1 /*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #ifndef AOM_AV1_COMMON_AV1_COMMON_INT_H_
13 #define AOM_AV1_COMMON_AV1_COMMON_INT_H_
14
15 #include "config/aom_config.h"
16 #include "config/av1_rtcd.h"
17
18 #include "aom/internal/aom_codec_internal.h"
19 #include "aom_util/aom_thread.h"
20 #include "av1/common/alloccommon.h"
21 #include "av1/common/av1_loopfilter.h"
22 #include "av1/common/entropy.h"
23 #include "av1/common/entropymode.h"
24 #include "av1/common/entropymv.h"
25 #include "av1/common/enums.h"
26 #include "av1/common/frame_buffers.h"
27 #include "av1/common/mv.h"
28 #include "av1/common/quant_common.h"
29 #include "av1/common/restoration.h"
30 #include "av1/common/tile_common.h"
31 #include "av1/common/timing.h"
32 #include "av1/common/odintrin.h"
33 #include "av1/encoder/hash_motion.h"
34 #include "aom_dsp/grain_synthesis.h"
35 #include "aom_dsp/grain_table.h"
36 #ifdef __cplusplus
37 extern "C" {
38 #endif
39
40 #if defined(__clang__) && defined(__has_warning)
41 #if __has_feature(cxx_attributes) && __has_warning("-Wimplicit-fallthrough")
42 #define AOM_FALLTHROUGH_INTENDED [[clang::fallthrough]] // NOLINT
43 #endif
44 #elif defined(__GNUC__) && __GNUC__ >= 7
45 #define AOM_FALLTHROUGH_INTENDED __attribute__((fallthrough)) // NOLINT
46 #endif
47
48 #ifndef AOM_FALLTHROUGH_INTENDED
49 #define AOM_FALLTHROUGH_INTENDED \
50 do { \
51 } while (0)
52 #endif
53
54 #define CDEF_MAX_STRENGTHS 16
55
56 /* Constant values while waiting for the sequence header */
57 #define FRAME_ID_LENGTH 15
58 #define DELTA_FRAME_ID_LENGTH 14
59
60 #define FRAME_CONTEXTS (FRAME_BUFFERS + 1)
61 // Extra frame context which is always kept at default values
62 #define FRAME_CONTEXT_DEFAULTS (FRAME_CONTEXTS - 1)
63 #define PRIMARY_REF_BITS 3
64 #define PRIMARY_REF_NONE 7
65
66 #define NUM_PING_PONG_BUFFERS 2
67
68 #define MAX_NUM_TEMPORAL_LAYERS 8
69 #define MAX_NUM_SPATIAL_LAYERS 4
70 /* clang-format off */
71 // clang-format seems to think this is a pointer dereference and not a
72 // multiplication.
73 #define MAX_NUM_OPERATING_POINTS \
74 (MAX_NUM_TEMPORAL_LAYERS * MAX_NUM_SPATIAL_LAYERS)
75 /* clang-format on */
76
77 // TODO(jingning): Turning this on to set up transform coefficient
78 // processing timer.
79 #define TXCOEFF_TIMER 0
80 #define TXCOEFF_COST_TIMER 0
81
82 enum {
83 SINGLE_REFERENCE = 0,
84 COMPOUND_REFERENCE = 1,
85 REFERENCE_MODE_SELECT = 2,
86 REFERENCE_MODES = 3,
87 } UENUM1BYTE(REFERENCE_MODE);
88
89 enum {
90 /**
91 * Frame context updates are disabled
92 */
93 REFRESH_FRAME_CONTEXT_DISABLED,
94 /**
95 * Update frame context to values resulting from backward probability
96 * updates based on entropy/counts in the decoded frame
97 */
98 REFRESH_FRAME_CONTEXT_BACKWARD,
99 } UENUM1BYTE(REFRESH_FRAME_CONTEXT_MODE);
100
101 #define MFMV_STACK_SIZE 3
102 typedef struct {
103 int_mv mfmv0;
104 uint8_t ref_frame_offset;
105 } TPL_MV_REF;
106
107 typedef struct {
108 int_mv mv;
109 MV_REFERENCE_FRAME ref_frame;
110 } MV_REF;
111
112 typedef struct RefCntBuffer {
113 // For a RefCntBuffer, the following are reference-holding variables:
114 // - cm->ref_frame_map[]
115 // - cm->cur_frame
116 // - cm->scaled_ref_buf[] (encoder only)
117 // - pbi->output_frame_index[] (decoder only)
118 // With that definition, 'ref_count' is the number of reference-holding
119 // variables that are currently referencing this buffer.
120 // For example:
121 // - suppose this buffer is at index 'k' in the buffer pool, and
122 // - Total 'n' of the variables / array elements above have value 'k' (that
123 // is, they are pointing to buffer at index 'k').
124 // Then, pool->frame_bufs[k].ref_count = n.
125 int ref_count;
126
127 unsigned int order_hint;
128 unsigned int ref_order_hints[INTER_REFS_PER_FRAME];
129
130 // These variables are used only in encoder and compare the absolute
131 // display order hint to compute the relative distance and overcome
132 // the limitation of get_relative_dist() which returns incorrect
133 // distance when a very old frame is used as a reference.
134 unsigned int display_order_hint;
135 unsigned int ref_display_order_hint[INTER_REFS_PER_FRAME];
136
137 MV_REF *mvs;
138 uint8_t *seg_map;
139 struct segmentation seg;
140 int mi_rows;
141 int mi_cols;
142 // Width and height give the size of the buffer (before any upscaling, unlike
143 // the sizes that can be derived from the buf structure)
144 int width;
145 int height;
146 WarpedMotionParams global_motion[REF_FRAMES];
147 int showable_frame; // frame can be used as show existing frame in future
148 uint8_t film_grain_params_present;
149 aom_film_grain_t film_grain_params;
150 aom_codec_frame_buffer_t raw_frame_buffer;
151 YV12_BUFFER_CONFIG buf;
152 FRAME_TYPE frame_type;
153
154 // This is only used in the encoder but needs to be indexed per ref frame
155 // so it's extremely convenient to keep it here.
156 int interp_filter_selected[SWITCHABLE];
157
158 // Inter frame reference frame delta for loop filter
159 int8_t ref_deltas[REF_FRAMES];
160
161 // 0 = ZERO_MV, MV
162 int8_t mode_deltas[MAX_MODE_LF_DELTAS];
163
164 FRAME_CONTEXT frame_context;
165 } RefCntBuffer;
166
167 typedef struct BufferPool {
168 // Protect BufferPool from being accessed by several FrameWorkers at
169 // the same time during frame parallel decode.
170 // TODO(hkuang): Try to use atomic variable instead of locking the whole pool.
171 // TODO(wtc): Remove this. See
172 // https://chromium-review.googlesource.com/c/webm/libvpx/+/560630.
173 #if CONFIG_MULTITHREAD
174 pthread_mutex_t pool_mutex;
175 #endif
176
177 // Private data associated with the frame buffer callbacks.
178 void *cb_priv;
179
180 aom_get_frame_buffer_cb_fn_t get_fb_cb;
181 aom_release_frame_buffer_cb_fn_t release_fb_cb;
182
183 RefCntBuffer frame_bufs[FRAME_BUFFERS];
184
185 // Frame buffers allocated internally by the codec.
186 InternalFrameBufferList int_frame_buffers;
187 } BufferPool;
188
189 typedef struct {
190 int cdef_damping;
191 int nb_cdef_strengths;
192 int cdef_strengths[CDEF_MAX_STRENGTHS];
193 int cdef_uv_strengths[CDEF_MAX_STRENGTHS];
194 int cdef_bits;
195 } CdefInfo;
196
197 typedef struct {
198 int delta_q_present_flag;
199 // Resolution of delta quant
200 int delta_q_res;
201 int delta_lf_present_flag;
202 // Resolution of delta lf level
203 int delta_lf_res;
204 // This is a flag for number of deltas of loop filter level
205 // 0: use 1 delta, for y_vertical, y_horizontal, u, and v
206 // 1: use separate deltas for each filter level
207 int delta_lf_multi;
208 } DeltaQInfo;
209
210 typedef struct {
211 int enable_order_hint; // 0 - disable order hint, and related tools
212 int order_hint_bits_minus_1; // dist_wtd_comp, ref_frame_mvs,
213 // frame_sign_bias
214 // if 0, enable_dist_wtd_comp and
215 // enable_ref_frame_mvs must be set as 0.
216 int enable_dist_wtd_comp; // 0 - disable dist-wtd compound modes
217 // 1 - enable it
218 int enable_ref_frame_mvs; // 0 - disable ref frame mvs
219 // 1 - enable it
220 } OrderHintInfo;
221
222 // Sequence header structure.
223 // Note: All syntax elements of sequence_header_obu that need to be
224 // bit-identical across multiple sequence headers must be part of this struct,
225 // so that consistency is checked by are_seq_headers_consistent() function.
226 // One exception is the last member 'op_params' that is ignored by
227 // are_seq_headers_consistent() function.
228 typedef struct SequenceHeader {
229 int num_bits_width;
230 int num_bits_height;
231 int max_frame_width;
232 int max_frame_height;
233 uint8_t frame_id_numbers_present_flag;
234 int frame_id_length;
235 int delta_frame_id_length;
236 BLOCK_SIZE sb_size; // Size of the superblock used for this frame
237 int mib_size; // Size of the superblock in units of MI blocks
238 int mib_size_log2; // Log 2 of above.
