• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* inftrees.c -- generate Huffman trees for efficient decoding
2  * Copyright (C) 1995-2016 Mark Adler
3  * For conditions of distribution and use, see copyright notice in zlib.h
4  */
5 
6 #include "zbuild.h"
7 #include "zutil.h"
8 #include "inftrees.h"
9 
10 #define MAXBITS 15
11 
12 const char PREFIX(inflate_copyright)[] = " inflate 1.2.12.f Copyright 1995-2016 Mark Adler ";
13 /*
14   If you use the zlib library in a product, an acknowledgment is welcome
15   in the documentation of your product. If for some reason you cannot
16   include such an acknowledgment, I would appreciate that you keep this
17   copyright string in the executable of your product.
18  */
19 
20 /*
21    Build a set of tables to decode the provided canonical Huffman code.
22    The code lengths are lens[0..codes-1].  The result starts at *table,
23    whose indices are 0..2^bits-1.  work is a writable array of at least
24    lens shorts, which is used as a work area.  type is the type of code
25    to be generated, CODES, LENS, or DISTS.  On return, zero is success,
26    -1 is an invalid code, and +1 means that ENOUGH isn't enough.  table
27    on return points to the next available entry's address.  bits is the
28    requested root table index bits, and on return it is the actual root
29    table index bits.  It will differ if the request is greater than the
30    longest code or if it is less than the shortest code.
31  */
zng_inflate_table(codetype type,uint16_t * lens,unsigned codes,code ** table,unsigned * bits,uint16_t * work)32 int Z_INTERNAL zng_inflate_table(codetype type, uint16_t *lens, unsigned codes,
33                                 code * *table, unsigned *bits, uint16_t *work) {
34     unsigned len;               /* a code's length in bits */
35     unsigned sym;               /* index of code symbols */
36     unsigned min, max;          /* minimum and maximum code lengths */
37     unsigned root;              /* number of index bits for root table */
38     unsigned curr;              /* number of index bits for current table */
39     unsigned drop;              /* code bits to drop for sub-table */
40     int left;                   /* number of prefix codes available */
41     unsigned used;              /* code entries in table used */
42     unsigned huff;              /* Huffman code */
43     unsigned incr;              /* for incrementing code, index */
44     unsigned fill;              /* index for replicating entries */
45     unsigned low;               /* low bits for current root entry */
46     unsigned mask;              /* mask for low root bits */
47     code here;                  /* table entry for duplication */
48     code *next;                 /* next available space in table */
49     const uint16_t *base;       /* base value table to use */
50     const uint16_t *extra;      /* extra bits table to use */
51     unsigned match;             /* use base and extra for symbol >= match */
52     uint16_t count[MAXBITS+1];  /* number of codes of each length */
53     uint16_t offs[MAXBITS+1];   /* offsets in table for each length */
54     static const uint16_t lbase[31] = { /* Length codes 257..285 base */
55         3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
56         35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
57     static const uint16_t lext[31] = { /* Length codes 257..285 extra */
58         16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18,
59         19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 77, 202};
60     static const uint16_t dbase[32] = { /* Distance codes 0..29 base */
61         1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
62         257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
63         8193, 12289, 16385, 24577, 0, 0};
64     static const uint16_t dext[32] = { /* Distance codes 0..29 extra */
65         16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22,
66         23, 23, 24, 24, 25, 25, 26, 26, 27, 27,
67         28, 28, 29, 29, 64, 64};
68 
69     /*
70        Process a set of code lengths to create a canonical Huffman code.  The
71        code lengths are lens[0..codes-1].  Each length corresponds to the
72        symbols 0..codes-1.  The Huffman code is generated by first sorting the
73        symbols by length from short to long, and retaining the symbol order
74        for codes with equal lengths.  Then the code starts with all zero bits
75        for the first code of the shortest length, and the codes are integer
76        increments for the same length, and zeros are appended as the length
77        increases.  For the deflate format, these bits are stored backwards
78        from their more natural integer increment ordering, and so when the
79        decoding tables are built in the large loop below, the integer codes
80        are incremented backwards.
