• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-vscaleextexp/avx2-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <immintrin.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/vscaleextexp.h>
16 
17 
18 static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
19 
xnn_f32_vscaleextexp_ukernel__avx2_p5_x56(size_t elements,const float * x,float * y,float scale_value,float scale_exp)20 void xnn_f32_vscaleextexp_ukernel__avx2_p5_x56(
21     size_t elements,
22     const float* x,
23     float* y,
24     float scale_value,
25     float scale_exp)
26 {
27   assert(elements % sizeof(float) == 0);
28 
29   const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
30   const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f);
31   const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f);
32 
33   // The smallest elements such that 2**elements is considered non-negligible.
34   // For smaller elements, 2**elements is replaced with zero.
35   const __m256 vmin_exponent = _mm256_set1_ps(-127.0f);
36   const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
37 
38   const __m256 vc0 = _mm256_set1_ps(1.0f);
39   const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
40   const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
41   const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
42   const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
43   const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
44 
45   const __m256 vscalev = _mm256_set1_ps(scale_value);
46   const __m256 vscalee = _mm256_set1_ps(scale_exp);
47 
48   for (; elements >= 56 * sizeof(float); elements -= 56 * sizeof(float)) {
49     // Load 56 (7x8) inputs at a time.
50     const __m256 vx0 = _mm256_loadu_ps(x);
51     const __m256 vx1 = _mm256_loadu_ps(x + 8);
52     const __m256 vx2 = _mm256_loadu_ps(x + 16);
53     const __m256 vx3 = _mm256_loadu_ps(x + 24);
54     const __m256 vx4 = _mm256_loadu_ps(x + 32);
55     const __m256 vx5 = _mm256_loadu_ps(x + 40);
56     const __m256 vx6 = _mm256_loadu_ps(x + 48);
57     x += 56;
58 
59     // Compute reduced argument elements := round(x / log(2)).
60     const __m256 vn0 = _mm256_round_ps(_mm256_mul_ps(vx0, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
61     const __m256 vn1 = _mm256_round_ps(_mm256_mul_ps(vx1, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
62     const __m256 vn2 = _mm256_round_ps(_mm256_mul_ps(vx2, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
63     const __m256 vn3 = _mm256_round_ps(_mm256_mul_ps(vx3, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
64     const __m256 vn4 = _mm256_round_ps(_mm256_mul_ps(vx4, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
65     const __m256 vn5 = _mm256_round_ps(_mm256_mul_ps(vx5, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
66     const __m256 vn6 = _mm256_round_ps(_mm256_mul_ps(vx6, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
67 
68     // Compute reduced argument t := x - elements * log(2).
69     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
70     __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0);
71     __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1);
72     __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2);
73     __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3);
74     __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4);
75     __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5);
76     __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6);
77 
78     vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0);
79     vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1);
80     vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2);
81     vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3);
82     vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4);
83     vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5);
84     vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6);
85 
86     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
87     __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
88     __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
89     __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
90     __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
91     __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4);
92     __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4);
93     __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4);
94 
95     vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
96     vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
97     vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
98     vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
99     vp4 = _mm256_fmadd_ps(vp4, vt4, vc3);
100     vp5 = _mm256_fmadd_ps(vp5, vt5, vc3);
101     vp6 = _mm256_fmadd_ps(vp6, vt6, vc3);
102 
103     vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
104     vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
105     vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
106     vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
107     vp4 = _mm256_fmadd_ps(vp4, vt4, vc2);
108     vp5 = _mm256_fmadd_ps(vp5, vt5, vc2);
109     vp6 = _mm256_fmadd_ps(vp6, vt6, vc2);
110 
111     vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
112     vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
113     vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
114     vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
115     vp4 = _mm256_fmadd_ps(vp4, vt4, vc1);
116     vp5 = _mm256_fmadd_ps(vp5, vt5, vc1);
117     vp6 = _mm256_fmadd_ps(vp6, vt6, vc1);
118 
119     vp0 = _mm256_fmadd_ps(vp0, vt0, vc0);
120     vp1 = _mm256_fmadd_ps(vp1, vt1, vc0);
121     vp2 = _mm256_fmadd_ps(vp2, vt2, vc0);
122     vp3 = _mm256_fmadd_ps(vp3, vt3, vc0);
123     vp4 = _mm256_fmadd_ps(vp4, vt4, vc0);
124     vp5 = _mm256_fmadd_ps(vp5, vt5, vc0);
125     vp6 = _mm256_fmadd_ps(vp6, vt6, vc0);
126 
127     // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation where
128     //  - vnX is "exponent"
129     //  - vpX is "mantissa"
130     //
131     // exp2(ae) * av * exp2(be) * bv =
132     //   = exp2(ae + be) * (av * bv)
133     __m256 vf0 = _mm256_mul_ps(vp0, vscalev);
134     __m256 vf1 = _mm256_mul_ps(vp1, vscalev);
135     __m256 vf2 = _mm256_mul_ps(vp2, vscalev);
136     __m256 vf3 = _mm256_mul_ps(vp3, vscalev);
137     __m256 vf4 = _mm256_mul_ps(vp4, vscalev);
138     __m256 vf5 = _mm256_mul_ps(vp5, vscalev);
139     __m256 vf6 = _mm256_mul_ps(vp6, vscalev);
140 
141     __m256 ve0 = _mm256_add_ps(vn0, vscalee);
142     __m256 ve1 = _mm256_add_ps(vn1, vscalee);
143     __m256 ve2 = _mm256_add_ps(vn2, vscalee);
144     __m256 ve3 = _mm256_add_ps(vn3, vscalee);
145     __m256 ve4 = _mm256_add_ps(vn4, vscalee);
146     __m256 ve5 = _mm256_add_ps(vn5, vscalee);
147     __m256 ve6 = _mm256_add_ps(vn6, vscalee);
148 
149     // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0.