239
240 OrderHintInfo order_hint_info;
241
242 uint8_t force_screen_content_tools; // 0 - force off
243 // 1 - force on
244 // 2 - adaptive
245 uint8_t still_picture; // Video is a single frame still picture
246 uint8_t reduced_still_picture_hdr; // Use reduced header for still picture
247 uint8_t force_integer_mv; // 0 - Don't force. MV can use subpel
248 // 1 - force to integer
249 // 2 - adaptive
250 uint8_t enable_filter_intra; // enables/disables filterintra
251 uint8_t enable_intra_edge_filter; // enables/disables edge upsampling
252 uint8_t enable_interintra_compound; // enables/disables interintra_compound
253 uint8_t enable_masked_compound; // enables/disables masked compound
254 uint8_t enable_dual_filter; // 0 - disable dual interpolation filter
255 // 1 - enable vert/horz filter selection
256 uint8_t enable_warped_motion; // 0 - disable warp for the sequence
257 // 1 - enable warp for the sequence
258 uint8_t enable_superres; // 0 - Disable superres for the sequence
259 // and no frame level superres flag
260 // 1 - Enable superres for the sequence
261 // enable per-frame superres flag
262 uint8_t enable_cdef; // To turn on/off CDEF
263 uint8_t enable_restoration; // To turn on/off loop restoration
264 BITSTREAM_PROFILE profile;
265
266 // Color config.
267 aom_bit_depth_t bit_depth; // AOM_BITS_8 in profile 0 or 1,
268 // AOM_BITS_10 or AOM_BITS_12 in profile 2 or 3.
269 uint8_t use_highbitdepth; // If true, we need to use 16bit frame buffers.
270 uint8_t monochrome; // Monochorme video
271 aom_color_primaries_t color_primaries;
272 aom_transfer_characteristics_t transfer_characteristics;
273 aom_matrix_coefficients_t matrix_coefficients;
274 int color_range;
275 int subsampling_x; // Chroma subsampling for x
276 int subsampling_y; // Chroma subsampling for y
277 aom_chroma_sample_position_t chroma_sample_position;
278 uint8_t separate_uv_delta_q;
279 uint8_t film_grain_params_present;
280
281 // Operating point info.
282 int operating_points_cnt_minus_1;
283 int operating_point_idc[MAX_NUM_OPERATING_POINTS];
284 int timing_info_present;
285 aom_timing_info_t timing_info;
286 uint8_t decoder_model_info_present_flag;
287 aom_dec_model_info_t decoder_model_info;
288 uint8_t display_model_info_present_flag;
289 AV1_LEVEL seq_level_idx[MAX_NUM_OPERATING_POINTS];
290 uint8_t tier[MAX_NUM_OPERATING_POINTS]; // seq_tier in spec. One bit: 0 or 1.
291
292 // IMPORTANT: the op_params member must be at the end of the struct so that
293 // are_seq_headers_consistent() can be implemented with a memcmp() call.
294 // TODO(urvang): We probably don't need the +1 here.
295 aom_dec_model_op_parameters_t op_params[MAX_NUM_OPERATING_POINTS + 1];
296 } SequenceHeader;
297
298 typedef struct {
299 int skip_mode_allowed;
300 int skip_mode_flag;
301 int ref_frame_idx_0;
302 int ref_frame_idx_1;
303 } SkipModeInfo;
304
305 typedef struct {
306 FRAME_TYPE frame_type;
307 REFERENCE_MODE reference_mode;
308
309 unsigned int order_hint;
310 unsigned int display_order_hint;
311 unsigned int frame_number;
312 SkipModeInfo skip_mode_info;
313 int refresh_frame_flags; // Which ref frames are overwritten by this frame
314 int frame_refs_short_signaling;
315 } CurrentFrame;
316
317 // Struct containing some frame level features.
318 typedef struct {
319 bool disable_cdf_update;
320 bool allow_high_precision_mv;
321 bool cur_frame_force_integer_mv; // 0 the default in AOM, 1 only integer
322 bool allow_screen_content_tools;
323 bool allow_intrabc;
324 bool allow_warped_motion;
325 // Whether to use previous frames' motion vectors for prediction.
326 bool allow_ref_frame_mvs;
327 bool coded_lossless; // frame is fully lossless at the coded resolution.
328 bool all_lossless; // frame is fully lossless at the upscaled resolution.
329 bool reduced_tx_set_used;
330 bool error_resilient_mode;
331 bool switchable_motion_mode;
332 TX_MODE tx_mode;
333 InterpFilter interp_filter;
334 int primary_ref_frame;
335 int byte_alignment;
336 // Flag signaling how frame contexts should be updated at the end of
337 // a frame decode
338 REFRESH_FRAME_CONTEXT_MODE refresh_frame_context;
339 } FeatureFlags;
340
341 // Struct containing params related to tiles.
342 typedef struct CommonTileParams {
343 int cols; // number of tile columns that frame is divided into
344 int rows; // number of tile rows that frame is divided into
345 int max_width_sb; // maximum tile width in superblock units.
346 int max_height_sb; // maximum tile height in superblock units.
347 // Min width of non-rightmost tile in MI units. Only valid if cols > 1.
348 int min_inner_width;
349
350 // If true, tiles are uniformly spaced with power-of-two number of rows and
351 // columns.
352 // If false, tiles have explicitly configured widths and heights.
353 int uniform_spacing;
354
355 // Following members are only valid when uniform_spacing == 1
356 int log2_cols; // log2 of 'cols'.
357 int log2_rows; // log2 of 'rows'.
358 int width; // tile width in MI units
359 int height; // tile height in MI units
360 // End of members that are only valid when uniform_spacing == 1
361
362 // Min num of tile columns possible based on 'max_width_sb' and frame width.
363 int min_log2_cols;
364 // Min num of tile rows possible based on 'max_height_sb' and frame height.
365 int min_log2_rows;
366 // Min num of tile columns possible based on frame width.
367 int max_log2_cols;
368 // Max num of tile columns possible based on frame width.
369 int max_log2_rows;
370 // log2 of min number of tiles (same as min_log2_cols + min_log2_rows).
371 int min_log2;
372 // col_start_sb[i] is the start position of tile column i in superblock units.
373 // valid for 0 <= i <= cols
374 int col_start_sb[MAX_TILE_COLS + 1];
375 // row_start_sb[i] is the start position of tile row i in superblock units.
376 // valid for 0 <= i <= rows
377 int row_start_sb[MAX_TILE_ROWS + 1];
378 // If true, we are using large scale tile mode.
379 unsigned int large_scale;
380 // Only relevant when large_scale == 1.
381 // If true, the independent decoding of a single tile or a section of a frame
382 // is allowed.
383 unsigned int single_tile_decoding;
384 } CommonTileParams;
385
386 // Struct containing params related to MB_MODE_INFO arrays and related info.
387 typedef struct CommonModeInfoParams CommonModeInfoParams;
388 struct CommonModeInfoParams {
389 // Number of rows/cols in the frame in 16 pixel units.
390 // This is computed from frame width and height aligned to a multiple of 8.
391 int mb_rows;
392 int mb_cols;
393 // Total MBs = mb_rows * mb_cols.
394 int MBs;
395
396 // Number of rows/cols in the frame in 4 pixel (MB_MODE_INFO) units.
397 // This is computed from frame width and height aligned to a multiple of 8.
398 int mi_rows;
399 int mi_cols;
400
401 // An array of MB_MODE_INFO structs for every 'mi_alloc_bsize' sized block
402 // in the frame.
403 // Note: This array should be treated like a scratch memory, and should NOT be
404 // accessed directly, in most cases. Please use 'mi_grid_base' array instead.
405 MB_MODE_INFO *mi_alloc;
406 // Number of allocated elements in 'mi_alloc'.
407 int mi_alloc_size;
408 // Stride for 'mi_alloc' array.
409 int mi_alloc_stride;
410 // The minimum block size that each element in 'mi_alloc' can correspond to.
411 // For decoder, this is always BLOCK_4X4.
412 // For encoder, this is currently set to BLOCK_4X4 for resolution < 4k,
413 // and BLOCK_8X8 for resolution >= 4k.
414 BLOCK_SIZE mi_alloc_bsize;
415
416 // Grid of pointers to 4x4 MB_MODE_INFO structs allocated in 'mi_alloc'.
417 // It's possible that:
418 // - Multiple pointers in the grid point to the same element in 'mi_alloc'
419 // (for example, for all 4x4 blocks that belong to the same partition block).
420 // - Some pointers can be NULL (for example, for blocks outside visible area).
421 MB_MODE_INFO **mi_grid_base;
422 // Number of allocated elements in 'mi_grid_base' (and 'tx_type_map' also).
423 int mi_grid_size;
424 // Stride for 'mi_grid_base' (and 'tx_type_map' also).
425 int mi_stride;
426
427 // An array of tx types for each 4x4 block in the frame.
428 // Number of allocated elements is same as 'mi_grid_size', and stride is
429 // same as 'mi_grid_size'. So, indexing into 'tx_type_map' is same as that of
430 // 'mi_grid_base'.
431 TX_TYPE *tx_type_map;
432
433 // Function pointers to allow separate logic for encoder and decoder.
