/external/libchrome/mojo/public/interfaces/bindings/tests/ |
D | test_structs.mojom | 2 // Use of this source code is governed by a BSD-style license that can be 12 array<Rect>? rects; 33 int8 f1; 55 array<string> f23; 56 array<string?> f24; 57 array<string>? f25; 58 array<string?>? f26; 70 int8 f1 = 100; 118 map<int8, int8> f1; 137 map<string, array<string>> f0; [all …]
|
D | test_unions.mojom | 2 // Use of this source code is governed by a BSD-style license that can be 19 int8 f_int8; 20 int8 f_int8_other; 36 int8 f_int8; 40 array<int8> f_array_int8; 41 map<string, int8> f_map_int8; 44 array<SmallStruct> f_small_structs; 64 int8 f_int8; 70 array<PodUnion>? pod_union_array; 71 array<PodUnion?>? nullable_pod_union_array; [all …]
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_LeftShift.pbtxt | 3 summary: "Elementwise computes the bitwise left-shift of `x` and `y`." 14 dtype_list = [tf.int8, tf.int16, tf.int32, tf.int64] 17 lhs = tf.constant([-1, -5, -3, -14], dtype=dtype) 25 # tf.Tensor([ -32 -5 -128 0], shape=(4,), dtype=int8) 26 # tf.Tensor([ -32 -5 -384 -28672], shape=(4,), dtype=int16) 27 # tf.Tensor([ -32 -5 -384 -28672], shape=(4,), dtype=int32) 28 # tf.Tensor([ -32 -5 -384 -28672], shape=(4,), dtype=int64) 30 lhs = np.array([-2, 64, 101, 32], dtype=np.int8) 31 rhs = np.array([-1, -5, -3, -14], dtype=np.int8) 33 # <tf.Tensor: shape=(4,), dtype=int8, numpy=array([ -2, 64, 101, 32], dtype=int8)>
|
D | api_def_RightShift.pbtxt | 3 summary: "Elementwise computes the bitwise right-shift of `x` and `y`." 17 dtype_list = [tf.int8, tf.int16, tf.int32, tf.int64] 20 lhs = tf.constant([-1, -5, -3, -14], dtype=dtype) 28 # tf.Tensor([-1 -5 -1 -1], shape=(4,), dtype=int8) 29 # tf.Tensor([-1 -5 -1 -1], shape=(4,), dtype=int16) 30 # tf.Tensor([-1 -5 -1 -1], shape=(4,), dtype=int32) 31 # tf.Tensor([-1 -5 -1 -1], shape=(4,), dtype=int64) 33 lhs = np.array([-2, 64, 101, 32], dtype=np.int8) 34 rhs = np.array([-1, -5, -3, -14], dtype=np.int8) 36 # <tf.Tensor: shape=(4,), dtype=int8, numpy=array([ -2, 64, 101, 32], dtype=int8)>
|
/external/tensorflow/tensorflow/python/ops/ |
D | bitwise_ops_test.py | 7 # http://www.apache.org/licenses/LICENSE-2.0 39 dtype_list = [dtypes.int8, dtypes.int16, dtypes.int32, dtypes.int64, 55 dtype_list = [dtypes.int8, dtypes.int16, 58 raw_inputs = [0, 1, -1, 3, -3, 5, -5, 14, -14, 60 2**31 - 1, 2**31, 2**32 - 1, 2**32, -2**32 + 1, -2**32, 61 -2**63 + 1, 2**63 - 1] 67 inputs = np.array(raw_inputs, dtype=dtype.as_numpy_dtype) 76 dtype_list = [dtypes.int8, dtypes.int16, dtypes.int32, dtypes.int64, 96 expected = [dtype.max - x for x in inputs] 101 dtype_list = [np.int8, np.int16, np.int32, np.int64, [all …]
|
/external/tensorflow/tensorflow/lite/python/ |
D | util.py | 8 # http://www.apache.org/licenses/LICENSE-2.0 64 dtypes.int8: _types_pb2.INT8, 82 9: dtypes.int8, 91 dtypes.int8: {dtypes.int8, dtypes.uint8}, 151 len(parts) - 1)) 270 for array in input_arrays: 271 signature.inputs[array.name].name = array.name 272 signature.inputs[array.name].dtype = array.dtype.as_datatype_enum 273 signature.inputs[array.name].tensor_shape.CopyFrom(array.shape.as_proto()) 275 for array in output_arrays: [all …]