150     // This replacement is done in two steps:
151     // 1. Clamp minimum e at -127.0.
152     // 2. Map e to scale factor 0.0 when e == -127.0
153     ve0 = _mm256_max_ps(ve0, vmin_exponent);
154     ve1 = _mm256_max_ps(ve1, vmin_exponent);
155     ve2 = _mm256_max_ps(ve2, vmin_exponent);
156     ve3 = _mm256_max_ps(ve3, vmin_exponent);
157     ve4 = _mm256_max_ps(ve4, vmin_exponent);
158     ve5 = _mm256_max_ps(ve5, vmin_exponent);
159     ve6 = _mm256_max_ps(ve6, vmin_exponent);
160 
161     // Convert exponents into scale factors:
162     // - s = exp2(e) when e > -127.0
163     // - s = 0.0 when e <= -127.0
164     const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve0, vmagic_bias)), 23));
165     const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve1, vmagic_bias)), 23));
166     const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve2, vmagic_bias)), 23));
167     const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve3, vmagic_bias)), 23));
168     const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve4, vmagic_bias)), 23));
169     const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve5, vmagic_bias)), 23));
170     const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve6, vmagic_bias)), 23));
171 
172     // Multiply "mantissa" by the scale factor.
173     vf0 = _mm256_mul_ps(vf0, vs0);
174     vf1 = _mm256_mul_ps(vf1, vs1);
175     vf2 = _mm256_mul_ps(vf2, vs2);
176     vf3 = _mm256_mul_ps(vf3, vs3);
177     vf4 = _mm256_mul_ps(vf4, vs4);
178     vf5 = _mm256_mul_ps(vf5, vs5);
179     vf6 = _mm256_mul_ps(vf6, vs6);
180 
181     // Store 56 (7x8) outputs at a time.
182     _mm256_storeu_ps(y, vf0);
183     _mm256_storeu_ps(y + 8, vf1);
184     _mm256_storeu_ps(y + 16, vf2);
185     _mm256_storeu_ps(y + 24, vf3);
186     _mm256_storeu_ps(y + 32, vf4);
187     _mm256_storeu_ps(y + 40, vf5);
188     _mm256_storeu_ps(y + 48, vf6);
189     y += 56;
190   }
191 
192   for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) {
193     // Load 8 inputs at a time.
194     const __m256 vx = _mm256_loadu_ps(x);
195     x += 8;
196 
197     // Compute reduced argument elements := round(x / log(2)).
198     const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
199 
200     // Compute reduced argument t := x - elements * log(2).
201     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
202     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
203     vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
204 
205     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
206     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
207     vp = _mm256_fmadd_ps(vp, vt, vc3);
208     vp = _mm256_fmadd_ps(vp, vt, vc2);
209     vp = _mm256_fmadd_ps(vp, vt, vc1);
210     vp = _mm256_fmadd_ps(vp, vt, vc0);
211 
212     // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation.
213     __m256 vf = _mm256_mul_ps(vp, vscalev);
214     __m256 ve = _mm256_add_ps(vn, vscalee);
215 
216     // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0.
217     ve = _mm256_max_ps(ve, vmin_exponent);
218 
219     // Convert exponents into scale factors.
220     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23));
221 
222     // Multiply "mantissa" by the scale factor.
223     vf = _mm256_mul_ps(vf, vs);
224 
225     // Store 8 results at a time.
226     _mm256_storeu_ps(y, vf);
227     y += 8;
228   }
229   if XNN_UNLIKELY(elements != 0) {
230     assert(elements >= 1 * sizeof(float));
231     assert(elements <= 7 * sizeof(float));
232     const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - elements));
233 
234     // Load up to 7 inputs at a time.
235     const __m256 vx = _mm256_maskload_ps(x, vmask);
236 
237     // Compute reduced argument elements := round(x / log(2)).
238     const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
239 
240     // Compute reduced argument t := x - elements * log(2).
241     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
242     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
243     vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
244 
245     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
246     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
247     vp = _mm256_fmadd_ps(vp, vt, vc3);
248     vp = _mm256_fmadd_ps(vp, vt, vc2);
249     vp = _mm256_fmadd_ps(vp, vt, vc1);
250     vp = _mm256_fmadd_ps(vp, vt, vc0);
251 
252     // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation.
253     __m256 vf = _mm256_mul_ps(vp, vscalev);
254     __m256 ve = _mm256_add_ps(vn, vscalee);
255 
256     // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0.
257     ve = _mm256_max_ps(ve, vmin_exponent);
258 
259     // Convert exponents into scale factors.
260     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23));
261 
262     // Multiply "mantissa" by the scale factor.
263     vf = _mm256_mul_ps(vf, vs);
264 
265     // Store up to 7 inputs at a time.
266     _mm256_maskstore_ps(y, vmask, vf);
267   }
268   _mm256_zeroupper();
269 }
270