434 void (*free_mi)(struct CommonModeInfoParams *mi_params);
435 void (*setup_mi)(struct CommonModeInfoParams *mi_params);
436 void (*set_mb_mi)(struct CommonModeInfoParams *mi_params, int width,
437 int height);
438 };
439
440 // Parameters related to quantization at the frame level.
441 typedef struct CommonQuantParams CommonQuantParams;
442 struct CommonQuantParams {
443 // Base qindex of the frame in the range 0 to 255.
444 int base_qindex;
445
446 // Delta of qindex (from base_qindex) for Y plane DC coefficient.
447 // Note: y_ac_delta_q is implicitly 0.
448 int y_dc_delta_q;
449
450 // Delta of qindex (from base_qindex) for U plane DC and AC coefficients.
451 int u_dc_delta_q;
452 int v_dc_delta_q;
453
454 // Delta of qindex (from base_qindex) for V plane DC and AC coefficients.
455 // Same as those for U plane if cm->seq_params.separate_uv_delta_q == 0.
456 int u_ac_delta_q;
457 int v_ac_delta_q;
458
459 // Note: The qindex per superblock may have a delta from the qindex obtained
460 // at frame level from parameters above, based on 'cm->delta_q_info'.
461
462 // The dequantizers below are true dequantizers used only in the
463 // dequantization process. They have the same coefficient
464 // shift/scale as TX.
465 int16_t y_dequant_QTX[MAX_SEGMENTS][2];
466 int16_t u_dequant_QTX[MAX_SEGMENTS][2];
467 int16_t v_dequant_QTX[MAX_SEGMENTS][2];
468
469 // Global quant matrix tables
470 const qm_val_t *giqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
471 const qm_val_t *gqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
472
473 // Local quant matrix tables for each frame
474 const qm_val_t *y_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
475 const qm_val_t *u_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
476 const qm_val_t *v_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
477
478 // Flag indicating whether quantization matrices are being used:
479 // - If true, qm_level_y, qm_level_u and qm_level_v indicate the level
480 // indices to be used to access appropriate global quant matrix tables.
481 // - If false, we implicitly use level index 'NUM_QM_LEVELS - 1'.
482 bool using_qmatrix;
483 int qmatrix_level_y;
484 int qmatrix_level_u;
485 int qmatrix_level_v;
486 };
487
488 // Context used for transmitting various symbols in the bistream.
489 typedef struct CommonContexts CommonContexts;
490 struct CommonContexts {
491 // Context used by 'FRAME_CONTEXT.partition_cdf' to transmit partition type.
492 // partition[i][j] is the context for ith tile row, jth mi_col.
493 PARTITION_CONTEXT **partition;
494
495 // Context used to derive context for multiple symbols:
496 // - 'TXB_CTX.txb_skip_ctx' used by 'FRAME_CONTEXT.txb_skip_cdf' to transmit
497 // to transmit skip_txfm flag.
498 // - 'TXB_CTX.dc_sign_ctx' used by 'FRAME_CONTEXT.dc_sign_cdf' to transmit
499 // sign.
500 // entropy[i][j][k] is the context for ith plane, jth tile row, kth mi_col.
501 ENTROPY_CONTEXT **entropy[MAX_MB_PLANE];
502
503 // Context used to derive context for 'FRAME_CONTEXT.txfm_partition_cdf' to
504 // transmit 'is_split' flag to indicate if this transform block should be
505 // split into smaller sub-blocks.
506 // txfm[i][j] is the context for ith tile row, jth mi_col.
507 TXFM_CONTEXT **txfm;
508
509 // Dimensions that were used to allocate the arrays above.
510 // If these dimensions change, the arrays may have to be re-allocated.
511 int num_planes; // Corresponds to av1_num_planes(cm)
512 int num_tile_rows; // Corresponds to cm->tiles.row
513 int num_mi_cols; // Corresponds to cm->mi_params.mi_cols
514 };
515
516 typedef struct AV1Common {
517 // Information about the current frame that is being coded.
518 CurrentFrame current_frame;
519 // Code and details about current error status.
520 struct aom_internal_error_info error;
521
522 // AV1 allows two types of frame scaling operations:
523 // (1) Frame super-resolution: that allows coding a frame at lower resolution
524 // and after decoding the frame, normatively uscales and restores the frame --
525 // inside the coding loop.
526 // (2) Frame resize: that allows coding frame at lower/higher resolution, and
527 // then non-normatively upscale the frame at the time of rendering -- outside
528 // the coding loop.
529 // Hence, the need for 3 types of dimensions.
530
531 // Coded frame dimensions.
532 int width;
533 int height;
534
535 // Rendered frame dimensions, after applying both super-resolution and resize
536 // to the coded frame.
537 // Different from coded dimensions if super-resolution and/or resize are
538 // being used for this frame.
539 int render_width;
540 int render_height;
541
542 // Frame dimensions after applying super-resolution to the coded frame (if
543 // present), but before applying resize.
544 // Larger than the coded dimensions if super-resolution is being used for
545 // this frame.
546 // Different from rendered dimensions if resize is being used for this frame.
547 int superres_upscaled_width;
548 int superres_upscaled_height;
549
550 // The denominator of the superres scale used by this frame.
551 // Note: The numerator is fixed to be SCALE_NUMERATOR.
552 uint8_t superres_scale_denominator;
553
554 // If true, buffer removal times are present.
555 bool buffer_removal_time_present;
556 // buffer_removal_times[op_num] specifies the frame removal time in units of
557 // DecCT clock ticks counted from the removal time of the last random access
558 // point for operating point op_num.
559 // TODO(urvang): We probably don't need the +1 here.
560 uint32_t buffer_removal_times[MAX_NUM_OPERATING_POINTS + 1];
561 // Presentation time of the frame in clock ticks DispCT counted from the
562 // removal time of the last random access point for the operating point that
563 // is being decoded.
564 uint32_t frame_presentation_time;
565
566 // Buffer where previous frame is stored.
567 RefCntBuffer *prev_frame;
568
569 // Buffer into which the current frame will be stored and other related info.
570 // TODO(hkuang): Combine this with cur_buf in macroblockd.
571 RefCntBuffer *cur_frame;
572
573 // For encoder, we have a two-level mapping from reference frame type to the
574 // corresponding buffer in the buffer pool:
575 // * 'remapped_ref_idx[i - 1]' maps reference type 'i' (range: LAST_FRAME ...
576 // EXTREF_FRAME) to a remapped index 'j' (in range: 0 ... REF_FRAMES - 1)
577 // * Later, 'cm->ref_frame_map[j]' maps the remapped index 'j' to a pointer to
578 // the reference counted buffer structure RefCntBuffer, taken from the buffer
579 // pool cm->buffer_pool->frame_bufs.
580 //
581 // LAST_FRAME, ..., EXTREF_FRAME
582 // | |
583 // v v
584 // remapped_ref_idx[LAST_FRAME - 1], ..., remapped_ref_idx[EXTREF_FRAME - 1]
585 // | |
586 // v v
587 // ref_frame_map[], ..., ref_frame_map[]
588 //
589 // Note: INTRA_FRAME always refers to the current frame, so there's no need to
590 // have a remapped index for the same.
591 int remapped_ref_idx[REF_FRAMES];
592
593 // Scale of the current frame with respect to itself.
594 // This is currently used for intra block copy, which behaves like an inter
595 // prediction mode, where the reference frame is the current frame itself.
596 struct scale_factors sf_identity;
597
598 // Scale factors of the reference frame with respect to the current frame.
599 // This is required for generating inter prediction and will be non-identity
600 // for a reference frame, if it has different dimensions than the coded
601 // dimensions of the current frame.
602 struct scale_factors ref_scale_factors[REF_FRAMES];
603
604 // For decoder, ref_frame_map[i] maps reference type 'i' to a pointer to
605 // the buffer in the buffer pool 'cm->buffer_pool.frame_bufs'.
606 // For encoder, ref_frame_map[j] (where j = remapped_ref_idx[i]) maps
607 // remapped reference index 'j' (that is, original reference type 'i') to
608 // a pointer to the buffer in the buffer pool 'cm->buffer_pool.frame_bufs'.
609 RefCntBuffer *ref_frame_map[REF_FRAMES];
610
611 // If true, this frame is actually shown after decoding.
612 // If false, this frame is coded in the bitstream, but not shown. It is only
613 // used as a reference for other frames coded later.
614 int show_frame;
615
616 // If true, this frame can be used as a show-existing frame for other frames
617 // coded later.
618 // When 'show_frame' is true, this is always true for all non-keyframes.
619 // When 'show_frame' is false, this value is transmitted in the bitstream.
620 int showable_frame;
621
622 // If true, show an existing frame coded before, instead of actually coding a
623 // frame. The existing frame comes from one of the existing reference buffers,
624 // as signaled in the bitstream.
625 int show_existing_frame;
626
627 // Whether some features are allowed or not.
628 FeatureFlags features;
629
630 // Params related to MB_MODE_INFO arrays and related info.
631 CommonModeInfoParams mi_params;
632
633 #if CONFIG_ENTROPY_STATS
634 int coef_cdf_category;
635 #endif
636 // Quantization params.
637 CommonQuantParams quant_params;
638
639 // Segmentation info for current frame.
640 struct segmentation seg;
641
642 // Segmentation map for previous frame.
643 uint8_t *last_frame_seg_map;
644
645 // Deblocking filter parameters.
646 loop_filter_info_n lf_info;
647 struct loopfilter lf;
648
649 // Loop Restoration filter parameters.