81 
82        This routine assumes, but does not check, that all of the entries in
83        lens[] are in the range 0..MAXBITS.  The caller must assure this.
84        1..MAXBITS is interpreted as that code length.  zero means that that
85        symbol does not occur in this code.
86 
87        The codes are sorted by computing a count of codes for each length,
88        creating from that a table of starting indices for each length in the
89        sorted table, and then entering the symbols in order in the sorted
90        table.  The sorted table is work[], with that space being provided by
91        the caller.
92 
93        The length counts are used for other purposes as well, i.e. finding
94        the minimum and maximum length codes, determining if there are any
95        codes at all, checking for a valid set of lengths, and looking ahead
96        at length counts to determine sub-table sizes when building the
97        decoding tables.
98      */
99 
100     /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */
101     for (len = 0; len <= MAXBITS; len++)
102         count[len] = 0;
103     for (sym = 0; sym < codes; sym++)
104         count[lens[sym]]++;
105 
106     /* bound code lengths, force root to be within code lengths */
107     root = *bits;
108     for (max = MAXBITS; max >= 1; max--)
109         if (count[max] != 0) break;
110     if (root > max) root = max;
111     if (max == 0) {                     /* no symbols to code at all */
112         here.op = (unsigned char)64;    /* invalid code marker */
113         here.bits = (unsigned char)1;
114         here.val = (uint16_t)0;
115         *(*table)++ = here;             /* make a table to force an error */
116         *(*table)++ = here;
117         *bits = 1;
118         return 0;     /* no symbols, but wait for decoding to report error */
119     }
120     for (min = 1; min < max; min++)
121         if (count[min] != 0) break;
122     if (root < min) root = min;
123 
124     /* check for an over-subscribed or incomplete set of lengths */
125     left = 1;
126     for (len = 1; len <= MAXBITS; len++) {
127         left <<= 1;
128         left -= count[len];
129         if (left < 0) return -1;        /* over-subscribed */
130     }
131     if (left > 0 && (type == CODES || max != 1))
132         return -1;                      /* incomplete set */
133 
134     /* generate offsets into symbol table for each length for sorting */
135     offs[1] = 0;
136     for (len = 1; len < MAXBITS; len++)
137         offs[len + 1] = offs[len] + count[len];
138 
139     /* sort symbols by length, by symbol order within each length */
140     for (sym = 0; sym < codes; sym++)
141         if (lens[sym] != 0) work[offs[lens[sym]]++] = (uint16_t)sym;
142 
143     /*
144        Create and fill in decoding tables.  In this loop, the table being
145        filled is at next and has curr index bits.  The code being used is huff
146        with length len.  That code is converted to an index by dropping drop
147        bits off of the bottom.  For codes where len is less than drop + curr,
148        those top drop + curr - len bits are incremented through all values to
149        fill the table with replicated entries.
150 
151        root is the number of index bits for the root table.  When len exceeds
152        root, sub-tables are created pointed to by the root entry with an index
153        of the low root bits of huff.  This is saved in low to check for when a
154        new sub-table should be started.  drop is zero when the root table is
155        being filled, and drop is root when sub-tables are being filled.
156 
157        When a new sub-table is needed, it is necessary to look ahead in the
158        code lengths to determine what size sub-table is needed.  The length
159        counts are used for this, and so count[] is decremented as codes are
160        entered in the tables.
161 
162        used keeps track of how many table entries have been allocated from the
163        provided *table space.  It is checked for LENS and DIST tables against
164        the constants ENOUGH_LENS and ENOUGH_DISTS to guard against changes in
165        the initial root table size constants.  See the comments in inftrees.h
166        for more information.
167 
168        sym increments through all symbols, and the loop terminates when
169        all codes of length max, i.e. all codes, have been processed.  This
170        routine permits incomplete codes, so another loop after this one fills
171        in the rest of the decoding tables with invalid code markers.