|
D | convert.py | 8 # http://www.apache.org/licenses/LICENSE-2.0 23 import enum # pylint: disable=g-bad-import-order 44 _quantized_inference_types = [_types_pb2.QUANTIZED_UINT8, _types_pb2.INT8] 93 # Convert model using only TensorFlow Lite quantized int8 operations. 98 # Convert model using only TensorFlow Lite operations with quantized int8 102 # This quantization mode may be used in models for super-resolution, 103 # audio signal processing or image de-noising. It improves accuracy 129 inference_type=_types_pb2.INT8, 136 disable_per_channel: Bool indicating whether to do per-channel or per-tensor 140 inference_type: Data type for the activations. The default value is int8. [all …]
|
D | lite_v2_test.py | 8 # http://www.apache.org/licenses/LICENSE-2.0 79 @parameterized.named_parameters(('_INT8InputOutput', dtypes.int8), 115 """Convert a single model in a multi-functional model.""" 131 """Convert multiple functions in a multi-functional model.""" 160 yield [np.random.uniform(-1, 1, size=(1, 5, 5, 3)).astype(np.float32)] 198 @parameterized.named_parameters(('_INT8InputOutput', dtypes.int8), 224 ('_INT8InputOutput', False, False, dtypes.int8), 229 ('_IntOnly_INT8InputOutput', True, False, dtypes.int8), 283 ('_INT16Quantize_INT8InputOutput', True, dtypes.int8)) 299 quantized_converter.inference_input_type = dtypes.int8 [all …]
|
D | lite_test.py | 8 # http://www.apache.org/licenses/LICENSE-2.0 310 ('_INT8InputOutput', False, False, dtypes.int8), 313 ('_IntOnly_INT8InputOutput', True, False, dtypes.int8), 316 ('_IntOnly_INT8InputOutputMlirQuant', True, False, dtypes.int8, True), 326 # ceil kernel does not support int8 nor int16 types neither. 330 # ceil kernel does not support int8 nor int16 types neither. 337 np.random.uniform(-1, 1, size=(3)).astype(np.float32), 338 np.random.uniform(-1, 1, size=(3)).astype(np.float32) 375 # Allow float32 for fallback on non-quantizable op. 425 """Convert a model from an intermediate input array.""" [all …]
|
/external/tensorflow/tensorflow/lite/toco/graph_transformations/ |
D | ensure_uint8_weights_safe_for_fast_int8_kernels.cc | 7 http://www.apache.org/licenses/LICENSE-2.0 29 // TLDR: Some of our 8-bit arithmetic operations require uint8 weight values 40 // --allow_nudging_weights_to_use_fast_gemm_kernel. 44 // The present graph transformation implements both the default fatal-erroring 63 // In the multiply-add operation in (10), we first change the 64 // operands’ type from uint8 to int8 (which can be done by 65 // subtracting 128 from the quantized values and zero-points). 66 // Thus the core multiply-add becomes 68 // int32 += int8 * int8. (B.1) 72 // quantized as int8 values, never take the value −128. Hence, [all …]
|
/external/deqp-deps/amber/docs/ |
D | memory_layout.md | 8 For the purposes of this document, all scalars are stored in little-endian. The 18 |------|-------| 19 | int8 | <kbd>[b]</kbd> | 35 |------|-------| 37 | vec3\<float> | <kbd>[bbbb][bbbb][bbbb][----]</kbd> | 39 | vec2\<int8> | <kbd>[bb]</kbd> | 40 | vec3\<int8> | <kbd>[bbb-]</kbd> | 41 | vec4\<int8> | <kbd>[bbbb]</kbd> | 43 | vec3\<int16> | <kbd>[bbbb][bb--]</kbd> | 46 | vec3\<int32> | <kbd>[bbbb][bbbb][bbbb][----]</kbd> | [all …]