650 RestorationInfo rst_info[MAX_MB_PLANE]; // Loop Restoration filter info.
651 int32_t *rst_tmpbuf; // Scratch buffer for self-guided restoration filter.
652 RestorationLineBuffers *rlbs; // Line buffers required by loop restoration.
653 YV12_BUFFER_CONFIG rst_frame; // Stores the output of loop restoration.
654
655 // CDEF (Constrained Directional Enhancement Filter) parameters.
656 CdefInfo cdef_info;
657
658 // Parameters for film grain synthesis.
659 aom_film_grain_t film_grain_params;
660
661 // Parameters for delta quantization and delta loop filter level.
662 DeltaQInfo delta_q_info;
663
664 // Global motion parameters for each reference frame.
665 WarpedMotionParams global_motion[REF_FRAMES];
666
667 // Elements part of the sequence header, that are applicable for all the
668 // frames in the video.
669 SequenceHeader seq_params;
670
671 // Current CDFs of all the symbols for the current frame.
672 FRAME_CONTEXT *fc;
673 // Default CDFs used when features.primary_ref_frame = PRIMARY_REF_NONE
674 // (e.g. for a keyframe). These default CDFs are defined by the bitstream and
675 // copied from default CDF tables for each symbol.
676 FRAME_CONTEXT *default_frame_context;
677
678 // Parameters related to tiling.
679 CommonTileParams tiles;
680
681 // External BufferPool passed from outside.
682 BufferPool *buffer_pool;
683
684 // Above context buffers and their sizes.
685 // Note: above contexts are allocated in this struct, as their size is
686 // dependent on frame width, while left contexts are declared and allocated in
687 // MACROBLOCKD struct, as they have a fixed size.
688 CommonContexts above_contexts;
689
690 // When cm->seq_params.frame_id_numbers_present_flag == 1, current and
691 // reference frame IDs are signaled in the bitstream.
692 int current_frame_id;
693 int ref_frame_id[REF_FRAMES];
694
695 // Motion vectors provided by motion field estimation.
696 // tpl_mvs[row * stride + col] stores MV for block at [mi_row, mi_col] where:
697 // mi_row = 2 * row,
698 // mi_col = 2 * col, and
699 // stride = cm->mi_params.mi_stride / 2
700 TPL_MV_REF *tpl_mvs;
701 // Allocated size of 'tpl_mvs' array. Refer to 'ensure_mv_buffer()' function.
702 int tpl_mvs_mem_size;
703 // ref_frame_sign_bias[k] is 1 if relative distance between reference 'k' and
704 // current frame is positive; and 0 otherwise.
705 int ref_frame_sign_bias[REF_FRAMES];
706 // ref_frame_side[k] is 1 if relative distance between reference 'k' and
707 // current frame is positive, -1 if relative distance is 0; and 0 otherwise.
708 // TODO(jingning): This can be combined with sign_bias later.
709 int8_t ref_frame_side[REF_FRAMES];
710
711 // Number of temporal layers: may be > 1 for SVC (scalable vector coding).
712 unsigned int number_temporal_layers;
713 // Temporal layer ID of this frame
714 // (in the range 0 ... (number_temporal_layers - 1)).
715 int temporal_layer_id;
716
717 // Number of spatial layers: may be > 1 for SVC (scalable vector coding).
718 unsigned int number_spatial_layers;
719 // Spatial layer ID of this frame
720 // (in the range 0 ... (number_spatial_layers - 1)).
721 int spatial_layer_id;
722
723 #if TXCOEFF_TIMER
724 int64_t cum_txcoeff_timer;
725 int64_t txcoeff_timer;
726 int txb_count;
727 #endif // TXCOEFF_TIMER
728
729 #if TXCOEFF_COST_TIMER
730 int64_t cum_txcoeff_cost_timer;
731 int64_t txcoeff_cost_timer;
732 int64_t txcoeff_cost_count;
733 #endif // TXCOEFF_COST_TIMER
734
735 #if CONFIG_LPF_MASK
736 int is_decoding;
737 #endif // CONFIG_LPF_MASK
738 } AV1_COMMON;
739
740 // TODO(hkuang): Don't need to lock the whole pool after implementing atomic
741 // frame reference count.
lock_buffer_pool(BufferPool * const pool)742 static void lock_buffer_pool(BufferPool *const pool) {
743 #if CONFIG_MULTITHREAD
744 pthread_mutex_lock(&pool->pool_mutex);
745 #else
746 (void)pool;
747 #endif
748 }
749
unlock_buffer_pool(BufferPool * const pool)750 static void unlock_buffer_pool(BufferPool *const pool) {
751 #if CONFIG_MULTITHREAD
752 pthread_mutex_unlock(&pool->pool_mutex);
753 #else
754 (void)pool;
755 #endif
756 }
757
get_ref_frame(AV1_COMMON * cm,int index)758 static INLINE YV12_BUFFER_CONFIG *get_ref_frame(AV1_COMMON *cm, int index) {
759 if (index < 0 || index >= REF_FRAMES) return NULL;
760 if (cm->ref_frame_map[index] == NULL) return NULL;
761 return &cm->ref_frame_map[index]->buf;
762 }
763
get_free_fb(AV1_COMMON * cm)764 static INLINE int get_free_fb(AV1_COMMON *cm) {
765 RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
766 int i;
767
768 lock_buffer_pool(cm->buffer_pool);
769 for (i = 0; i < FRAME_BUFFERS; ++i)
770 if (frame_bufs[i].ref_count == 0) break;
771
772 if (i != FRAME_BUFFERS) {
773 if (frame_bufs[i].buf.use_external_reference_buffers) {
774 // If this frame buffer's y_buffer, u_buffer, and v_buffer point to the
775 // external reference buffers. Restore the buffer pointers to point to the
776 // internally allocated memory.
777 YV12_BUFFER_CONFIG *ybf = &frame_bufs[i].buf;
778 ybf->y_buffer = ybf->store_buf_adr[0];
779 ybf->u_buffer = ybf->store_buf_adr[1];
780 ybf->v_buffer = ybf->store_buf_adr[2];
781 ybf->use_external_reference_buffers = 0;
782 }
783
784 frame_bufs[i].ref_count = 1;
785 } else {
786 // We should never run out of free buffers. If this assertion fails, there
787 // is a reference leak.
788 assert(0 && "Ran out of free frame buffers. Likely a reference leak.");
789 // Reset i to be INVALID_IDX to indicate no free buffer found.
790 i = INVALID_IDX;
791 }
792
793 unlock_buffer_pool(cm->buffer_pool);
794 return i;
795 }
796
assign_cur_frame_new_fb(AV1_COMMON * const cm)797 static INLINE RefCntBuffer *assign_cur_frame_new_fb(AV1_COMMON *const cm) {
798 // Release the previously-used frame-buffer
799 if (cm->cur_frame != NULL) {
800 --cm->cur_frame->ref_count;
801 cm->cur_frame = NULL;
802 }
803
804 // Assign a new framebuffer
805 const int new_fb_idx = get_free_fb(cm);
806 if (new_fb_idx == INVALID_IDX) return NULL;
807
808 cm->cur_frame = &cm->buffer_pool->frame_bufs[new_fb_idx];
809 cm->cur_frame->buf.buf_8bit_valid = 0;
810 av1_zero(cm->cur_frame->interp_filter_selected);
811 return cm->cur_frame;
812 }
813
814 // Modify 'lhs_ptr' to reference the buffer at 'rhs_ptr', and update the ref
815 // counts accordingly.
assign_frame_buffer_p(RefCntBuffer ** lhs_ptr,RefCntBuffer * rhs_ptr)816 static INLINE void assign_frame_buffer_p(RefCntBuffer **lhs_ptr,
817 RefCntBuffer *rhs_ptr) {
818 RefCntBuffer *const old_ptr = *lhs_ptr;
819 if (old_ptr != NULL) {
820 assert(old_ptr->ref_count > 0);
821 // One less reference to the buffer at 'old_ptr', so decrease ref count.
822 --old_ptr->ref_count;
823 }
824
825 *lhs_ptr = rhs_ptr;
826 // One more reference to the buffer at 'rhs_ptr', so increase ref count.
