);
39   const __m512 vi_max = _mm512_set1_ps(max);
40 
41   for (; elements >= 160 * sizeof(float); elements -= 160 * sizeof(float)) {
42     // Load 160 (10x16) inputs at a time.
43     const __m512 vi0 = _mm512_loadu_ps(input);
44     const __m512 vi1 = _mm512_loadu_ps(input + 16);
45     const __m512 vi2 = _mm512_loadu_ps(input + 32);
46     const __m512 vi3 = _mm512_loadu_ps(input + 48);
47     const __m512 vi4 = _mm512_loadu_ps(input + 64);
48     const __m512 vi5 = _mm512_loadu_ps(input + 80);
49     const __m512 vi6 = _mm512_loadu_ps(input + 96);
50     const __m512 vi7 = _mm512_loadu_ps(input + 112);
51     const __m512 vi8 = _mm512_loadu_ps(input + 128);
52     const __m512 vi9 = _mm512_loadu_ps(input + 144);
53     input += 160;
54 
55     // Subtract maximum input x := i - i_max.
56     const __m512 vx0 = _mm512_sub_ps(vi0, vi_max);
57     const __m512 vx1 = _mm512_sub_ps(vi1, vi_max);
58     const __m512 vx2 = _mm512_sub_ps(vi2, vi_max);
59     const __m512 vx3 = _mm512_sub_ps(vi3, vi_max);
60     const __m512 vx4 = _mm512_sub_ps(vi4, vi_max);
61     const __m512 vx5 = _mm512_sub_ps(vi5, vi_max);
62     const __m512 vx6 = _mm512_sub_ps(vi6, vi_max);
63     const __m512 vx7 = _mm512_sub_ps(vi7, vi_max);
64     const __m512 vx8 = _mm512_sub_ps(vi8, vi_max);
65     const __m512 vx9 = _mm512_sub_ps(vi9, vi_max);
66 
67     // Compute reduced argument elements := round(x / log(2)).
68     __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0);
69     __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0);
70     __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0);
71     __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0);
72     __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0);
73     __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0);
74     __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0);
75     __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0);
76     __m512 vn8 = _mm512_roundscale_ps(_mm512_mul_ps(vx8, vlog2e), 0);
77     __m512 vn9 = _mm512_roundscale_ps(_mm512_mul_ps(vx9, vlog2e), 0);
78 
79     // Compute reduced argument t := x - elements * log(2).
80     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
81     __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0);
82     __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1);
83     __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2);
84     __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3);
85     __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4);
86     __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5);
87     __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6);
88     __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7);
89     __m512 vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_hi, vx8);
90     __m512 vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_hi, vx9);
91 
92     vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0);
93     vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1);
94     vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2);
95     vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3);
96     vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4);
97     vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5);
98     vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6);
99     vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7);
