• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2020 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #include <assert.h>
7 #include <stddef.h>
8 #include <stdint.h>
9 
10 #include <arm_neon.h>
11 
12 #include <xnnpack/math-stubs.h>
13 
14 
xnn_math_f32_roundu__neon_addsub(size_t n,const float * input,float * output)15 void xnn_math_f32_roundu__neon_addsub(
16     size_t n,
17     const float* input,
18     float* output)
19 {
20   assert(n % (4 * sizeof(float)) == 0);
21 
22   // Addition of this number to a floating-point number x cause rounding of the result to an integer. Then this magic
23   // number is subtracted back from the result to get original x rounded to integer. This trick works only for
24   // 0 <= x < 2**24, but all numbers in 2**23 <= x < 2**24 range are integers, so we can further restrict it to
25   // 0 <= x < 2**23. Then the upper bound of the validity interval is conveniently the same as the magic number.
26   const float32x4_t vmagic_number = vmovq_n_f32(0x1.000000p+23f);
27   // Mask for the sign bit of a floating-point number.
28   const uint32x4_t vsign_mask = vmovq_n_u32(UINT32_C(0x80000000));
29   // Unit constant to increment results rounded "wrong way" (i.e. down) in the round-to-nearest-even operation.
30   const float32x4_t vone = vmovq_n_f32(1.0f);
31 
32   for (; n != 0; n -= 4 * sizeof(float)) {
33     const float32x4_t vx = vld1q_f32(input); input += 4;
34 
35     // The rounding trick works only for x >= 0, so we compute absolute value of x, round it, and restore the sign in
36     // the end. This method works for round-to-nearest-even because it is an odd function.
37     const float32x4_t vabsx = vabsq_f32(vx);
38     // Compute bitmask for the bits we want to copy from the rounded abs(x). Other bits will be copied from x.
39     // If abs(x) >= 2**23, we want all bits from x.
40     // If abs(x) < 2**23 or x is NaN, we want all but the sign bit from the rounded abs(x) and the sign bit from x.
41     // Note: we do vcaltq_f32(vmagic_number, vx) instead of vcltq_f32(vmagic_number, vabsx) to reduce dependency chain.
42     const uint32x4_t vrndmask = vorrq_u32(vcaltq_f32(vmagic_number, vx), vsign_mask);
43 
44     // Addition-subtraction trick with the magic number to cause rounding to the nearest-even integer for abs(x).
45     // Note: the result is valid only for 0 <= abs(x) < 2**23.
46     // Note: addition-subtraction implicitly converts SNaN inputs to QNaNs.
47     const float32x4_t vrndabsx = vsubq_f32(vaddq_f32(vabsx, vmagic_number), vmagic_number);
48 
49     // Combine abs(x) rounded via addition-subtraction trick and the input x value.
50     // For abs(x) < 2**23, the result is abs(x) rounded via addition-subtraction trick with the sign of x.
51     // For NaN inputs, the result is x converted to QNaN as a side-effect of addition-subtraction.
52     // For abs(x) >= 2**23, the result is x itself.
53     const float32x4_t vrndx = vbslq_f32(vrndmask, vx, vrndabsx);
54 
55     // Compute bitmask for the bits to copy from the adjusted rounded x. Other bits will be copied from rounded x.
56     // If rounded x < x, we want all but the sign bit from the adjusted rounded x and the sign bit from rounded x (same
57     // as the sign bit of x).
58     // If rounded x >= x or rounded x is NaN (implies x is NaN), we want all bits from rounded x.
59     const uint32x4_t vadjmask = vbicq_u32(vcltq_f32(vrndx, vx), vsign_mask);
60     // Adjust the rounded x value.
61     // The adjusted value is a unit above the rounded-to-nearest-even x value, but is used only if the rounded value is
62     // below x. In these cases, the adjusted value is x rounded up.
63     const float32x4_t vadjrndx = vaddq_f32(vrndx, vone);
64 
65     // Combine the adjusted rounded x and the original rounded to nearest-even x.
66     // For rounded x < x, the result is the absolute value of adjusted rounded-to-nearest-even x with the sign of
67     // rounded-to-nearest-even x (same as sign of x). Propagating the sign of x is important to produce negative zero
68     // for -1.0 < x < -0.5 inputs, where otherwise we would get -1.0 (rounded x) + 1.0 (adjustment) = +0.0.
69     // For rounded x >= x, the result is the rounded-to-nearest-even x.
70     // For NaN inputs, the result is rounded x (same as x converted to QNaN as a side-effect of addition-subtraction).
71     const float32x4_t vy = vbslq_f32(vadjmask, vadjrndx, vrndx);
72 
73     vst1q_f32(output, vy); output += 4;
74   }
75 }
76