827 ++rhs_ptr->ref_count;
828 }
829
frame_is_intra_only(const AV1_COMMON * const cm)830 static INLINE int frame_is_intra_only(const AV1_COMMON *const cm) {
831 return cm->current_frame.frame_type == KEY_FRAME ||
832 cm->current_frame.frame_type == INTRA_ONLY_FRAME;
833 }
834
frame_is_sframe(const AV1_COMMON * cm)835 static INLINE int frame_is_sframe(const AV1_COMMON *cm) {
836 return cm->current_frame.frame_type == S_FRAME;
837 }
838
839 // These functions take a reference frame label between LAST_FRAME and
840 // EXTREF_FRAME inclusive. Note that this is different to the indexing
841 // previously used by the frame_refs[] array.
get_ref_frame_map_idx(const AV1_COMMON * const cm,const MV_REFERENCE_FRAME ref_frame)842 static INLINE int get_ref_frame_map_idx(const AV1_COMMON *const cm,
843 const MV_REFERENCE_FRAME ref_frame) {
844 return (ref_frame >= LAST_FRAME && ref_frame <= EXTREF_FRAME)
845 ? cm->remapped_ref_idx[ref_frame - LAST_FRAME]
846 : INVALID_IDX;
847 }
848
get_ref_frame_buf(const AV1_COMMON * const cm,const MV_REFERENCE_FRAME ref_frame)849 static INLINE RefCntBuffer *get_ref_frame_buf(
850 const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
851 const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
852 return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL;
853 }
854
855 // Both const and non-const versions of this function are provided so that it
856 // can be used with a const AV1_COMMON if needed.
get_ref_scale_factors_const(const AV1_COMMON * const cm,const MV_REFERENCE_FRAME ref_frame)857 static INLINE const struct scale_factors *get_ref_scale_factors_const(
858 const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
859 const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
860 return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL;
861 }
862
get_ref_scale_factors(AV1_COMMON * const cm,const MV_REFERENCE_FRAME ref_frame)863 static INLINE struct scale_factors *get_ref_scale_factors(
864 AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
865 const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
866 return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL;
867 }
868
get_primary_ref_frame_buf(const AV1_COMMON * const cm)869 static INLINE RefCntBuffer *get_primary_ref_frame_buf(
870 const AV1_COMMON *const cm) {
871 const int primary_ref_frame = cm->features.primary_ref_frame;
872 if (primary_ref_frame == PRIMARY_REF_NONE) return NULL;
873 const int map_idx = get_ref_frame_map_idx(cm, primary_ref_frame + 1);
874 return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL;
875 }
876
877 // Returns 1 if this frame might allow mvs from some reference frame.
frame_might_allow_ref_frame_mvs(const AV1_COMMON * cm)878 static INLINE int frame_might_allow_ref_frame_mvs(const AV1_COMMON *cm) {
879 return !cm->features.error_resilient_mode &&
880 cm->seq_params.order_hint_info.enable_ref_frame_mvs &&
881 cm->seq_params.order_hint_info.enable_order_hint &&
882 !frame_is_intra_only(cm);
883 }
884
885 // Returns 1 if this frame might use warped_motion
frame_might_allow_warped_motion(const AV1_COMMON * cm)886 static INLINE int frame_might_allow_warped_motion(const AV1_COMMON *cm) {
887 return !cm->features.error_resilient_mode && !frame_is_intra_only(cm) &&
888 cm->seq_params.enable_warped_motion;
889 }
890
ensure_mv_buffer(RefCntBuffer * buf,AV1_COMMON * cm)891 static INLINE void ensure_mv_buffer(RefCntBuffer *buf, AV1_COMMON *cm) {
892 const int buf_rows = buf->mi_rows;
893 const int buf_cols = buf->mi_cols;
894 const CommonModeInfoParams *const mi_params = &cm->mi_params;
895
896 if (buf->mvs == NULL || buf_rows != mi_params->mi_rows ||
897 buf_cols != mi_params->mi_cols) {
898 aom_free(buf->mvs);
899 buf->mi_rows = mi_params->mi_rows;
900 buf->mi_cols = mi_params->mi_cols;
901 CHECK_MEM_ERROR(cm, buf->mvs,
902 (MV_REF *)aom_calloc(((mi_params->mi_rows + 1) >> 1) *
903 ((mi_params->mi_cols + 1) >> 1),
904 sizeof(*buf->mvs)));
905 aom_free(buf->seg_map);
906 CHECK_MEM_ERROR(
907 cm, buf->seg_map,
908 (uint8_t *)aom_calloc(mi_params->mi_rows * mi_params->mi_cols,
909 sizeof(*buf->seg_map)));
910 }
911
912 const int mem_size =
913 ((mi_params->mi_rows + MAX_MIB_SIZE) >> 1) * (mi_params->mi_stride >> 1);
914 int realloc = cm->tpl_mvs == NULL;
915 if (cm->tpl_mvs) realloc |= cm->tpl_mvs_mem_size < mem_size;
916
917 if (realloc) {
918 aom_free(cm->tpl_mvs);
919 CHECK_MEM_ERROR(cm, cm->tpl_mvs,
920 (TPL_MV_REF *)aom_calloc(mem_size, sizeof(*cm->tpl_mvs)));
921 cm->tpl_mvs_mem_size = mem_size;
922 }
923 }
924
925 void cfl_init(CFL_CTX *cfl, const SequenceHeader *seq_params);
926
av1_num_planes(const AV1_COMMON * cm)927 static INLINE int av1_num_planes(const AV1_COMMON *cm) {
928 return cm->seq_params.monochrome ? 1 : MAX_MB_PLANE;
929 }
930
av1_init_above_context(CommonContexts * above_contexts,int num_planes,int tile_row,MACROBLOCKD * xd)931 static INLINE void av1_init_above_context(CommonContexts *above_contexts,
932 int num_planes, int tile_row,
933 MACROBLOCKD *xd) {
934 for (int i = 0; i < num_planes; ++i) {
935 xd->above_entropy_context[i] = above_contexts->entropy[i][tile_row];
936 }
937 xd->above_partition_context = above_contexts->partition[tile_row];
938 xd->above_txfm_context = above_contexts->txfm[tile_row];
939 }
940
av1_init_macroblockd(AV1_COMMON * cm,MACROBLOCKD * xd,tran_low_t * dqcoeff)941 static INLINE void av1_init_macroblockd(AV1_COMMON *cm, MACROBLOCKD *xd,
942 tran_low_t *dqcoeff) {
943 const int num_planes = av1_num_planes(cm);
944 const CommonQuantParams *const quant_params = &cm->quant_params;
945
946 for (int i = 0; i < num_planes; ++i) {
947 xd->plane[i].dqcoeff = dqcoeff;
948
949 if (xd->plane[i].plane_type == PLANE_TYPE_Y) {
950 memcpy(xd->plane[i].seg_dequant_QTX, quant_params->y_dequant_QTX,
951 sizeof(quant_params->y_dequant_QTX));
952 memcpy(xd->plane[i].seg_iqmatrix, quant_params->y_iqmatrix,
953 sizeof(quant_params->y_iqmatrix));
954
955 } else {
956 if (i == AOM_PLANE_U) {
957 memcpy(xd->plane[i].seg_dequant_QTX, quant_params->u_dequant_QTX,
958 sizeof(quant_params->u_dequant_QTX));
959 memcpy(xd->plane[i].seg_iqmatrix, quant_params->u_iqmatrix,
960 sizeof(quant_params->u_iqmatrix));
961 } else {
962 memcpy(xd->plane[i].seg_dequant_QTX, quant_params->v_dequant_QTX,
963 sizeof(quant_params->v_dequant_QTX));
964 memcpy(xd->plane[i].seg_iqmatrix, quant_params->v_iqmatrix,
965 sizeof(quant_params->v_iqmatrix));
966 }
967 }
968 }
969 xd->mi_stride = cm->mi_params.mi_stride;
970 xd->error_info = &cm->error;
971 cfl_init(&xd->cfl, &cm->seq_params);
972 }
973
set_entropy_context(MACROBLOCKD * xd,int mi_row,int mi_col,const int num_planes)974 static INLINE void set_entropy_context(MACROBLOCKD *xd, int mi_row, int mi_col,
975 const int num_planes) {
976 int i;
977 int row_offset = mi_row;
978 int col_offset = mi_col;
979 for (i = 0; i < num_planes; ++i) {
980 struct macroblockd_plane *const pd = &xd->plane[i];
981 // Offset the buffer pointer
982 const BLOCK_SIZE bsize = xd->mi[0]->sb_type;
983 if (pd->subsampling_y && (mi_row & 0x01) && (mi_size_high[bsize] == 1))
984 row_offset = mi_row - 1;
985 if (pd->subsampling_x && (mi_col & 0x01) && (mi_size_wide[bsize] == 1))
986 col_offset = mi_col - 1;
987 int above_idx = col_offset;
988 int left_idx = row_offset & MAX_MIB_MASK;
989 pd->above_entropy_context =
990 &xd->above_entropy_context[i][above_idx >> pd->subsampling_x];
991 pd->left_entropy_context =
992 &xd->left_entropy_context[i][left_idx >> pd->subsampling_y];
993 }
994 }
995
calc_mi_size(int len)996 static INLINE int calc_mi_size(int len) {
997 // len is in mi units. Align to a multiple of SBs.
998 return ALIGN_POWER_OF_TWO(len, MAX_MIB_SIZE_LOG2);
999 }
1000
set_plane_n4(MACROBLOCKD * const xd,int bw,int bh,const int num_planes)1001 static INLINE void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh,
1002 const int num_planes) {
1003 int i;
1004 for (i = 0; i < num_planes; i++) {
1005 xd->plane[i].width = (bw * MI_SIZE) >> xd->plane[i].subsampling_x;
1006 xd->plane[i].height = (bh * MI_SIZE) >> xd->plane[i].subsampling_y;
1007
1008 xd->plane[i].width = AOMMAX(xd->plane[i].width, 4);
1009 xd->plane[i].height = AOMMAX(xd->plane[i].height, 4);
1010 }
1011 }
1012
set_mi_row_col(MACROBLOCKD * xd,const TileInfo * const tile,int mi_row,int bh,int mi_col,int bw,int mi_rows,int mi_cols)1013 static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile,
1014 int mi_row, int bh, int mi_col, int bw,
1015 int mi_rows, int mi_cols) {
1016 xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE);
1017 xd->mb_to_bottom_edge = GET_MV_SUBPEL((mi_rows - bh - mi_row) * MI_SIZE);
1018 xd->mb_to_left_edge = -GET_MV_SUBPEL((mi_col * MI_SIZE));
1019 xd->mb_to_right_edge = GET_MV_SUBPEL((mi_cols - bw - mi_col) * MI_SIZE);
1020
1021 xd->mi_row = mi_row;
1022 xd->mi_col = mi_col;
1023
1024 // Are edges available for intra prediction?