100     vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_lo, vt8);
101     vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_lo, vt9);
102 
103     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
104     __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4);
105     __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4);
106     __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4);
107     __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4);
108     __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4);
109     __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4);
110     __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4);
111     __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4);
112     __m512 vp8 = _mm512_fmadd_ps(vc5, vt8, vc4);
113     __m512 vp9 = _mm512_fmadd_ps(vc5, vt9, vc4);
114 
115     vp0 = _mm512_fmadd_ps(vp0, vt0, vc3);
116     vp1 = _mm512_fmadd_ps(vp1, vt1, vc3);
117     vp2 = _mm512_fmadd_ps(vp2, vt2, vc3);
118     vp3 = _mm512_fmadd_ps(vp3, vt3, vc3);
119     vp4 = _mm512_fmadd_ps(vp4, vt4, vc3);
120     vp5 = _mm512_fmadd_ps(vp5, vt5, vc3);
121     vp6 = _mm512_fmadd_ps(vp6, vt6, vc3);
122     vp7 = _mm512_fmadd_ps(vp7, vt7, vc3);
123     vp8 = _mm512_fmadd_ps(vp8, vt8, vc3);
124     vp9 = _mm512_fmadd_ps(vp9, vt9, vc3);
125 
126     vp0 = _mm512_fmadd_ps(vp0, vt0, vc2);
127     vp1 = _mm512_fmadd_ps(vp1, vt1, vc2);
128     vp2 = _mm512_fmadd_ps(vp2, vt2, vc2);
129     vp3 = _mm512_fmadd_ps(vp3, vt3, vc2);
130     vp4 = _mm512_fmadd_ps(vp4, vt4, vc2);
131     vp5 = _mm512_fmadd_ps(vp5, vt5, vc2);
132     vp6 = _mm512_fmadd_ps(vp6, vt6, vc2);
133     vp7 = _mm512_fmadd_ps(vp7, vt7, vc2);
134     vp8 = _mm512_fmadd_ps(vp8, vt8, vc2);
135     vp9 = _mm512_fmadd_ps(vp9, vt9, vc2);
136 
137     vp0 = _mm512_fmadd_ps(vp0, vt0, vc1);
138     vp1 = _mm512_fmadd_ps(vp1, vt1, vc1);
139     vp2 = _mm512_fmadd_ps(vp2, vt2, vc1);
140     vp3 = _mm512_fmadd_ps(vp3, vt3, vc1);
141     vp4 = _mm512_fmadd_ps(vp4, vt4, vc1);
142     vp5 = _mm512_fmadd_ps(vp5, vt5, vc1);
143     vp6 = _mm512_fmadd_ps(vp6, vt6, vc1);
144     vp7 = _mm512_fmadd_ps(vp7, vt7, vc1);
145     vp8 = _mm512_fmadd_ps(vp8, vt8, vc1);
146     vp9 = _mm512_fmadd_ps(vp9, vt9, vc1);
147 
148     vp0 = _mm512_fmadd_ps(vp0, vt0, vc0);
149     vp1 = _mm512_fmadd_ps(vp1, vt1, vc0);
150     vp2 = _mm512_fmadd_ps(vp2, vt2, vc0);
151     vp3 = _mm512_fmadd_ps(vp3, vt3, vc0);
152     vp4 = _mm512_fmadd_ps(vp4, vt4, vc0);
153     vp5 = _mm512_fmadd_ps(vp5, vt5, vc0);
154     vp6 = _mm512_fmadd_ps(vp6, vt6, vc0);
155     vp7 = _mm512_fmadd_ps(vp7, vt7, vc0);
156     vp8 = _mm512_fmadd_ps(vp8, vt8, vc0);
157     vp9 = _mm512_fmadd_ps(vp9, vt9, vc0);
158 
159     // Reconstruct the final f value:
160     //   f = 2**elements * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
161     //     = 2**elements * p
162     __m512 vf0 = _mm512_scalef_ps(vp0, vn0);
163     __m512 vf1 = _mm512_scalef_ps(vp1, vn1);
164     __m512 vf2 = _mm512_scalef_ps(vp2, vn2);
165     __m512 vf3 = _mm512_scalef_ps(vp3, vn3);
166     __m512 vf4 = _mm512_scalef_ps(vp4, vn4);
167     __m512 vf5 = _mm512_scalef_ps(vp5, vn5);
168     __m512 vf6 = _mm512_scalef_ps(vp6, vn6);
169     __m512 vf7 = _mm512_scalef_ps(vp7, vn7);
170     __m512 vf8 = _mm512_scalef_ps(vp8, vn8);
171     __m512 vf9 = _mm512_scalef_ps(vp9, vn9);
172 
173     // Multiply by scale.