|
/external/tensorflow/tensorflow/lite/g3doc/r1/convert/ |
D | cmdline_reference.md | 3 This page is complete reference of command-line flags used by the TensorFlow 6 ## High-level flags 9 files. The flag `--output_file` is always required. Additionally, either 10 `--saved_model_dir`, `--keras_model_file` or `--graph_def_file` is required. 12 * `--output_file`. Type: string. Specifies the full path of the output file. 13 * `--saved_model_dir`. Type: string. Specifies the full path to the directory 15 * `--keras_model_file`. Type: string. Specifies the full path of the HDF5 file 17 * `--graph_def_file`. Type: string. Specifies the full path of the input 20 * `--output_format`. Type: string. Default: `TFLITE`. Specifies the format of 27 `--dump_graphviz_dir` instead to get a final visualization with all [all …]
|
/external/libchrome/mojo/public/tools/bindings/pylib/mojom/generate/ |
D | pack_tests.py | 2 # Use of this source code is governed by a BSD-style license that can be 41 struct.AddField('testfield1', mojom.INT8) 71 (mojom.INT8, mojom.UINT8, mojom.INT32), 78 (mojom.INT8, mojom.INT32, mojom.UINT8), 84 kinds = (mojom.INT8, mojom.INT32, mojom.INT16, mojom.INT8, mojom.INT8) 96 mojom.Array().MakeNullableKind(), 98 mojom.Array(length=5).MakeNullableKind(), 110 (mojom.BOOL, mojom.INT8, mojom.STRING, mojom.UINT8, 114 mojom.UINT64, mojom.Struct('test'), mojom.Array(), 123 struct.AddField('testfield1', mojom.INT8)
|
/external/tensorflow/tensorflow/core/api_def/python_api/ |
D | api_def_Add.pbtxt | 17 <tf.Tensor: shape=(5,), dtype=int32, numpy=array([2, 3, 4, 5, 6], dtype=int32)> 24 <tf.Tensor: shape=(5,), dtype=int32, numpy=array([2, 3, 4, 5, 6], dtype=int32)> 32 numpy=array([ 2, 4, 6, 8, 10], dtype=int32)> 35 non-tensor, the non-tensor input will adopt (or get casted to) the data type of 42 >>> y = tf.constant([1, 2], dtype=tf.int8) 44 <tf.Tensor: shape=(2,), dtype=int8, numpy=array([-126, -124], dtype=int8)> 47 …sting rules](https://numpy.org/doc/stable/user/basics.broadcasting.html#general-broadcasting-rules) 48 . The two input array shapes are compared element-wise. Starting with the
|
D | api_def_Sub.pbtxt | 8 Both input and output have a range `(-inf, inf)`. 12 Subtract operation between an array and a scalar: 17 <tf.Tensor: shape=(5,), dtype=int32, numpy=array([0, 1, 2, 3, 4], dtype=int32)> 20 numpy=array([ 0, -1, -2, -3, -4], dtype=int32)> 22 Note that binary `-` operator can be used instead: 26 >>> x - y 27 <tf.Tensor: shape=(5,), dtype=int32, numpy=array([0, 1, 2, 3, 4], dtype=int32)> 29 Subtract operation between an array and a tensor of same shape: 35 numpy=array([ 4, 2, 0, -2, -4], dtype=int32)> 38 non-tensor, the non-tensor input will adopt (or get casted to) the data type [all …]
|
/external/dtc/tests/ |