1025 xd->up_available = (mi_row > tile->mi_row_start);
1026
1027 const int ss_x = xd->plane[1].subsampling_x;
1028 const int ss_y = xd->plane[1].subsampling_y;
1029
1030 xd->left_available = (mi_col > tile->mi_col_start);
1031 xd->chroma_up_available = xd->up_available;
1032 xd->chroma_left_available = xd->left_available;
1033 if (ss_x && bw < mi_size_wide[BLOCK_8X8])
1034 xd->chroma_left_available = (mi_col - 1) > tile->mi_col_start;
1035 if (ss_y && bh < mi_size_high[BLOCK_8X8])
1036 xd->chroma_up_available = (mi_row - 1) > tile->mi_row_start;
1037 if (xd->up_available) {
1038 xd->above_mbmi = xd->mi[-xd->mi_stride];
1039 } else {
1040 xd->above_mbmi = NULL;
1041 }
1042
1043 if (xd->left_available) {
1044 xd->left_mbmi = xd->mi[-1];
1045 } else {
1046 xd->left_mbmi = NULL;
1047 }
1048
1049 const int chroma_ref = ((mi_row & 0x01) || !(bh & 0x01) || !ss_y) &&
1050 ((mi_col & 0x01) || !(bw & 0x01) || !ss_x);
1051 xd->is_chroma_ref = chroma_ref;
1052 if (chroma_ref) {
1053 // To help calculate the "above" and "left" chroma blocks, note that the
1054 // current block may cover multiple luma blocks (eg, if partitioned into
1055 // 4x4 luma blocks).
1056 // First, find the top-left-most luma block covered by this chroma block
1057 MB_MODE_INFO **base_mi =
1058 &xd->mi[-(mi_row & ss_y) * xd->mi_stride - (mi_col & ss_x)];
1059
1060 // Then, we consider the luma region covered by the left or above 4x4 chroma
1061 // prediction. We want to point to the chroma reference block in that
1062 // region, which is the bottom-right-most mi unit.
1063 // This leads to the following offsets:
1064 MB_MODE_INFO *chroma_above_mi =
1065 xd->chroma_up_available ? base_mi[-xd->mi_stride + ss_x] : NULL;
1066 xd->chroma_above_mbmi = chroma_above_mi;
1067
1068 MB_MODE_INFO *chroma_left_mi =
1069 xd->chroma_left_available ? base_mi[ss_y * xd->mi_stride - 1] : NULL;
1070 xd->chroma_left_mbmi = chroma_left_mi;
1071 }
1072
1073 xd->height = bh;
1074 xd->width = bw;
1075 xd->is_sec_rect = 0;
1076 if (xd->width < xd->height) {
1077 // Only mark is_sec_rect as 1 for the last block.
1078 // For PARTITION_VERT_4, it would be (0, 0, 0, 1);
1079 // For other partitions, it would be (0, 1).
1080 if (!((mi_col + xd->width) & (xd->height - 1))) xd->is_sec_rect = 1;
1081 }
1082
1083 if (xd->width > xd->height)
1084 if (mi_row & (xd->width - 1)) xd->is_sec_rect = 1;
1085 }
1086
get_y_mode_cdf(FRAME_CONTEXT * tile_ctx,const MB_MODE_INFO * above_mi,const MB_MODE_INFO * left_mi)1087 static INLINE aom_cdf_prob *get_y_mode_cdf(FRAME_CONTEXT *tile_ctx,
1088 const MB_MODE_INFO *above_mi,
1089 const MB_MODE_INFO *left_mi) {
1090 const PREDICTION_MODE above = av1_above_block_mode(above_mi);
1091 const PREDICTION_MODE left = av1_left_block_mode(left_mi);
1092 const int above_ctx = intra_mode_context[above];
1093 const int left_ctx = intra_mode_context[left];
1094 return tile_ctx->kf_y_cdf[above_ctx][left_ctx];
1095 }
1096
update_partition_context(MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE subsize,BLOCK_SIZE bsize)1097 static INLINE void update_partition_context(MACROBLOCKD *xd, int mi_row,
1098 int mi_col, BLOCK_SIZE subsize,
1099 BLOCK_SIZE bsize) {
1100 PARTITION_CONTEXT *const above_ctx = xd->above_partition_context + mi_col;
1101 PARTITION_CONTEXT *const left_ctx =
1102 xd->left_partition_context + (mi_row & MAX_MIB_MASK);
1103
1104 const int bw = mi_size_wide[bsize];
1105 const int bh = mi_size_high[bsize];
1106 memset(above_ctx, partition_context_lookup[subsize].above, bw);
1107 memset(left_ctx, partition_context_lookup[subsize].left, bh);
1108 }
1109
is_chroma_reference(int mi_row,int mi_col,BLOCK_SIZE bsize,int subsampling_x,int subsampling_y)1110 static INLINE int is_chroma_reference(int mi_row, int mi_col, BLOCK_SIZE bsize,
1111 int subsampling_x, int subsampling_y) {
1112 assert(bsize < BLOCK_SIZES_ALL);
1113 const int bw = mi_size_wide[bsize];
1114 const int bh = mi_size_high[bsize];
1115 int ref_pos = ((mi_row & 0x01) || !(bh & 0x01) || !subsampling_y) &&
1116 ((mi_col & 0x01) || !(bw & 0x01) || !subsampling_x);
1117 return ref_pos;
1118 }
1119
cdf_element_prob(const aom_cdf_prob * cdf,size_t element)1120 static INLINE aom_cdf_prob cdf_element_prob(const aom_cdf_prob *cdf,
1121 size_t element) {
1122 assert(cdf != NULL);
1123 return (element > 0 ? cdf[element - 1] : CDF_PROB_TOP) - cdf[element];
1124 }
1125
partition_gather_horz_alike(aom_cdf_prob * out,const aom_cdf_prob * const in,BLOCK_SIZE bsize)1126 static INLINE void partition_gather_horz_alike(aom_cdf_prob *out,
1127 const aom_cdf_prob *const in,
1128 BLOCK_SIZE bsize) {
1129 (void)bsize;
1130 out[0] = CDF_PROB_TOP;
1131 out[0] -= cdf_element_prob(in, PARTITION_HORZ);
1132 out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
1133 out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
1134 out[0] -= cdf_element_prob(in, PARTITION_HORZ_B);
1135 out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
1136 if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_HORZ_4);
1137 out[0] = AOM_ICDF(out[0]);
1138 out[1] = AOM_ICDF(CDF_PROB_TOP);
1139 }
1140
partition_gather_vert_alike(aom_cdf_prob * out,const aom_cdf_prob * const in,BLOCK_SIZE bsize)1141 static INLINE void partition_gather_vert_alike(aom_cdf_prob *out,
1142 const aom_cdf_prob *const in,
1143 BLOCK_SIZE bsize) {
1144 (void)bsize;
1145 out[0] = CDF_PROB_TOP;
1146 out[0] -= cdf_element_prob(in, PARTITION_VERT);
1147 out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
1148 out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
1149 out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
1150 out[0] -= cdf_element_prob(in, PARTITION_VERT_B);
1151 if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_VERT_4);
1152 out[0] = AOM_ICDF(out[0]);
1153 out[1] = AOM_ICDF(CDF_PROB_TOP);
1154 }
1155
update_ext_partition_context(MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE subsize,BLOCK_SIZE bsize,PARTITION_TYPE partition)1156 static INLINE void update_ext_partition_context(MACROBLOCKD *xd, int mi_row,
1157 int mi_col, BLOCK_SIZE subsize,
1158 BLOCK_SIZE bsize,
1159 PARTITION_TYPE partition) {
1160 if (bsize >= BLOCK_8X8) {
1161 const int hbs = mi_size_wide[bsize] / 2;
1162 BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT);
1163 switch (partition) {
1164 case PARTITION_SPLIT:
1165 if (bsize != BLOCK_8X8) break;
1166 AOM_FALLTHROUGH_INTENDED;
1167 case PARTITION_NONE:
1168 case PARTITION_HORZ:
1169 case PARTITION_VERT:
1170 case PARTITION_HORZ_4:
1171 case PARTITION_VERT_4:
1172 update_partition_context(xd, mi_row, mi_col, subsize, bsize);
1173 break;
1174 case PARTITION_HORZ_A:
1175 update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
1176 update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize);
1177 break;
1178 case PARTITION_HORZ_B:
1179 update_partition_context(xd, mi_row, mi_col, subsize, subsize);
1180 update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize);
1181 break;
1182 case PARTITION_VERT_A:
1183 update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
1184 update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize);
1185 break;
1186 case PARTITION_VERT_B:
1187 update_partition_context(xd, mi_row, mi_col, subsize, subsize);
1188 update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize);
1189 break;
1190 default: assert(0 && "Invalid partition type");
1191 }
1192 }
1193 }
1194
partition_plane_context(const MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE bsize)1195 static INLINE int partition_plane_context(const MACROBLOCKD *xd, int mi_row,
1196 int mi_col, BLOCK_SIZE bsize) {
1197 const PARTITION_CONTEXT *above_ctx = xd->above_partition_context + mi_col;
1198 const PARTITION_CONTEXT *left_ctx =
1199 xd->left_partition_context + (mi_row & MAX_MIB_MASK);
1200 // Minimum partition point is 8x8. Offset the bsl accordingly.