174     vf0 = _mm512_mul_ps(vf0, vscale);
175     vf1 = _mm512_mul_ps(vf1, vscale);
176     vf2 = _mm512_mul_ps(vf2, vscale);
177     vf3 = _mm512_mul_ps(vf3, vscale);
178     vf4 = _mm512_mul_ps(vf4, vscale);
179     vf5 = _mm512_mul_ps(vf5, vscale);
180     vf6 = _mm512_mul_ps(vf6, vscale);
181     vf7 = _mm512_mul_ps(vf7, vscale);
182     vf8 = _mm512_mul_ps(vf8, vscale);
183     vf9 = _mm512_mul_ps(vf9, vscale);
184 
185     // Store 160 (10x16) outputs at a time.
186     _mm512_storeu_ps(output, vf0);
187     _mm512_storeu_ps(output + 0, vf0);
188     _mm512_storeu_ps(output + 16, vf1);
189     _mm512_storeu_ps(output + 32, vf2);
190     _mm512_storeu_ps(output + 48, vf3);
191     _mm512_storeu_ps(output + 64, vf4);
192     _mm512_storeu_ps(output + 80, vf5);
193     _mm512_storeu_ps(output + 96, vf6);
194     _mm512_storeu_ps(output + 112, vf7);
195     _mm512_storeu_ps(output + 128, vf8);
196     _mm512_storeu_ps(output + 144, vf9);
197     output += 160;
198   }
199   for (; elements >= 16 * sizeof(float); elements -= 16 * sizeof(float)) {
200     // Load 16 inputs at a time.
201     const __m512 vi = _mm512_loadu_ps(input);
202     input += 16;
203 
204     // Subtract maximum input x := i - i_max.
205     const __m512 vx = _mm512_sub_ps(vi, vi_max);
206 
207     // Compute reduced argument elements := round(x / log(2)).
208     __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0);
209 
210     // Compute reduced argument t := x - elements * log(2).
211     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
212     __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx);
213     vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt);
214 
215     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
216     __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4);
217     vp = _mm512_fmadd_ps(vp, vt, vc3);
218     vp = _mm512_fmadd_ps(vp, vt, vc2);
219     vp = _mm512_fmadd_ps(vp, vt, vc1);
220     vp = _mm512_fmadd_ps(vp, vt, vc0);
221 
222     // Reconstruct the final f value:
223     //   f = 2**elements * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
224     //     = 2**elements * p
225     __m512 vf = _mm512_scalef_ps(vp, vn);
226 
227     // Multiply by scale.
228     vf = _mm512_mul_ps(vf, vscale);
229 
230     // Store 16 outputs at a time.
231     _mm512_storeu_ps(output, vf);
232     output += 16;
233   }
234   if (elements != 0) {
235     // Prepare mask for valid 32-bit elements (depends on elements).
236     elements >>= 2 /* log2(sizeof(float)) */;
237     const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << elements) - UINT32_C(1)));
238 
239     // Load up to 15 inputs at a time.
240     const __m512 vi = _mm512_mask_loadu_ps(_mm512_undefined_ps(), vmask, input);
241 
242     // Subtract maximum input x := i - i_max.
243     const __m512 vx = _mm512_sub_ps(vi, vi_max);
244 
245     // Compute reduced argument elements := round(x / log(2)).
246     __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0);
247 
248     // Compute reduced argument t := x - elements * log(2).
249     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
250     __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx);
251     vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt);
252 
253     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
254     __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4);
255     vp = _mm512_fmadd_ps(vp, vt, vc3);
256     vp = _mm512_fmadd_ps(vp, vt, vc2);
257     vp = _mm512_fmadd_ps(vp, vt, vc1);
258     vp = _mm512_fmadd_ps(vp, vt, vc0);
259 
260     // Reconstruct the final f value:
261     //   f = 2**elements * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
262     //     = 2**elements * p
263     __m512 vf = _mm512_scalef_ps(vp, vn);
264 
265     // Multiply by scale.
266     vf = _mm512_mul_ps(vf, vscale);
267 
268     // Store up to 15 outputs at a time.
269     _mm512_mask_storeu_ps(output, vmask, vf);
270   }
271 }
272