• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H
11 #define EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H
12 
13 namespace Eigen {
14 
15 template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjLhs, bool ConjRhs>
16 struct selfadjoint_rank1_update;
17 
18 namespace internal {
19 
20 /**********************************************************************
21 * This file implements a general A * B product while
22 * evaluating only one triangular part of the product.
23 * This is a more general version of self adjoint product (C += A A^T)
24 * as the level 3 SYRK Blas routine.
25 **********************************************************************/
26 
27 // forward declarations (defined at the end of this file)
28 template<typename LhsScalar, typename RhsScalar, typename Index, int mr, int nr, bool ConjLhs, bool ConjRhs, int UpLo>
29 struct tribb_kernel;
30 
31 /* Optimized matrix-matrix product evaluating only one triangular half */
32 template <typename Index,
33           typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
34           typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs,
35                               int ResStorageOrder, int  UpLo, int Version = Specialized>
36 struct general_matrix_matrix_triangular_product;
37 
38 // as usual if the result is row major => we transpose the product
39 template <typename Index, typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
40                           typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs, int  UpLo, int Version>
41 struct general_matrix_matrix_triangular_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,RowMajor,UpLo,Version>
42 {
43   typedef typename ScalarBinaryOpTraits<LhsScalar, RhsScalar>::ReturnType ResScalar;
44   static EIGEN_STRONG_INLINE void run(Index size, Index depth,const LhsScalar* lhs, Index lhsStride,
45                                       const RhsScalar* rhs, Index rhsStride, ResScalar* res, Index resStride,
46                                       const ResScalar& alpha, level3_blocking<RhsScalar,LhsScalar>& blocking)
47   {
48     general_matrix_matrix_triangular_product<Index,
49         RhsScalar, RhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateRhs,
50         LhsScalar, LhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateLhs,
51         ColMajor, UpLo==Lower?Upper:Lower>
52       ::run(size,depth,rhs,rhsStride,lhs,lhsStride,res,resStride,alpha,blocking);
53   }
54 };
55 
56 template <typename Index, typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
57                           typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs, int  UpLo, int Version>
58 struct general_matrix_matrix_triangular_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,ColMajor,UpLo,Version>
59 {
60   typedef typename ScalarBinaryOpTraits<LhsScalar, RhsScalar>::ReturnType ResScalar;
61   static EIGEN_STRONG_INLINE void run(Index size, Index depth,const LhsScalar* _lhs, Index lhsStride,
62                                       const RhsScalar* _rhs, Index rhsStride, ResScalar* _res, Index resStride,
63                                       const ResScalar& alpha, level3_blocking<LhsScalar,RhsScalar>& blocking)
64   {
65     typedef gebp_traits<LhsScalar,RhsScalar> Traits;
66 
67     typedef const_blas_data_mapper<LhsScalar, Index, LhsStorageOrder> LhsMapper;
68     typedef const_blas_data_mapper<RhsScalar, Index, RhsStorageOrder> RhsMapper;
69     typedef blas_data_mapper<typename Traits::ResScalar, Index, ColMajor> ResMapper;
70     LhsMapper lhs(_lhs,lhsStride);
71     RhsMapper rhs(_rhs,rhsStride);
72     ResMapper res(_res, resStride);
73 
74     Index kc = blocking.kc();
75     Index mc = (std::min)(size,blocking.mc());
76 
77     // !!! mc must be a multiple of nr:
78     if(mc > Traits::nr)
79       mc = (mc/Traits::nr)*Traits::nr;