1201 const int bsl = mi_size_wide_log2[bsize] - mi_size_wide_log2[BLOCK_8X8];
1202 int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1;
1203
1204 assert(mi_size_wide_log2[bsize] == mi_size_high_log2[bsize]);
1205 assert(bsl >= 0);
1206
1207 return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
1208 }
1209
1210 // Return the number of elements in the partition CDF when
1211 // partitioning the (square) block with luma block size of bsize.
partition_cdf_length(BLOCK_SIZE bsize)1212 static INLINE int partition_cdf_length(BLOCK_SIZE bsize) {
1213 if (bsize <= BLOCK_8X8)
1214 return PARTITION_TYPES;
1215 else if (bsize == BLOCK_128X128)
1216 return EXT_PARTITION_TYPES - 2;
1217 else
1218 return EXT_PARTITION_TYPES;
1219 }
1220
max_block_wide(const MACROBLOCKD * xd,BLOCK_SIZE bsize,int plane)1221 static INLINE int max_block_wide(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1222 int plane) {
1223 assert(bsize < BLOCK_SIZES_ALL);
1224 int max_blocks_wide = block_size_wide[bsize];
1225
1226 if (xd->mb_to_right_edge < 0) {
1227 const struct macroblockd_plane *const pd = &xd->plane[plane];
1228 max_blocks_wide += xd->mb_to_right_edge >> (3 + pd->subsampling_x);
1229 }
1230
1231 // Scale the width in the transform block unit.
1232 return max_blocks_wide >> MI_SIZE_LOG2;
1233 }
1234
max_block_high(const MACROBLOCKD * xd,BLOCK_SIZE bsize,int plane)1235 static INLINE int max_block_high(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1236 int plane) {
1237 int max_blocks_high = block_size_high[bsize];
1238
1239 if (xd->mb_to_bottom_edge < 0) {
1240 const struct macroblockd_plane *const pd = &xd->plane[plane];
1241 max_blocks_high += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y);
1242 }
1243
1244 // Scale the height in the transform block unit.
1245 return max_blocks_high >> MI_SIZE_LOG2;
1246 }
1247
av1_zero_above_context(AV1_COMMON * const cm,const MACROBLOCKD * xd,int mi_col_start,int mi_col_end,const int tile_row)1248 static INLINE void av1_zero_above_context(AV1_COMMON *const cm,
1249 const MACROBLOCKD *xd,
1250 int mi_col_start, int mi_col_end,
1251 const int tile_row) {
1252 const SequenceHeader *const seq_params = &cm->seq_params;
1253 const int num_planes = av1_num_planes(cm);
1254 const int width = mi_col_end - mi_col_start;
1255 const int aligned_width =
1256 ALIGN_POWER_OF_TWO(width, seq_params->mib_size_log2);
1257 const int offset_y = mi_col_start;
1258 const int width_y = aligned_width;
1259 const int offset_uv = offset_y >> seq_params->subsampling_x;
1260 const int width_uv = width_y >> seq_params->subsampling_x;
1261 CommonContexts *const above_contexts = &cm->above_contexts;
1262
1263 av1_zero_array(above_contexts->entropy[0][tile_row] + offset_y, width_y);
1264 if (num_planes > 1) {
1265 if (above_contexts->entropy[1][tile_row] &&
1266 above_contexts->entropy[2][tile_row]) {
1267 av1_zero_array(above_contexts->entropy[1][tile_row] + offset_uv,
1268 width_uv);
1269 av1_zero_array(above_contexts->entropy[2][tile_row] + offset_uv,
1270 width_uv);
1271 } else {
1272 aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
1273 "Invalid value of planes");
1274 }
1275 }
1276
1277 av1_zero_array(above_contexts->partition[tile_row] + mi_col_start,
1278 aligned_width);
1279
1280 memset(above_contexts->txfm[tile_row] + mi_col_start,
1281 tx_size_wide[TX_SIZES_LARGEST], aligned_width * sizeof(TXFM_CONTEXT));
1282 }
1283
av1_zero_left_context(MACROBLOCKD * const xd)1284 static INLINE void av1_zero_left_context(MACROBLOCKD *const xd) {
1285 av1_zero(xd->left_entropy_context);
1286 av1_zero(xd->left_partition_context);
1287
1288 memset(xd->left_txfm_context_buffer, tx_size_high[TX_SIZES_LARGEST],
1289 sizeof(xd->left_txfm_context_buffer));
1290 }
1291
1292 // Disable array-bounds checks as the TX_SIZE enum contains values larger than
1293 // TX_SIZES_ALL (TX_INVALID) which make extending the array as a workaround
1294 // infeasible. The assert is enough for static analysis and this or other tools
1295 // asan, valgrind would catch oob access at runtime.
1296 #if defined(__GNUC__) && __GNUC__ >= 4
1297 #pragma GCC diagnostic ignored "-Warray-bounds"
1298 #endif
1299
1300 #if defined(__GNUC__) && __GNUC__ >= 4
1301 #pragma GCC diagnostic warning "-Warray-bounds"
1302 #endif
1303
set_txfm_ctx(TXFM_CONTEXT * txfm_ctx,uint8_t txs,int len)1304 static INLINE void set_txfm_ctx(TXFM_CONTEXT *txfm_ctx, uint8_t txs, int len) {
1305 int i;
1306 for (i = 0; i < len; ++i) txfm_ctx[i] = txs;
1307 }
1308
set_txfm_ctxs(TX_SIZE tx_size,int n4_w,int n4_h,int skip,const MACROBLOCKD * xd)1309 static INLINE void set_txfm_ctxs(TX_SIZE tx_size, int n4_w, int n4_h, int skip,
1310 const MACROBLOCKD *xd) {
1311 uint8_t bw = tx_size_wide[tx_size];
1312 uint8_t bh = tx_size_high[tx_size];
1313
1314 if (skip) {
1315 bw = n4_w * MI_SIZE;
1316 bh = n4_h * MI_SIZE;
1317 }
1318
1319 set_txfm_ctx(xd->above_txfm_context, bw, n4_w);
1320 set_txfm_ctx(xd->left_txfm_context, bh, n4_h);
1321 }
1322
get_mi_grid_idx(const CommonModeInfoParams * const mi_params,int mi_row,int mi_col)1323 static INLINE int get_mi_grid_idx(const CommonModeInfoParams *const mi_params,
1324 int mi_row, int mi_col) {
1325 return mi_row * mi_params->mi_stride + mi_col;
1326 }
1327
get_alloc_mi_idx(const CommonModeInfoParams * const mi_params,int mi_row,int mi_col)1328 static INLINE int get_alloc_mi_idx(const CommonModeInfoParams *const mi_params,
1329 int mi_row, int mi_col) {
1330 const int mi_alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize];
1331 const int mi_alloc_row = mi_row / mi_alloc_size_1d;
1332 const int mi_alloc_col = mi_col / mi_alloc_size_1d;
1333
1334 return mi_alloc_row * mi_params->mi_alloc_stride + mi_alloc_col;
1335 }
1336
1337 // For this partition block, set pointers in mi_params->mi_grid_base and xd->mi.
set_mi_offsets(const CommonModeInfoParams * const mi_params,MACROBLOCKD * const xd,int mi_row,int mi_col)1338 static INLINE void set_mi_offsets(const CommonModeInfoParams *const mi_params,
1339 MACROBLOCKD *const xd, int mi_row,
1340 int mi_col) {
1341 // 'mi_grid_base' should point to appropriate memory in 'mi'.
1342 const int mi_grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col);
1343 const int mi_alloc_idx = get_alloc_mi_idx(mi_params, mi_row, mi_col);
1344 mi_params->mi_grid_base[mi_grid_idx] = &mi_params->mi_alloc[mi_alloc_idx];
1345 // 'xd->mi' should point to an offset in 'mi_grid_base';
1346 xd->mi = mi_params->mi_grid_base + mi_grid_idx;
1347 // 'xd->tx_type_map' should point to an offset in 'mi_params->tx_type_map'.
