• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2020 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #include <assert.h>
7 #include <stddef.h>
8 
9 #include <xnnpack/common.h>
10 #include <xnnpack/math-stubs.h>
11 
12 #include <fp16/bitcasts.h>
13 
14 
15 // Table of exp2(k / 16) values decremented (as integer) by (k << 19), k = 0..15
16 extern XNN_INTERNAL const uint32_t xnn_table_exp2minus_k_over_16[16];
17 
xnn_math_f32_expm1minus__scalar_rr2_lut16_p3(size_t n,const float * input,float * output)18 void xnn_math_f32_expm1minus__scalar_rr2_lut16_p3(
19     size_t n,
20     const float* input,
21     float* output)
22 {
23   assert(n % (4 * sizeof(float)) == 0);
24 
25   // Large number such that ulp(magic bias) == exp2(-4)
26   const float vmagic_bias = 0x1.800000p19f;
27   const float vlog2e = 0x1.715476p+0f;
28   // Mask for the lowest 4 bits
29   const uint32_t vindex_mask = UINT32_C(0xF);
30   // The largest x for which expm1f(x) is saturated at -1.0f.
31   const float vsat_cutoff = -0x1.154246p+4f;
32   // Last 9 bits are zeroes
33   const float vminus_ln2_hi = -0x1.62E400p-1f;
34   const float vminus_ln2_lo = -0x1.7F7D1Cp-20f;
35   // Coefficient of polynomial approximation
36   //   exp(t) - 1 ~ t * (1 + t * (c2 + t * c3))
37   // on [-log(2)/32, log(2)/32]
38   const float vc3 = 0x1.55561Cp-3f;
39   const float vc2 = 0x1.0001ECp-1f;
40   const float vone = 1.0f;
41 
42   for (; n != 0; n -= sizeof(float)) {
43     float vx = *input++;
44 
45     // Compute reduced argument n := round(x / log(2), 4).
46     // We do it by adding a large number (magic bias), which cause rounding of the result to 4 fractional bits, then
47     // subtracing the large number back. The trick with adding large number is valid only within certain bounds
48     // (|x / log(2)| <= 2**18, i.e. |x| <= 0x1.62E43p+17 = 181704.375), but that is acceptable, because inputs x are
49     // restricted to [-17.328680, 0].
50     // Note that addition-subtraction of the large number doesn't cause overflow for inputs in this range.
51     float vn = vx * vlog2e + vmagic_bias;
52 
53     // Create a floating-point number s (scale) such that s := 2**n for valid inputs, i.e. -17.328680 <= x <= 0.0. As n
54     // has 4 fractional bits, we split s == 2**n = 2**int(n) * 2**frac(n). We create s in two steps:
55     // 1. Fetch 2**frac(n) from the table using the 4 low bits of n, as integer. Note that the fetched values are in
56     //    the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
57     // 2. Adjust fecthed value by addition of int(n) to its floating-point exponent. The result is always a normalized
58     //    number, because for -17.328680 <= x <= 0.0 we have -25 <= int(n) <= 0, and thus the adjusted exponent is not
59     //    lower than -25.
60     //
61     // Shift bits 4:12 into 23:31 (position of floating-point exponent).
62     const uint32_t ven = fp32_to_bits(vn) << 19;
63 
64     // Use bits 0:4 bits of n, as integer, as an index for table lookup of l := 2**frac(n).
65     const uint32_t vidx = fp32_to_bits(vn) & vindex_mask;
66     // Adjust exponent of the value l fetched from the table to get the final s value.
67     float vs = fp32_from_bits(xnn_table_exp2minus_k_over_16[vidx] + ven);
68 
69     // Subtract the large number back to get final n := round(x / log(2), 4).
70     vn -= vmagic_bias;
71 
72     // Compute reduced argument t := x - n * log(2).
73     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
74     float vt = vn * vminus_ln2_hi + vx;
75     vt = vn * vminus_ln2_lo + vt;
76 
77     // The function saturates at -1 for large negative inputs: expm1f(x) == -1.0f for x <= sat_cutoff ~= -17.328680.
78     // To guarantee this behaviour, we zero out s (scale) and t (reduced argument) for x <= sat_cutoff.
79     if XNN_UNPREDICTABLE(vx <= vsat_cutoff) {
80       vs = 0.0f;
81       vt = 0.0f;
82     }
83 
84     // Compute degree-3 polynomial approximation for exp(t) - 1 on [-log(2)/32, log(2)/32].
85     //   P(t) = t * (1 + t * (c2 + t * c3)) = t + t * (t * (c2 + t * c3)) = t + t * p
86     float vp = vc3 * vt + vc2;
87     vp *= vt;
88 
89     // Reconstruct the exp(x) - 1 value:
90     //   exp(x) - 1 = s * (1 + t * (1 + t * (c2 + t * c3))) - 1
91     //              = (s - 1) + s * (t + t * p)
92     //              = ((t * s) + (t * s) * p) + (s - 1)
93     vt *= vs;
94     const float vsm1 = vs - vone;
95     vp = vp * vt + vt;
96     const float vf = vp + vsm1;
97 
98     *output++ = vf;
99   }
100 }
101