80 
81     std::size_t sizeA = kc*mc;
82     std::size_t sizeB = kc*size;
83 
84     ei_declare_aligned_stack_constructed_variable(LhsScalar, blockA, sizeA, blocking.blockA());
85     ei_declare_aligned_stack_constructed_variable(RhsScalar, blockB, sizeB, blocking.blockB());
86 
87     gemm_pack_lhs<LhsScalar, Index, LhsMapper, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
88     gemm_pack_rhs<RhsScalar, Index, RhsMapper, Traits::nr, RhsStorageOrder> pack_rhs;
89     gebp_kernel<LhsScalar, RhsScalar, Index, ResMapper, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp;
90     tribb_kernel<LhsScalar, RhsScalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs, UpLo> sybb;
91 
92     for(Index k2=0; k2<depth; k2+=kc)
93     {
94       const Index actual_kc = (std::min)(k2+kc,depth)-k2;
95 
96       // note that the actual rhs is the transpose/adjoint of mat
97       pack_rhs(blockB, rhs.getSubMapper(k2,0), actual_kc, size);
98 
99       for(Index i2=0; i2<size; i2+=mc)
100       {
101         const Index actual_mc = (std::min)(i2+mc,size)-i2;
102 
103         pack_lhs(blockA, lhs.getSubMapper(i2, k2), actual_kc, actual_mc);
104 
105         // the selected actual_mc * size panel of res is split into three different part:
106         //  1 - before the diagonal => processed with gebp or skipped
107         //  2 - the actual_mc x actual_mc symmetric block => processed with a special kernel
108         //  3 - after the diagonal => processed with gebp or skipped
109         if (UpLo==Lower)
110           gebp(res.getSubMapper(i2, 0), blockA, blockB, actual_mc, actual_kc,
111                (std::min)(size,i2), alpha, -1, -1, 0, 0);
112 
113 
114         sybb(_res+resStride*i2 + i2, resStride, blockA, blockB + actual_kc*i2, actual_mc, actual_kc, alpha);
115 
116         if (UpLo==Upper)
117         {
118           Index j2 = i2+actual_mc;
119           gebp(res.getSubMapper(i2, j2), blockA, blockB+actual_kc*j2, actual_mc,
120                actual_kc, (std::max)(Index(0), size-j2), alpha, -1, -1, 0, 0);
121         }
122       }
123     }
124   }
125 };
126 
127 // Optimized packed Block * packed Block product kernel evaluating only one given triangular part
128 // This kernel is built on top of the gebp kernel:
129 // - the current destination block is processed per panel of actual_mc x BlockSize
130 //   where BlockSize is set to the minimal value allowing gebp to be as fast as possible
131 // - then, as usual, each panel is split into three parts along the diagonal,
132 //   the sub blocks above and below the diagonal are processed as usual,
133 //   while the triangular block overlapping the diagonal is evaluated into a
134 //   small temporary buffer which is then accumulated into the result using a
135 //   triangular traversal.
136 template<typename LhsScalar, typename RhsScalar, typename Index, int mr, int nr, bool ConjLhs, bool ConjRhs, int UpLo>
137 struct tribb_kernel
138 {
139   typedef gebp_traits<LhsScalar,RhsScalar,ConjLhs,ConjRhs> Traits;
140   typedef typename Traits::ResScalar ResScalar;
141 
142   enum {
143     BlockSize  = meta_least_common_multiple<EIGEN_PLAIN_ENUM_MAX(mr,nr),EIGEN_PLAIN_ENUM_MIN(mr,nr)>::ret
144   };
145   void operator()(ResScalar* _res, Index resStride, const LhsScalar* blockA, const RhsScalar* blockB, Index size, Index depth, const ResScalar& alpha)
146   {
147     typedef blas_data_mapper<ResScalar, Index, ColMajor> ResMapper;
148     ResMapper res(_res, resStride);
149     gebp_kernel<LhsScalar, RhsScalar, Index, ResMapper, mr, nr, ConjLhs, ConjRhs> gebp_kernel;
150 
151     Matrix<ResScalar,BlockSize,BlockSize,ColMajor> buffer((internal::constructor_without_unaligned_array_assert()));
152 
153     // let's process the block per panel of actual_mc x BlockSize,
154     // again, each is split into three parts, etc.