1348 xd->tx_type_map = mi_params->tx_type_map + mi_grid_idx;
1349 xd->tx_type_map_stride = mi_params->mi_stride;
1350 }
1351
txfm_partition_update(TXFM_CONTEXT * above_ctx,TXFM_CONTEXT * left_ctx,TX_SIZE tx_size,TX_SIZE txb_size)1352 static INLINE void txfm_partition_update(TXFM_CONTEXT *above_ctx,
1353 TXFM_CONTEXT *left_ctx,
1354 TX_SIZE tx_size, TX_SIZE txb_size) {
1355 BLOCK_SIZE bsize = txsize_to_bsize[txb_size];
1356 int bh = mi_size_high[bsize];
1357 int bw = mi_size_wide[bsize];
1358 uint8_t txw = tx_size_wide[tx_size];
1359 uint8_t txh = tx_size_high[tx_size];
1360 int i;
1361 for (i = 0; i < bh; ++i) left_ctx[i] = txh;
1362 for (i = 0; i < bw; ++i) above_ctx[i] = txw;
1363 }
1364
get_sqr_tx_size(int tx_dim)1365 static INLINE TX_SIZE get_sqr_tx_size(int tx_dim) {
1366 switch (tx_dim) {
1367 case 128:
1368 case 64: return TX_64X64; break;
1369 case 32: return TX_32X32; break;
1370 case 16: return TX_16X16; break;
1371 case 8: return TX_8X8; break;
1372 default: return TX_4X4;
1373 }
1374 }
1375
get_tx_size(int width,int height)1376 static INLINE TX_SIZE get_tx_size(int width, int height) {
1377 if (width == height) {
1378 return get_sqr_tx_size(width);
1379 }
1380 if (width < height) {
1381 if (width + width == height) {
1382 switch (width) {
1383 case 4: return TX_4X8; break;
1384 case 8: return TX_8X16; break;
1385 case 16: return TX_16X32; break;
1386 case 32: return TX_32X64; break;
1387 }
1388 } else {
1389 switch (width) {
1390 case 4: return TX_4X16; break;
1391 case 8: return TX_8X32; break;
1392 case 16: return TX_16X64; break;
1393 }
1394 }
1395 } else {
1396 if (height + height == width) {
1397 switch (height) {
1398 case 4: return TX_8X4; break;
1399 case 8: return TX_16X8; break;
1400 case 16: return TX_32X16; break;
1401 case 32: return TX_64X32; break;
1402 }
1403 } else {
1404 switch (height) {
1405 case 4: return TX_16X4; break;
1406 case 8: return TX_32X8; break;
1407 case 16: return TX_64X16; break;
1408 }
1409 }
1410 }
1411 assert(0);
1412 return TX_4X4;
1413 }
1414
txfm_partition_context(const TXFM_CONTEXT * const above_ctx,const TXFM_CONTEXT * const left_ctx,BLOCK_SIZE bsize,TX_SIZE tx_size)1415 static INLINE int txfm_partition_context(const TXFM_CONTEXT *const above_ctx,
1416 const TXFM_CONTEXT *const left_ctx,
1417 BLOCK_SIZE bsize, TX_SIZE tx_size) {
1418 const uint8_t txw = tx_size_wide[tx_size];
1419 const uint8_t txh = tx_size_high[tx_size];
1420 const int above = *above_ctx < txw;
1421 const int left = *left_ctx < txh;
1422 int category = TXFM_PARTITION_CONTEXTS;
1423
1424 // dummy return, not used by others.
1425 if (tx_size <= TX_4X4) return 0;
1426
1427 TX_SIZE max_tx_size =
1428 get_sqr_tx_size(AOMMAX(block_size_wide[bsize], block_size_high[bsize]));
1429
1430 if (max_tx_size >= TX_8X8) {
1431 category =
1432 (txsize_sqr_up_map[tx_size] != max_tx_size && max_tx_size > TX_8X8) +
1433 (TX_SIZES - 1 - max_tx_size) * 2;
1434 }
1435 assert(category != TXFM_PARTITION_CONTEXTS);
1436 return category * 3 + above + left;
1437 }
1438
1439 // Compute the next partition in the direction of the sb_type stored in the mi
1440 // array, starting with bsize.
get_partition(const AV1_COMMON * const cm,int mi_row,int mi_col,BLOCK_SIZE bsize)1441 static INLINE PARTITION_TYPE get_partition(const AV1_COMMON *const cm,
1442 int mi_row, int mi_col,
1443 BLOCK_SIZE bsize) {
1444 const CommonModeInfoParams *const mi_params = &cm->mi_params;
1445 if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols)
1446 return PARTITION_INVALID;
1447
1448 const int offset = mi_row * mi_params->mi_stride + mi_col;
1449 MB_MODE_INFO **mi = mi_params->mi_grid_base + offset;
1450 const BLOCK_SIZE subsize = mi[0]->sb_type;
1451
1452 if (subsize == bsize) return PARTITION_NONE;
1453
1454 const int bhigh = mi_size_high[bsize];
1455 const int bwide = mi_size_wide[bsize];
1456 const int sshigh = mi_size_high[subsize];
1457 const int sswide = mi_size_wide[subsize];
1458
1459 if (bsize > BLOCK_8X8 && mi_row + bwide / 2 < mi_params->mi_rows &&
1460 mi_col + bhigh / 2 < mi_params->mi_cols) {
1461 // In this case, the block might be using an extended partition
1462 // type.
1463 const MB_MODE_INFO *const mbmi_right = mi[bwide / 2];
1464 const MB_MODE_INFO *const mbmi_below = mi[bhigh / 2 * mi_params->mi_stride];
1465
1466 if (sswide == bwide) {
1467 // Smaller height but same width. Is PARTITION_HORZ_4, PARTITION_HORZ or
1468 // PARTITION_HORZ_B. To distinguish the latter two, check if the lower
1469 // half was split.
1470 if (sshigh * 4 == bhigh) return PARTITION_HORZ_4;
1471 assert(sshigh * 2 == bhigh);
1472
1473 if (mbmi_below->sb_type == subsize)
1474 return PARTITION_HORZ;
1475 else
1476 return PARTITION_HORZ_B;
1477 } else if (sshigh == bhigh) {
1478 // Smaller width but same height. Is PARTITION_VERT_4, PARTITION_VERT or
1479 // PARTITION_VERT_B. To distinguish the latter two, check if the right
1480 // half was split.
1481 if (sswide * 4 == bwide) return PARTITION_VERT_4;
1482 assert(sswide * 2 == bhigh);
1483
1484 if (mbmi_right->sb_type == subsize)
1485 return PARTITION_VERT;
1486 else
1487 return PARTITION_VERT_B;
1488 } else {
1489 // Smaller width and smaller height. Might be PARTITION_SPLIT or could be
1490 // PARTITION_HORZ_A or PARTITION_VERT_A. If subsize isn't halved in both
1491 // dimensions, we immediately know this is a split (which will recurse to
1492 // get to subsize). Otherwise look down and to the right. With
1493 // PARTITION_VERT_A, the right block will have height bhigh; with
1494 // PARTITION_HORZ_A, the lower block with have width bwide. Otherwise
1495 // it's PARTITION_SPLIT.
1496 if (sswide * 2 != bwide || sshigh * 2 != bhigh) return PARTITION_SPLIT;
1497
1498 if (mi_size_wide[mbmi_below->sb_type] == bwide) return PARTITION_HORZ_A;
1499 if (mi_size_high[mbmi_right->sb_type] == bhigh) return PARTITION_VERT_A;
1500
1501 return PARTITION_SPLIT;
1502 }
1503 }
1504 const int vert_split = sswide < bwide;
1505 const int horz_split = sshigh < bhigh;
1506 const int split_idx = (vert_split << 1) | horz_split;
1507 assert(split_idx != 0);
1508
1509 static const PARTITION_TYPE base_partitions[4] = {
1510 PARTITION_INVALID, PARTITION_HORZ, PARTITION_VERT, PARTITION_SPLIT
1511 };
1512
1513 return base_partitions[split_idx];
1514 }
1515
set_sb_size(SequenceHeader * const seq_params,BLOCK_SIZE sb_size)1516 static INLINE void set_sb_size(SequenceHeader *const seq_params,
1517 BLOCK_SIZE sb_size) {
1518 seq_params->sb_size = sb_size;
1519 seq_params->mib_size = mi_size_wide[seq_params->sb_size];
1520 seq_params->mib_size_log2 = mi_size_wide_log2[seq_params->sb_size];
1521 }
1522
1523 // Returns true if the frame is fully lossless at the coded resolution.
1524 // Note: If super-resolution is used, such a frame will still NOT be lossless at
1525 // the upscaled resolution.
is_coded_lossless(const AV1_COMMON * cm,const MACROBLOCKD * xd)1526 static INLINE int is_coded_lossless(const AV1_COMMON *cm,
1527 const MACROBLOCKD *xd) {
1528 int coded_lossless = 1;
1529 if (cm->seg.enabled) {
1530 for (int i = 0; i < MAX_SEGMENTS; ++i) {
1531 if (!xd->lossless[i]) {
1532 coded_lossless = 0;
1533 break;
1534 }
1535 }
1536 } else {
1537 coded_lossless = xd->lossless[0];
1538 }
1539 return coded_lossless;
1540 }
1541
is_valid_seq_level_idx(AV1_LEVEL seq_level_idx)1542 static INLINE int is_valid_seq_level_idx(AV1_LEVEL seq_level_idx) {
1543 return seq_level_idx == SEQ_LEVEL_MAX ||
1544 (seq_level_idx < SEQ_LEVELS &&
1545 // The following levels are currently undefined.
1546 seq_level_idx != SEQ_LEVEL_2_2 && seq_level_idx != SEQ_LEVEL_2_3 &&
1547 seq_level_idx != SEQ_LEVEL_3_2 && seq_level_idx != SEQ_LEVEL_3_3 &&
1548 seq_level_idx != SEQ_LEVEL_4_2 && seq_level_idx != SEQ_LEVEL_4_3 &&
1549 seq_level_idx != SEQ_LEVEL_7_0 && seq_level_idx != SEQ_LEVEL_7_1 &&
1550 seq_level_idx != SEQ_LEVEL_7_2 && seq_level_idx != SEQ_LEVEL_7_3);
1551 }
1552
1553 #ifdef __cplusplus
1554 } // extern "C"
1555 #endif
1556
1557 #endif // AOM_AV1_COMMON_AV1_COMMON_INT_H_
1558