172      */
173 
174     /* set up for code type */
175     switch (type) {
176     case CODES:
177         base = extra = work;    /* dummy value--not used */
178         match = 20;
179         break;
180     case LENS:
181         base = lbase;
182         extra = lext;
183         match = 257;
184         break;
185     default:    /* DISTS */
186         base = dbase;
187         extra = dext;
188         match = 0;
189     }
190 
191     /* initialize state for loop */
192     huff = 0;                   /* starting code */
193     sym = 0;                    /* starting code symbol */
194     len = min;                  /* starting code length */
195     next = *table;              /* current table to fill in */
196     curr = root;                /* current table index bits */
197     drop = 0;                   /* current bits to drop from code for index */
198     low = (unsigned)(-1);       /* trigger new sub-table when len > root */
199     used = 1U << root;          /* use root table entries */
200     mask = used - 1;            /* mask for comparing low */
201 
202     /* check available table space */
203     if ((type == LENS && used > ENOUGH_LENS) ||
204         (type == DISTS && used > ENOUGH_DISTS))
205         return 1;
206 
207     /* process all codes and make table entries */
208     for (;;) {
209         /* create table entry */
210         here.bits = (unsigned char)(len - drop);
211         if (work[sym] + 1U < match) {
212             here.op = (unsigned char)0;
213             here.val = work[sym];
214         } else if (work[sym] >= match) {
215             here.op = (unsigned char)(extra[work[sym] - match]);
216             here.val = base[work[sym] - match];
217         } else {
218             here.op = (unsigned char)(32 + 64);         /* end of block */
219             here.val = 0;
220         }
221 
222         /* replicate for those indices with low len bits equal to huff */
223         incr = 1U << (len - drop);
224         fill = 1U << curr;
225         min = fill;                 /* save offset to next table */
226         do {
227             fill -= incr;
228             next[(huff >> drop) + fill] = here;
229         } while (fill != 0);
230 
231         /* backwards increment the len-bit code huff */
232         incr = 1U << (len - 1);
233         while (huff & incr)
234             incr >>= 1;
235         if (incr != 0) {
236             huff &= incr - 1;
237             huff += incr;
238         } else {
239             huff = 0;
240         }
241 
242         /* go to next symbol, update count, len */
243         sym++;
244         if (--(count[len]) == 0) {
245             if (len == max)
246                 break;
247             len = lens[work[sym]];
248         }
249 
250         /* create new sub-table if needed */
251         if (len > root && (huff & mask) != low) {
252             /* if first time, transition to sub-tables */
253             if (drop == 0)
254                 drop = root;
255 
256             /* increment past last table */
257             next += min;            /* here min is 1 << curr */
258 
259             /* determine length of next table */
260             curr = len - drop;
261             left = (int)(1 << curr);
262             while (curr + drop < max) {
263                 left -= count[curr + drop];
264                 if (left <= 0)
265                     break;
266                 curr++;
267                 left <<= 1;
268             }
269 
270             /* check for enough space */
271             used += 1U << curr;
272             if ((type == LENS && used > ENOUGH_LENS) || (type == DISTS && used > ENOUGH_DISTS))
273                 return 1;
274 
275             /* point entry in root table to sub-table */
276             low = huff & mask;
277             (*table)[low].op = (unsigned char)curr;
278             (*table)[low].bits = (unsigned char)root;
279             (*table)[low].val = (uint16_t)(next - *table);
280         }
281     }
282 
283     /* fill in remaining table entry if code is incomplete (guaranteed to have
284        at most one remaining entry, since if the code is incomplete, the
285        maximum code length that was allowed to get this far is one bit) */
286     if (huff != 0) {
287         here.op = (unsigned char)64;            /* invalid code marker */
288         here.bits = (unsigned char)(len - drop);
289         here.val = (uint16_t)0;
290         next[huff] = here;
291     }
292 
293     /* set return parameters */
294     *table += used;
295     *bits = root;
296     return 0;
297 }
298