155     for (Index j=0; j<size; j+=BlockSize)
156     {
157       Index actualBlockSize = std::min<Index>(BlockSize,size - j);
158       const RhsScalar* actual_b = blockB+j*depth;
159 
160       if(UpLo==Upper)
161         gebp_kernel(res.getSubMapper(0, j), blockA, actual_b, j, depth, actualBlockSize, alpha,
162                     -1, -1, 0, 0);
163 
164       // selfadjoint micro block
165       {
166         Index i = j;
167         buffer.setZero();
168         // 1 - apply the kernel on the temporary buffer
169         gebp_kernel(ResMapper(buffer.data(), BlockSize), blockA+depth*i, actual_b, actualBlockSize, depth, actualBlockSize, alpha,
170                     -1, -1, 0, 0);
171         // 2 - triangular accumulation
172         for(Index j1=0; j1<actualBlockSize; ++j1)
173         {
174           ResScalar* r = &res(i, j + j1);
175           for(Index i1=UpLo==Lower ? j1 : 0;
176               UpLo==Lower ? i1<actualBlockSize : i1<=j1; ++i1)
177             r[i1] += buffer(i1,j1);
178         }
179       }
180 
181       if(UpLo==Lower)
182       {
183         Index i = j+actualBlockSize;
184         gebp_kernel(res.getSubMapper(i, j), blockA+depth*i, actual_b, size-i,
185                     depth, actualBlockSize, alpha, -1, -1, 0, 0);
186       }
187     }
188   }
189 };
190 
191 } // end namespace internal
192 
193 // high level API
194 
195 template<typename MatrixType, typename ProductType, int UpLo, bool IsOuterProduct>
196 struct general_product_to_triangular_selector;
197 
198 
199 template<typename MatrixType, typename ProductType, int UpLo>
200 struct general_product_to_triangular_selector<MatrixType,ProductType,UpLo,true>
201 {
202   static void run(MatrixType& mat, const ProductType& prod, const typename MatrixType::Scalar& alpha, bool beta)
203   {
204     typedef typename MatrixType::Scalar Scalar;
205 
206     typedef typename internal::remove_all<typename ProductType::LhsNested>::type Lhs;
207     typedef internal::blas_traits<Lhs> LhsBlasTraits;
208     typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhs;
209     typedef typename internal::remove_all<ActualLhs>::type _ActualLhs;
210     typename internal::add_const_on_value_type<ActualLhs>::type actualLhs = LhsBlasTraits::extract(prod.lhs());
211 
212     typedef typename internal::remove_all<typename ProductType::RhsNested>::type Rhs;
213     typedef internal::blas_traits<Rhs> RhsBlasTraits;
214     typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhs;
215     typedef typename internal::remove_all<ActualRhs>::type _ActualRhs;
216     typename internal::add_const_on_value_type<ActualRhs>::type actualRhs = RhsBlasTraits::extract(prod.rhs());
217 
218     Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs().derived()) * RhsBlasTraits::extractScalarFactor(prod.rhs().derived());
219 
220     if(!beta)
221       mat.template triangularView<UpLo>().setZero();
222 
223     enum {
224       StorageOrder = (internal::traits<MatrixType>::Flags&RowMajorBit) ? RowMajor : ColMajor,
225       UseLhsDirectly = _ActualLhs::InnerStrideAtCompileTime==1,
226       UseRhsDirectly = _ActualRhs::InnerStrideAtCompileTime==1
227     };
228 
229     internal::gemv_static_vector_if<Scalar,Lhs::SizeAtCompileTime,Lhs::MaxSizeAtCompileTime,!UseLhsDirectly> static_lhs;
230     ei_declare_aligned_stack_constructed_variable(Scalar, actualLhsPtr, actualLhs.size(),
231       (UseLhsDirectly ? const_cast<Scalar*>(actualLhs.data()) : static_lhs.data()));
232     if(!UseLhsDirectly) Map<typename _ActualLhs::PlainObject>(actualLhsPtr, actualLhs.size()) = actualLhs;
233 
234     internal::gemv_static_vector_if<Scalar,Rhs::SizeAtCompileTime,Rhs::MaxSizeAtCompileTime,!UseRhsDirectly> static_rhs;
235     ei_declare_aligned_stack_constructed_variable(Scalar, actualRhsPtr, actualRhs.size(),
236       (UseRhsDirectly ? const_cast<Scalar*>(actualRhs.data()) : static_rhs.data()));
237     if(!UseRhsDirectly) Map<typename _ActualRhs::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;
238 
239 