D | type-preservation.dt.yaml | 1 --- 2 - '#address-cells': [[0x1]] 3 '#size-cells': [[0x0]] 7 int-array: [[0x0, 0x1], [0x2, 0x3]] 8 int8: [!u8 [0x56]] 9 int8-array: [!u8 [0x0, 0x12, 0x34, 0x56]] 11 int16-array: [!u16 [0x1234, 0x5678, 0x90ab, 0xcdef]] 12 int16-matrix: [!u16 [0x1234, 0x5678], [0x90ab, 0xcdef]] 14 int64-array: [!u64 [0x100000000, 0x0]] 15 a-string-with-nulls: ["foo\0bar", "baz"]
|
D | type-preservation.dts | 1 /dts-v1/; 4 #address-cells = <0x01>; 5 #size-cells = <0x00>; 10 int-array = <0x00 0x01>, int_value_label: <0x02 0x03>; 11 int8 = [56]; 12 int8-array = [00 12 34 56] label:; 14 int16-array = /bits/ 16 <0x1234 0x5678 0x90ab 0xcdef>; 15 int16-matrix = /bits/ 16 <0x1234 0x5678>, <0x90ab 0xcdef>; 17 int64-array = /bits/ 64 <0x100000000 0x00> int64_array_label_end:; 18 a-string-with-nulls = "foo\0bar", "baz";
|
/external/tensorflow/tensorflow/lite/kernels/internal/optimized/integer_ops/ |
D | fully_connected.h | 7 http://www.apache.org/licenses/LICENSE-2.0 32 const int8* input_data, const RuntimeShape& filter_shape, in FullyConnected() 33 const int8* filter_data, const RuntimeShape& bias_shape, in FullyConnected() 34 const int32* bias_data, const RuntimeShape& output_shape, int8* output_data, in FullyConnected() 49 // but the current --variable_batch hack consists in overwriting the 3rd in FullyConnected() 51 // array of which dimension is the batch dimension in it. in FullyConnected() 54 const int batches = FlatSizeSkipDim(output_shape, output_dim_count - 1); in FullyConnected() 55 const int filter_rows = filter_shape.Dims(filter_dim_count - 2); in FullyConnected() 56 const int filter_cols = filter_shape.Dims(filter_dim_count - 1); in FullyConnected() 58 const int output_rows = output_shape.Dims(output_dim_count - 1); in FullyConnected() [all …]
|
/external/neven/Embedded/common/src/b_BasicEm/ |
D | Int8Arr.h | 8 * http://www.apache.org/licenses/LICENSE-2.0 20 /* ---- includes ----------------------------------------------------------- */ 25 /* ---- related objects --------------------------------------------------- */ 27 /* ---- typedefs ----------------------------------------------------------- */ 29 /* ---- constants ---------------------------------------------------------- */ 31 /* ---- object definition -------------------------------------------------- */ 33 /** byte array */ 37 /* ---- private data --------------------------------------------------- */ 42 /* ---- public data ---------------------------------------------------- */ 44 /** pointer to array of int8 */ [all …]
|
/external/tensorflow/tensorflow/lite/python/optimize/ |
D | calibrator_test.py | 8 # http://www.apache.org/licenses/LICENSE-2.0 36 # Activation type Int8 37 ('UseActivationTypeInt8', dtypes.int8), 59 # Activation type Int8 60 ('UseActivationTypeInt8', dtypes.int8), 105 yield [np.array(u'Test' + str(i))] 112 # Activation type Int8 113 ('UseActivationTypeInt8 - EnableMlirQuantizer', dtypes.int8), 115 ('UseActivationTypeInt16 - DisableEnableMlirQuantizer', dtypes.int16)) 170 dtypes.float32, False, dtypes.int8, [all …]
|
/external/tensorflow/tensorflow/core/kernels/ |
D | gpu_device_array.h | 7 http://www.apache.org/licenses/LICENSE-2.0 28 // Create an array of value on the host, to be sent to kernel using 57 // Out-of-line: allocate data that will be memcopied. in Init() 62 context_->allocate_temp(DT_INT8, TensorShape{total_bytes_}, in Init() 65 out_of_line_values_on_host_.flat<int8>().data()); in Init() 80 // Out-of-line - copy pointers to device. in Finalize() 81 auto stream = context_->op_device_context()->stream(); in Finalize() 83 TF_RETURN_IF_ERROR(context_->allocate_temp( in Finalize() 86 out_of_line_values_on_gpu_.flat<int8>().data(), in Finalize() 88 stream->ThenMemcpy(&output_values_base, in Finalize() [all …]
|
/external/tensorflow/tensorflow/lite/kernels/internal/optimized/ |
D | optimized_ops.h | 7 http://www.apache.org/licenses/LICENSE-2.0 114 // Used to convert from old-style shifts (right) to new-style (left). 115 static constexpr int kReverseShift = -1; 117 // Make a local VectorMap typedef allowing to map a float array 137 // Make a local VectorMap typedef allowing to map a float array 151 const int rows = shape.Dims(dims_count - 1); in MapAsMatrixWithLastDimAsRows() 152 const int cols = FlatSizeSkipDim(shape, dims_count - 1); in MapAsMatrixWithLastDimAsRows() 167 Eigen::Map<const Eigen::Array<typename std::remove_const<Scalar>::type, 169 Eigen::Map<Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>>>::type; 175 const int rows = shape.Dims(dims_count - 1); in MapAsArrayWithLastDimAsRows() [all …]
|
/external/libchrome/mojo/public/tools/bindings/ |
D | README.md | 46 ninja -C out/r services/widget/public/interfaces 62 [documentation for individual target languages](#Generated-Code-For-Target-Languages). 79 |-------------------------------|-------------------------------------------------------| 81 | `int8`, `uint8` | Signed or unsigned 8-bit integer. 82 | `int16`, `uint16` | Signed or unsigned 16-bit integer. 83 | `int32`, `uint32` | Signed or unsigned 32-bit integer. 84 | `int64`, `uint64` | Signed or unsigned 64-bit integer. 85 | `float`, `double` | 32- or 64-bit floating point number. 86 | `string` | UTF-8 encoded string. 87 | `array<T>` | Array of any Mojom type *T*; for example, `array<uint8>` or `arra… [all …]
|
/external/tensorflow/tensorflow/python/framework/ |
D | dtypes_test.py | 7 # http://www.apache.org/licenses/LICENSE-2.0 89 self.assertIs(dtypes.int8, dtypes.as_dtype(np.int8)) 94 dtypes.as_dtype(np.array(["foo", "bar"]).dtype)) 111 dtypes.float32, dtypes.float64, dtypes.bool, dtypes.uint8, dtypes.int8, 125 self.assertIs(dtypes.int8, dtypes.as_dtype("int8")) 165 self.assertEqual(dtypes.as_dtype("int8").is_integer, True) 185 self.assertEqual(dtypes.as_dtype("int8").is_floating, False) 205 self.assertEqual(dtypes.as_dtype("int8").is_complex, False) 225 self.assertEqual(dtypes.as_dtype("int8").is_unsigned, False) 260 print("%s: %s - %s" % (dtype, dtype.min, dtype.max)) [all …]
|
/external/tensorflow/tensorflow/lite/tools/optimize/python/ |
D | modify_model_interface_lib_test.py | 8 # http://www.apache.org/licenses/LICENSE-2.0 47 yield [np.array([i] * input_size, dtype=np.float32)] 72 tf.int8, tf.int8) 90 self.assertEqual(final_input_dtype, np.int8) 91 self.assertEqual(final_output_dtype, np.int8)
|