240     selfadjoint_rank1_update<Scalar,Index,StorageOrder,UpLo,
241                               LhsBlasTraits::NeedToConjugate && NumTraits<Scalar>::IsComplex,
242                               RhsBlasTraits::NeedToConjugate && NumTraits<Scalar>::IsComplex>
243           ::run(actualLhs.size(), mat.data(), mat.outerStride(), actualLhsPtr, actualRhsPtr, actualAlpha);
244   }
245 };
246 
247 template<typename MatrixType, typename ProductType, int UpLo>
248 struct general_product_to_triangular_selector<MatrixType,ProductType,UpLo,false>
249 {
250   static void run(MatrixType& mat, const ProductType& prod, const typename MatrixType::Scalar& alpha, bool beta)
251   {
252     typedef typename internal::remove_all<typename ProductType::LhsNested>::type Lhs;
253     typedef internal::blas_traits<Lhs> LhsBlasTraits;
254     typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhs;
255     typedef typename internal::remove_all<ActualLhs>::type _ActualLhs;
256     typename internal::add_const_on_value_type<ActualLhs>::type actualLhs = LhsBlasTraits::extract(prod.lhs());
257 
258     typedef typename internal::remove_all<typename ProductType::RhsNested>::type Rhs;
259     typedef internal::blas_traits<Rhs> RhsBlasTraits;
260     typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhs;
261     typedef typename internal::remove_all<ActualRhs>::type _ActualRhs;
262     typename internal::add_const_on_value_type<ActualRhs>::type actualRhs = RhsBlasTraits::extract(prod.rhs());
263 
264     typename ProductType::Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs().derived()) * RhsBlasTraits::extractScalarFactor(prod.rhs().derived());
265 
266     if(!beta)
267       mat.template triangularView<UpLo>().setZero();
268 
269     enum {
270       IsRowMajor = (internal::traits<MatrixType>::Flags&RowMajorBit) ? 1 : 0,
271       LhsIsRowMajor = _ActualLhs::Flags&RowMajorBit ? 1 : 0,
272       RhsIsRowMajor = _ActualRhs::Flags&RowMajorBit ? 1 : 0,
273       SkipDiag = (UpLo&(UnitDiag|ZeroDiag))!=0
274     };
275 
276     Index size = mat.cols();
277     if(SkipDiag)
278       size--;
279     Index depth = actualLhs.cols();
280 
281     typedef internal::gemm_blocking_space<IsRowMajor ? RowMajor : ColMajor,typename Lhs::Scalar,typename Rhs::Scalar,
282           MatrixType::MaxColsAtCompileTime, MatrixType::MaxColsAtCompileTime, _ActualRhs::MaxColsAtCompileTime> BlockingType;
283 
284     BlockingType blocking(size, size, depth, 1, false);
285 
286     internal::general_matrix_matrix_triangular_product<Index,
287       typename Lhs::Scalar, LhsIsRowMajor ? RowMajor : ColMajor, LhsBlasTraits::NeedToConjugate,
288       typename Rhs::Scalar, RhsIsRowMajor ? RowMajor : ColMajor, RhsBlasTraits::NeedToConjugate,
289       IsRowMajor ? RowMajor : ColMajor, UpLo&(Lower|Upper)>
290       ::run(size, depth,
291             &actualLhs.coeffRef(SkipDiag&&(UpLo&Lower)==Lower ? 1 : 0,0), actualLhs.outerStride(),
292             &actualRhs.coeffRef(0,SkipDiag&&(UpLo&Upper)==Upper ? 1 : 0), actualRhs.outerStride(),
293             mat.data() + (SkipDiag ? (bool(IsRowMajor) != ((UpLo&Lower)==Lower) ? 1 : mat.outerStride() ) : 0), mat.outerStride(), actualAlpha, blocking);
294   }
295 };
296 
297 template<typename MatrixType, unsigned int UpLo>
298 template<typename ProductType>
299 TriangularView<MatrixType,UpLo>& TriangularViewImpl<MatrixType,UpLo,Dense>::_assignProduct(const ProductType& prod, const Scalar& alpha, bool beta)
300 {
301   EIGEN_STATIC_ASSERT((UpLo&UnitDiag)==0, WRITING_TO_TRIANGULAR_PART_WITH_UNIT_DIAGONAL_IS_NOT_SUPPORTED);
302   eigen_assert(derived().nestedExpression().rows() == prod.rows() && derived().cols() == prod.cols());
303 
304   general_product_to_triangular_selector<MatrixType, ProductType, UpLo, internal::traits<ProductType>::InnerSize==1>::run(derived().nestedExpression().const_cast_derived(), prod, alpha, beta);
305 
306   return derived();
307 }
308 
309 } // end namespace Eigen
310 
311 #endif // EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H
312